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Estimation of the Monthly Precipitation Predictability Limit in
China Using the Nonlinear Local Lyapunov Exponent
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ABSTRACT

By using the nonlinear local Lyapunov exponent and nonlinear error growth dynamics, the predictability
limit of monthly precipitation is quantitatively estimated based on daily observations collected from approx-
imately 500 stations in China for the period 1960–2012. As daily precipitation data are not continuous in
space and time, a transformation is first applied and a monthly standardized precipitation index (SPI) with
Gaussian distribution is constructed. The monthly SPI predictability limit (MSPL) is quantitatively calcu-
lated for SPI dry, wet, and neutral phases. The results show that the annual mean MSPL varies regionally
for both wet and dry phases: the MSPL in the wet (dry) phase is relatively higher (lower) in southern China
than in other regions. Further, the pattern of the MSPL for the wet phase is almost opposite to that for the
dry phase in both autumn and winter. The MSPL in the dry phase is higher in winter and lower in spring
and autumn in southern China, while the MSPL values in the wet phase are higher in summer and winter
than those in spring and autumn in southern China. The spatial distribution of the MSPL resembles that
of the prediction skill of monthly precipitation from a dynamic extended-range forecast system.
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1. Introduction

The East Asian monsoon is one of the most im-
portant components of the East Asian climate system
and causes distinct wet and dry seasons in China (Gao
et al., 2014). Anomalous monsoon activity may cause
extremes of drought and/or flood, exerting large im-
pacts on the society, economy, and environment in
China (Jin et al., 2013). In order to prevent mete-

orological disasters, reliable climate predictions such
as monthly/seasonal predictions are needed. Unfortu-
nately, the widely used method for monthly prediction
is still fraught with uncertainties (Wang et al., 2015).
Therefore, appropriate assessment of the predictabil-
ity limit of monthly precipitation may advance our
knowledge about prediction uncertainties and assist
the end-user in setting up infrastructure for disaster
preparedness.
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Some studies have focused on the predictability
of monthly to seasonal temperature (Yue et al., 1999;
Li and Ding, 2008; Li et al., 2014), but less research
has been conducted on the precipitation predictability.
Yilmaz and DelSole (2010) assessed the predictability
of seasonal precipitation globally using joint proba-
bilities, which provided only a rough assessment of
predictability in East Asia. Ying et al. (2014) es-
timated the seasonal predictability of precipitation in
eastern China according to the climatic signal-to-noise
ratio, and obtained predictable precipitation patterns
only qualitatively. Compared with predictability of
temperature, estimation of precipitation predictabil-
ity is more challenging because the precipitation rate
is strongly non-Gaussian and discontinuous.

In general, the predictability of precipitation can
be estimated by both statistical and dynamical meth-
ods. The former aims to estimate the climatic signal-
to-noise ratio (Zhao, 2008; Ying et al., 2013); thus,
such methods can be used only for qualitative investi-
gation of predictability. For dynamical methods, nu-
merical models (Koster et al., 2000; Zhao et al., 2000)
and nonlinear dynamic system theory are commonly
used. However, the performance of numerical models
in simulating precipitation variability is generally poor
due to complexity of the physical processes respon-
sible for precipitation, indicating that the precipita-
tion predictability derived from model simulations will
yield considerable errors (Zhou et al., 2014). Nonlinear
dynamic system theory, such as the Lyapunov stabil-
ity theory, can be applied to observations and used
to evaluate the predictability limit quantitatively, and
therefore can overcome the errors from climate model
simulations. On the basis of the Lyapunov stability
theory and criterion of error growth, the predictability
limit can be defined as the time over which the errors
double (Lorenz, 1965). Li and Ding (2008) developed
Lyapunov stability theory by proposing the nonlinear
local Lyapunov exponent (NLLE) to quantify the pre-
dictability limit of a chaotic system.

The NLLE has been employed to estimate the pre-
dictability limit of monthly zonal circulation (Li and
Ding, 2008) and monthly surface air temperature in
China (Li et al., 2014). In this study, we attempt
to quantitatively evaluate the predictability limit of

monthly precipitation in China using the NLLE. In
addition, we compare the pattern of the monthly stan-
dardized precipitation index (SPI) predictability limit
(MSPL) derived from observations using the NLLE
with that of the dynamical prediction skill of monthly
precipitation.

2. Data and method

2.1 Data

Daily precipitation observations at 756 stations in
China during 1960–2012 were obtained from the China
Meteorological Administration. Missing data were re-
placed by climatic mean values for 1960–2012, but sta-
tions were excluded if values were missing for more
than five consecutive days or the number of missing
values for the entire time series was more than 60 days.
After this process, 537 stations remained. Addition-
ally, we used monthly precipitation hindcast data from
the monthly dynamic extended-range forecast oper-
ational system version 2 (DERF2.0) of the National
Climate Center for 1983–2013 (Wu et al., 2013). The
model ran at a T106 (approximately 110 km) horizon-
tal resolution. Four DERF2.0 runs (0000, 0600, 1200,
and 1800 UTC) were initialized every day starting on
days 22–26 of each month since January 1983 and run
for 55 days each. Thus, there were 20 ensembles for
each month, and the hindcast monthly precipitation
was the ensemble average of all outputs of the 20 en-
sembles (He et al., 2014). Monthly global precipitation
datasets were obtained from the CPC merged analysis
of precipitation (Xie and Arkin, 1997) for 1983–2013.
The horizontal resolution of the data was 2.5◦ × 2.5◦.
Anomalies of monthly precipitation for the observation
and hindcast data are given relative to the 1984–2013
average.

2.2 Estimation of the nonlinear local Lyapunov

exponent

The NLLE at time t0 is defined as follows:

λ(x(t0), δ(t0), τ) =
1
τ

ln
∣
∣
∣
∣
δ(t0 + τ)

δ(t0)

∣
∣
∣
∣ , (1)

where x(t0) is the initial state of the reference orbit in
phase space, i.e., the variable value at time t0; δ(t0) is
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the initial error, defined herein as the difference in pre-
cipitation between t and t0, and t is determined by the
local dynamical analogs (Li et al., 2011); and τ is the
time step since t0. The condition λ > 0 implies that
the distance between initially similar orbits increases
with time and their correlation is weakened with time.
A larger value of λ indicates more rapid growth of the
initial error. When the error growth reaches the satu-
ration level, almost all similarity information from the
initial states is lost and the prediction becomes mean-
ingless.

The mean relative growth of initial error can be
obtained by

E(δ(t0), τ) = exp(λ(δ(t0), τ) · τ). (2)

On the basis of the nonlinear error growth theory
(Ding and Li, 2009), we obtain

E(δ(t0), τ) P→ c(N→∞), (3)

where the constant c is considered as the theoretical
saturation level of E(δ(t0), τ) when sample number N

tends toward infinity.
In general, precipitation data feature a non-

Gaussian distribution and are distributed discretely in
both space and time. Therefore, prior to quantitative
estimation of the precipitation predictability using the
NLLE, a transformation method should be employed
to ensure that the data fit a Gaussian distribution.
The standardized precipitation index (SPI) defined by
McKee et al. (1993) based on observed precipitation
has a Gaussian distribution, so it is used in this study
instead of the raw precipitation time series to estimate
the precipitation predictability. The concept of SPI
was first proposed by Mckee et al. (1993) and specific
formulae for calculation of SPI were given in Edwards
and Mckee (1997). This study follows the latter to ob-
tain the SPI values. Herein, a positive (negative) value
of the SPI indicates that the precipitation is greater
(less) than the median precipitation.

Finally, the monthly SPI predictability limit is
defined as

MSPL =
{
t|E(δ(t0), τ) = 0.99 · c} , (4)

i.e., MSPL is the time at which the error reached 99%
of its saturation level (Li et al., 2014). The physical

meaning of the MSPL is the time limit after which the
two dynamic similar initial states become absolutely
dissimilar (Li et al., 2014). This indicates the lead time
for which the monthly precipitation can be predicted.
If the MSPL is longer than 30 days, it indicates that
the monthly mean is predictable from the beginning
of the month. The longer the MSPL, the higher the
predictive skill.

A sufficiently large number of samples are re-
quired when applying the NLLE (Li and Ding, 2011).
In order to obtain enough samples, the SPI was ob-
tained based on daily precipitation with a 30-day mov-
ing window day by day. The SPI for each day was cal-
culated by using the 30-day daily precipitation before
that day (McRoberts and Nielsen-Gammon, 2011).
For example, the SPI for 31 January was calculated
by using daily precipitation from 1 to 30 January.

We found that the predictability limit of the SPI
depends on its phases. Thus, the SPI was classified
into three phases: wet, dry, and neutral (Table 1).
The wet and dry phases each constituted one-quarter
of the total number of samples, and the neutral phase
accounted for half of the total number of samples. The
threshold of 0.675 was used because a frequency of
25% corresponds to an SPI value of 0.675 when the
SPI time series has a Gaussian distribution.

Previous studies demonstrated that SPI time se-
ries usually do not fit a Gaussian distribution in areas
where the annual precipitation is relatively low, such
as northwestern China (Wu et al., 2007; Svoboda et
al., 2012). For example, the peak of the probability
distribution frequency (PDF) of the SPI time series
for Ruoqiang Station in northwestern China shows an
obvious shift to the low index phase, indicating a non-
Gaussian distribution (Fig. 1). Therefore, the SPI
time series for this station does not satisfy the NLLE
requirement.

In contrast, the PDF of the SPI time series for
Nanjing Station in central-eastern China fits a Gaus-
sian distribution well (Fig. 2), with approximately
50% of the samples in the neutral phase and 25% in
the wet and dry phases.

Table 1. Classification of the SPI phases

Dry phase Neutral phase Wet phase

SPI SPI < –0.675 |SPI| � 0.675 SPI > 0.675
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Thus, we employed a procedure to detect whether
the SPI time series fit a Gaussian distribution. The

SPI is considered to be a Gaussian distribution if it
fits one of the two conditions given below:

Fig. 1. (a) SPI frequency at Ruoqiang Station, and the accumulated probability with respect to the (b) neutral, (c)

dry, and (d) wet phases.

Fig. 2. As in Fig. 1, but for Nanjing Station.
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∣
∣
∣
∣
(Days|SPI < −0.675) − N

N

∣
∣
∣
∣ � 10%, (5)

∣
∣
∣
∣
(Days|SPI > 0.675) − N

N

∣
∣
∣
∣ � 10%, (6)

where Days|SPI < –0.675 and Days|SPI > 0.675 rep-
resent the number of days in the dry and wet phases,
respectively; and N denotes the total number of days.

Figure 3 shows the geographical distribution of
the 537 stations used in the analysis. There are 37 sta-
tions with a non-Gaussian distribution, most of which
are located in northwestern China, where the climato-
logical mean of precipitation is less than 200 mm yr−1

(Fig. 3). Finally, 500 stations with Gaussian distribu-
tion SPI were selected for further analysis.

2.3 Calculation of monthly precipitation pre-

diction skill

Similar to the SPI, we first classified the hindcast
monthly precipitation into three phases: wet, dry, and
neutral (Table 2). We then calculated the prediction
skill (P ) of the hindcast monthly precipitation from
DERF2.0 for 1983–2013.

The prediction skill of the hindcast monthly pre-
cipitation was calculated by using the formula

P =
Ps − Pc

Pc
× 100%, (7)

where Ps is the prediction score of monthly precipita-
tion. Ps is defined as:

Ps = mp/np × 100%, (8)

where np is the number of predicted samples and mp is
the number of observed precipitation samples, which
is in the same phase as the np predicted samples. The
prediction score is reliable only when compared with
the stochastic prediction score of monthly precipita-
tion (Pc), which is given by

Pc = mo/no × 100%, (9)

where no is the number of observed samples, and mo

is the number of samples in the dry (neutral and wet)
phase among these no samples.

3. Results

3.1 Spatial distribution of the MSPL

Figure 4a shows the spatial distribution of the an-
nual mean MSPL in China. The annual mean MSPL
was approximately 30–35 days over almost the whole
of China. However, the patterns of MSPL show dis-
tinct differences between the three phases of the SPI
(Figs. 4b–d). In the dry phase of the SPI, the MSPL
is relatively high in northern China, with a value of
about 30–45 days in northeastern China, but less than
30 days in the Huaihe River basin and southern China
(Fig. 4b). The pattern of the MSPL in the wet phase
of the SPI (Fig. 4d) is almost opposite to that in the
dry phase. In the wet phase, the MSPL is less than a
month over a large part of northern China, but more
than 30 days in the Huaihe River basin and part of
southern China. The MSPL values in the dry phase

Fig. 3. Distribution of the 537 meteorological stations

used in this study. Black spots represent the stations with

Gaussian distribution SPI series; red (blue) squares repre-

sent the stations that do not fit Eq. (5) (Eq. (6)); green

squares represent the stations that do not fit both Eqs. (5)

and (6); and the blue line is the annual average 200-mm

isohyet.

Table 2. Classification of precipitation phases (He et al., 2014)

Dry phase Neutral phase Wet phase

Precipitation anomaly percentage (PAP; %) PAP < –20% |PAP| � 20% PAP > 20%
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Fig. 4. (a) Annual mean MSPL, and the MSPL for the (b) dry, (c) neutral, and (d) wet phases of the SPI.

are relatively high in arid areas but low in moist areas
(Fig. 4b); in contrast, the MSPL in the wet phase is
relatively high in moist areas but low in arid regions
(Fig. 4d). As a country seriously affected by the East
Asian monsoon, the frequency of precipitation in dry
(wet) phase is higher in arid (moist) areas. There are
more samples in the dry (wet) phase in arid (moist)
areas than those in other regions. Thus, it is easier
to find better local dynamical analogs, which leads to
a higher MSPL in the dry (wet) phase in northwest-
ern (southern) China. In the neutral phase of the SPI,
the MSPL pattern (Fig. 4c) resembles that of the total
dataset (Fig. 4a), which can presumably be attributed
to the opposite spatial distribution of the MSPL be-
tween the wet and dry phases.

As the precipitation in China shows large spatial
and seasonal variations, we further examined the dis-
tribution of the MSPL for the four calendar seasons
in terms of the SPI phases (Fig. 5). The MSPL is
about 30–45 days in a large part of central-northern
China, which is obviously higher than that in southern
China (less than 30 days) in the dry phase of the SPI
for spring (Fig. 5a). The distribution of the MSPL in

the wet phase of the SPI in central-northern China is
nearly opposite to that in the dry phase (Fig. 5c). The
MSPL pattern in both the dry and wet phases of the
SPI in summer is similar to that in spring (Figs. 5d
and 5f). The MSPL is more than 30 days in central-
northern China in the dry phase (Fig. 5d), and is
around 30–40 days in the Huang-Huai River basin and
Yunnan Province in the wet phase (Fig. 5f).

In autumn, the MSPL in the dry phase of the SPI
is less than 30 days in a large part of southern China
and more than 30 days in most areas of northern China
(Fig. 5g). In contrast, the MSPL in the wet phase is
more than 30 days in southern China but less than
a month in northern China (Fig. 5i). In winter, the
MSPL is more than 30 days in eastern China in the
wet phase of the SPI (Fig. 5l)—the opposite pattern
to the same area in the dry phase (Fig. 5j). Of note
is that the MSPL in the neutral phase is more than
30 days in most areas of Chinese mainland in all four
seasons except for several local regions, such as North
China in both spring and autumn (Figs. 5b, 5e, 5h,
and 5k).

In summary, the MSPL is higher in the neutral
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Fig. 5. Spatial distributions of the seasonal mean MSPL: (a–c) spring (March–April–May, MAM), (d–f) summer

(June–July–August, JJA), (g–i) autumn (September–October–November, SON), and (j–l) winter (December–January–

February, DJF) for (a, d, g, j) dry, (b, e, h, k) neutral, and (c, f, i, l) wet phases.

phase than in the dry and wet phases. This finding
implies that prediction of the SPI is more challenging
in the dry and wet phases than in the neutral phase.
We also determined that the MSPL in the dry phase
is higher than that in the wet phase. The spatial dis-
tribution of the MSPL in the wet phase is almost op-
posite to that in the dry phase in both autumn and
winter. The MSPL in the dry phase of the SPI in a
large part of southern China is higher in winter and

lower in both spring and autumn. This finding is con-
sistent with the results of Ying (2013), and supports
the notion that the seasonal predictability of precip-
itation is higher in winter but lower in transitional
seasons.

3.2 Comparison with the prediction skill of

hindcast monthly precipitation

We investigated the similarity between the MSPL
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derived from precipitation observations using the
NLLE and the prediction skill of the hindcast monthly
precipitation. Figure 6 shows the prediction skill of the
hindcast monthly precipitation in the three phases for
each calendar season. As seen in Fig. 6, the pre-
diction skill of hindcast monthly precipitation in the
neutral phase is higher than in the other two phases in
each season, which is consistent with the results in Fig.
5. In detail, the prediction skill in the neutral phase
in northwestern and southern China is higher than

that in the rest of China for spring (Fig. 6b), which
strongly resembles the MSPL distribution in Fig. 5b.
Prediction skill in the dry phase is relatively low to
the south of the Yangtze River for summer (Fig. 6d),
which is similar to the MSPL pattern in Fig. 5d. We
additionally used the Global Precipitation Climatol-
ogy Project monthly precipitation (Adler et al., 2003)
as the observed precipitation to estimate the predic-
tion skill. For this measure, the distributions of the
prediction skill (figure omitted) are similar to those in

Fig. 6. Spatial distributions of the prediction skill of monthly precipitation from DERF2.0: (a–c) spring (MAM), (d–f)

summer (JJA), (g–i) autumn (SON), and (j–l) winter (DJF) for (a, d, g, j) dry, (b, e, h, k) neutral, and (c, f, i, l) wet

phases.



NO.1 LIU Jingpeng, LI Weijing, CHEN Lijuan, et al. 101

Fig. 6. In summary, the distribution of the prediction
skill is consistent with the distribution of the MSPL to
a great extent. The prediction skill largely depends on
the predictability, which is evaluated utilizing a certain
method. The MSPL is the intrinsic property gained
from the precipitation time series. It can be used to
verify whether the model can simulate this intrinsic
property. Thus, the distribution of the MSPL is an
important reference for model improvement.

4. Conclusion

We quantitatively estimated the monthly precip-
itation predictability limit using the NLLE, based on
observations of daily precipitation from approximately
500 stations in China during 1960–2012. As the daily
precipitation data are not continuous in space and
time, a transformation was employed to obtain the
monthly SPI. The SPI has a Gaussian distribution.
The monthly predictability limit of the SPI i.e., the
MSPL, was quantitatively estimated for its dry, wet,
and neutral phases.

The results indicate that the annual mean MSPL
in China varies significantly by region for both wet
and dry phases. In particular, the MSPL is higher
for the neutral phase than for both the dry and wet
phases, implying that prediction of monthly precipi-
tation is more challenging for the dry and wet phases
than for the neutral phase. Additionally, the MSPL in
the dry phase is relatively high (low) in arid (moist)
areas; in contrast, the MSPL in the wet phase is rel-
atively high (low) in moist (arid) areas. Moreover,
the MSPL pattern in the wet phase is almost opposite
to that in the dry phase in both autumn and winter.
The MSPL in the dry phase is higher in winter and
lower in both spring and autumn in southern China.
The MSPL in the wet phase is higher in summer and
winter than in spring and autumn in southern China.
Furthermore, we found that the spatial distribution
of the MSPL resembles that of the prediction skill of
monthly precipitation from a dynamic extended-range
forecast system. The prediction skill of precipitation
in the neutral phase is highest compared to those in
the wet and dry phases for all calendar seasons, which
is consistent with the MSPL distribution.

Our results show that monthly precipitation is
remarkably predictable in northern (southern) China
in the dry (wet) phase. However, the predictability
limit of precipitation is markedly smaller than that of
the surface air temperature (Wang et al., 2007; Li et
al., 2014). The spatiotemporal relations between pre-
cipitation and associated boundary conditions remain
unknown because the method applied in this study
cannot separate predictability induced by initial val-
ues and by external forcing.
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