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ABSTRACT

This paper presents a numerical model that simulates the wind fields, turbulence fields, and dispersion of
gaseous substances in urban areas on building to city block scales. A Computational Fluid Dynamics (CFD)
approach using the steady-state, Reynolds-Averaged Navier-Stokes (RANS) equations with the standard
k-ε turbulence model within control volumes of non-uniform cuboid shapes has been employed. Dispersion
field is computed by solving an unsteady transport equation of passive scalar. Another approach based
on Gaussian plume model is used to correct the turbulent Schmidt number of tracer, in order to improve
the dispersion simulation. The experimental data from a wind tunnel under neutral conditions are used to
validate the numerical results of velocity, turbulence, and dispersion fields. The numerical results show a
reasonable agreement with the wind tunnel data. The deviation of concentration between the simulation
with corrected turbulent Schmidt number and the wind tunnel experiments may arise from 1) imperfect
point sources, 2) heterogeneous turbulent diffusivity, and 3) the constant turbulent Schmidt assumption
used in the model.
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1. Introduction

Dispersion of atmospheric pollutants in urban ar-
eas has been the subject of extended research in recent
years, due to the increasingly imminent threat that
the toxic gaseous substances may be intentionally or
inadvertently released in a heavily populated urban
environment.

There is a considerable amount of work dealing
with flow and dispersion around buildings. Tradition-
ally, the broad characteristics of flow and dispersion
have been investigated mainly in the wind tunnel (e.g.,
Davidson et al., 1996; Gromke et al., 2008), where ex-
perimental conditions can be controlled. Some field
trials (e.g., Higson et al., 1995; Macdonald et al.,
1997; Mavroidis, 2000) have also been conducted in the
real conditions of the atmosphere and on real scales,

complementing the findings from wind tunnel experi-
ments. Most wind tunnel and field experiments fo-
cused on isolated obstacles, arrays of obstacles, and
two-dimensional street canyons, for the recognition
that the interaction between buildings and flows could
be possibly concluded with idealized models. Some
studies (e.g., Macdonald et al., 1998; Mavroidis et al.,
2003) compared results of wind tunnel and field ex-
periments, and summarized that results from these
two types of experiments mainly differ in the effect
of wind meander and the larger scales of turbulence
present in field trials. These studies have improved the
understanding of the physical processes involved and
provided necessary information for developing math-
ematical models as practical tools. However, both of
them are considered to be costly, especially field trials,
which require considerable time and effort since they
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are carried out in uncontrolled weather conditions.
This weakness makes field trials difficult for practi-
cal purposes.

Recent advances in numerical modeling and com-
puter capability lead to an increasing number of in-
vestigations on numerical simulation of urban area
dispersion in a variety of controlled configurations,
with some excellent reviews (e.g., Li et al., 2006) of
atmospheric dispersion modeling. The flow, turbu-
lence, and dispersion fields on the urban city block
(1 km) to building scales (10 m) are directly influ-
enced by the fine scale geometric features of the city.
As a result, the models that accurately predict large
scale dispersion based on simplified mathematic mod-
els, such as box models, Gaussian plume models, and
Lagrangian puff models, are unable to predict accu-
rately in urban areas. More sophisticated approaches,
such as Computational Fluid Dynamics (CFD), capa-
ble of modeling the flow and the response of build-
ings to winds, are developed to simulate the urban
area dispersion problems. There are a bunch of in-
vestigations about Reynolds-Averaged Navier-Stokes
(RANS) based CFD (Krüs et al., 2003; Riddle et al.,
2004; Coirier et al., 2005; Di Sabatino et al., 2007;
Mavroidis et al., 2007; Santos et al., 2009; Tewari et
al., 2010; Solazzo et al., 2011) as well as Large Eddy
Simulation (LES) based CFD (Nozawa and Tamura,
2002; Cheng et al., 2003; Gousseau et al., 2011). Some
studies even involved real complex urban-type geome-
tries (Krüs et al., 2003; Hanna et al., 2006; Tewari
et al., 2010). Clearly, the LES approach is better in
prediction (Cheng et al., 2003; Gousseau et al., 2011),
because it addresses many deficiencies brought about
by the RANS models (namely, scale resolution). How-
ever, the LES simulations are computationally expen-
sive, noted as “about 640 times greater than the k-ε
model applied with wall functions and 26 times greater
than the two-layer k-ε model” in Cheng et al. (2003).
In view of this, the steady RANS based models appear
to be a good compromise between solution accuracy
and amount of computation.

This work aims to validate a newly built numeri-
cal model, based on the computational fluid dynamics
approach. The model will be used to simulate the

rapid responses of an urban environment to the lethal
gas releasing events. Flow and turbulence fields are
computed via steady RANS equations with standard
k-ε turbulence model, and dispersion field is gener-
ated by an Eulerian-based transport equation. Details
about the mathematic model and numerical methods
are described in Sections 2 and 3, respectively. The
results of the numerical simulation are validated by
experimental data from wind tunnel experiments con-
ducted by the Environmental Wind Tunnel Labora-
tory in University Hamburg in Section 4. An approach
based on Gaussian plume model to improve the disper-
sion simulation is also provided in Section 4. Conclu-
sions are given in Section 5.

2. Model description

Our approach is to generate the velocity and tur-
bulence fields by solving the steady-state form RANS
equations coupled with a standard k-ε model with
suitable boundary conditions, and then compute the
tracer concentration field by solving the unsteady
Reynolds-averaged transport equation using the pre-
computed velocity and turbulence fields.

2.1 Fundamental equations

The RANS equations are conservation equations
derived by using the Reynolds decomposition with
time averaging. Under the assumption of a high
Reynolds number, the viscous term can be neglected,
and the fluid flow can be considered to be unaffected
by the concentration distribution since the magnitude
of concentration is not sufficiently high to significantly
alter the air density. Thus, the RANS equations are
as follows in Cartesian tensor notation.

∂(ρūi)
∂xi

= 0, (1)

∂(ρūiūj)
∂xj

= − ∂p̄

∂xi
+

∂

∂xj
(−ρu′

iu
′
j) − ρgδi3. (2)

The equations shown here are for neutral condi-
tions, where the buoyancy forces have been neglected.
The variable ūi is the component of velocity in i-
direction (i = 1, 2, and 3 for directions x, y, and z,
respectively), ρu′

iu
′
j is the turbulent flux, p̄ is the ther-
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modynamic pressure, ρ is the density of the fluid, and
g is the gravity acceleration.

The Reynolds decomposition introduces Reynolds
stress, which represents turbulence diffusive flux.
The Boussinesq assumption, which states that the
Reynolds stress is linearly proportional to the rate of
strains, is made here to define the turbulent flux:

−ρu′
iu

′
j = μt

( ∂ūi

∂xj
+

∂ūj

∂xi

)
− 2

3
δij

(
μt

∂ūk

∂xk
+ ρk

)
, (3)

where k is turbulence kinetic energy (TKE), μt is tur-
bulence viscosity and would be yielded by solving aux-
iliary field equations of turbulence closure, which will
be discussed in Section 2.2.

Gaseous substance is regarded as a passive scalar.
The transport of a scalar can be modeled similarly.
Turbulence transport of a scalar is taken to be propor-
tional to the gradient of the mean value of the trans-
ported quantity. The unsteady-state form is applied
here:

∂ρC

∂t
+

∂(ρūjC)
∂xj

=
∂

∂xj
(−ρu′

jC
′) + SC , (4)

−ρu′
jC

′ = ΓC
∂C

∂xj
, (5)

where C is the mass fraction or mass concentration of
a tracer, ρu′

jC
′ is the turbulent flux of tracer, ΓC is

the turbulent diffusivity of tracer, and SC is the source
of mass of tracer.

The turbulent diffusivity, ΓC , is expected fairly
close to turbulence viscosity μt. The scale coefficient
is defined as turbulent Schmidt number σC .

σC =
μt

ΓC
. (6)

This assumption is known as the Reynolds anal-
ogy.

2.2 Turbulence closure: the standard k-ε mo-

del

The turbulence closure scheme applied here is
widely used and can be referred to Launder and Spald-
ing (1974).

The expression for the turbulence viscosity relates
to TKE, k, and dissipation rate ε:

μt =
ρCμk2

ε
, (7)

where Cμ is a constant.
For conditions of stationary, neutral, and high

Reynolds number, the standard k-ε model equations
for TKE, k, and dissipation rate ε are:

∂(ρūjk)
∂xj

=
∂

∂xj

( μt

σk

∂k

∂xj

)
+ Gk − ρε, (8)

∂(ρūjε)
∂xj

=
∂

∂xj

(μt

σε

∂ε

∂xj

)
+ C1ε

ε

k
Gk − C2ερ

ε2

k
, (9)

with

Gk = μi

( ∂ūi

∂xj
+

∂ūj

∂xi

) ∂ūi

∂xj
, (10)

where Gk is the production rate of TKE by shear
stress, C1ε and C2ε are constants, σk and σε are turbu-
lent Prandtl numbers for k and ε respectively, and con-
sidered as constants too. Details about all these con-
stants can be found in Launder and Spalding (1974).

2.3 Wall boundary condition

The above equations are used under high
Reynolds number condition and are invalid in the near-
wall regions, where Reynolds number is low and vis-
cous stresses dominate the flow. Instead, uniform
shear stress is assumed and wall functions are used
in nodes adjacent to walls. Semi-empirical expressions
(Launder and Spalding, 1974; Versteeg and Malalasek-
era, 2010) are used to relate to k, ε, and the friction
velocity uτ .

The implementation of wall boundary conditions
in turbulence flow starts with the evaluation of two
dimensionless parameters:

u+ =
ū

uτ
, (11)

y+ =
yρuτ

μ
=

y

ν

√
τw

ρ
, (12)

where uτ is friction velocity, τw is the wall shear stress,
μ and ν are dynamic viscosity and kinematic viscosity
coefficients, respectively, and y denotes distance to the
wall.

Considering the situation with y+ greater than
11.63 (Versteeg and Malalasekera, 2010), where the
nodes adjacent to walls would be in the log-law region
of a turbulence boundary layer:

u+ =
1
κ

ln(Ey+). (13)
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In this formula, κ is von Karman’s constant (=
0.4; Stull, 1988) and E is an integration constant. For
smooth wall with constant shear stress, E has a value
of 9.793 (Versteeg and Malalasekera, 2010).

The expressions to relate k, ε, and friction veloc-
ity uτ are shown below:

k =
u2

τ√
Cμ

, (14)

ε =
u3

τ

κy
=

C
3/4
μ k3/2

κy
. (15)

The expressions for wall shear stress τw and pro-
duction of TKE are given as:

τw = ρC1/4
μ k1/2u/u+, (16)

Gk = τw
∂u

∂y
. (17)

3. Numerical method

All equations are discretized using the finite-
volume approach. The spatial discretization of all
equations has adopted the hybrid differencing scheme
upon control volumes of non-uniform cuboid shapes.
The fully implicit scheme is used for time integra-
tion of concentration field. These nonlinear equa-
tions are solved by an iterative method named Semi-
Implicit Method for Pressure-Linked Equations (SIM-
PLE). The brief description of SIMPLE algorithm is
given below, and all detailed technologies except for
that about the control volumes of non-uniform cuboid
shapes are explained in Versteeg and Malalasekera
(2010), as well as Wang (2004).

3.1 Finite volume method

Finite volume method is a special finite difference
formulation that is central to the most well-established

CFD codes: CFD/ANSYS, FLUENT, PHOENICS,
and STAR-CD (Versteeg and Malalasekera, 2010).
This method is based on the conservation property
of physical variables, which makes it much easier to
understand than the finite element and spectral meth-
ods do. The key step of the finite volume method is
the integration of the transport equation over a three-
dimensional control volume.

The steady equations for RANS and standard k-ε
model can be derived from transport equation for a
general property φ:

∂(ρūiφ̄)
∂xi

=
∂

∂xi

[
Γφ

∂φ̄

∂xi

]
+ Sφ. (18)

Formal integration over a control volume gives

∫

ΔV

∂(ρūiφ̄)
∂xi

dV =
∫

ΔV

∂

∂xi

[
Γφ

∂φ̄

∂xi

]
dV

+
∫

ΔV

SφdV. (19)

Figure 1 shows the schematic representation of
the control volume adopted in our CFD model. Nota-
tion P denotes a general nodal point; notations Ni and
Li denote neighbor of node P in positive and negative
i-direction, respectively; notations ni and li denote
side faces of control volume of node P in positive and
negative i-direction, respectively; Δxi,P is referred to
as control volume width in i-direction for node P ; the
distances between nodes P and Ni, and between nodes
P and Li are identified by δxPNi

and δxPLi
respec-

tively; similarly distances between point P and face
ni, and between point P and face li are denoted by
δxPni

and δxPli , respectively.
In the control volume shown in Fig. 1, Eq. (19)

Fig. 1. Schematic representation of the control volume.
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can be reformatted as

∑
i

(ρūiAφ̄)ni
− (ρūiAφ̄)li =

∑
i

(
ΓφA

∂φ̄

∂xi

)
ni

−
(
Γφ

∂φ̄

∂xi

)
li

+ SφΔV, (20)

where A is the area of side face, and Sφ is the average
of source strength in the control volume.

3.2 Hybrid differencing scheme

In order to derive useful forms of the discretized
equations, the properties at the interface ni and li in
Eq. (20) are required. Many schemes can deal with
the interface properties, but the central differencing
scheme seems a simple and reliable way of calculating
interface values and the gradients because it uses linear
approximations and is second-order accurate. How-
ever, it would fail when convection is much stronger
than diffusion. The upwind scheme, which determines
the interface values (not gradients) only by the up-
wind values, is another simple approach. Although it
is absolutely stable, it has only first-order accuracy.
To avoid these defects, we adopt the hybrid differenc-
ing scheme, a method that has combined advantages
of central and upwind differencing schemes.

Define convective mass flux F = ρū and diffusion

conductance D =
Γφ

δx
at the interface. We employ the

central differencing approach to the diffusion term in
Eq. (20), no matter what scheme is used for convective
term. Equation (20) turns out to be:

∑
i

Fni
Ani

φ̄ni
− FliAli φ̄li =

∑
i

Dni
Ani

(φ̄Ni

−φ̄P ) − Dni
Ali(φ̄P − φ̄Li

) + SφΔV. (21)

Here, it should be noted that Ani
= Ali in our model.

In order to apply control volumes of non-uniform
cuboid shapes, we deduce the discretized equations
from the uniform ones of Versteeg and Malalasekera
(2010) and Wang (2004). We define the interpolation

coefficient as cni
=

δxPni

δxPNi

and cli =
δxPli

δxPLi

for ni and

li side faces, respectively.
Define non-dimensional cell Peclet number, Pe =

F

D
, as a measure of the relative strength of convection

and diffusion. The hybrid differencing scheme employs

the central differencing scheme when |Pe| < 1/c (c
is interpolation coefficient defined above) and the up-
wind differencing when |Pe| � 1/c. The final steady
transport equation deduced with the finite volume
method and hybrid differencing scheme is given as:

aP φ̄P =
∑

i

(aNi φ̄Ni
+ aLi φ̄Li

) + SφΔV, (22)

where

aNi
= max

[ − Fni
· Ani

, (Dni
− cni

Fni
)

·Ani
, 0

]
, (23a)

aLi
= max

[
Fli · Ali , (Dli + cliFli) · Ali , 0

]
, (23b)

aP =
∑

i

aNi
+ aLi

. (23c)

Here, it is noticed that the second column in the
right side of Eq. (23) denotes the central differencing
scheme.

3.3 Fully implicit time scheme

The fully implicit scheme is used for time integra-
tion of the concentration field, because it is uncondi-
tionally stable for any length of the time step.

The unsteady form of transport equation inte-
grated over a small interval Δt from t to t + Δt in
a control volume is

∫

Δt

∫

ΔV

ρφ̄dV dt +
∫

Δt

∫

ΔV

∂(ρūiφ̄)
∂xi

dV dt =

∫

Δt

∫

ΔV

∂

∂xi

[
Γφ

∂φ̄

∂xi

]
dV dt +

∫

Δt

∫

ΔV

SφdV dt. (24)

Under the fully implicit time scheme, Eq. (24)
can be rewritten as:

( ∫

ΔV

ρφ̄dV

)∣∣∣∣∣
t+Δt

−
( ∫

ΔV

ρφ̄dV

)∣∣∣∣∣
t

+

[ ∫

ΔV

∂(ρūiφ̄)
∂xi

dV

]∣∣∣∣∣
t+Δt

· Δt

=

( ∫

ΔV

∂

∂xi

(
Γφ

∂φ̄

∂xi

)
dV

)∣∣∣∣∣
t+Δt

· Δt

+

( ∫

ΔV

SφdV

)∣∣∣∣∣
t+Δt

· Δt. (25)
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3.4 SIMPLE algorithm

The Semi-Implicit Method for Pressure-Linked
Equations (SIMPLE) is essentially a guess-and-correct
procedure for the calculation of pressure.

A pressure field p∗ is guessed to initiate the
SIMPLE calculation process. Discretized momentum
equations are solved using the guessed pressure field
to yield velocity components ū∗

i as follows:

ai,P ū∗
i,P =

∑
j

(
ai,Nj

ū∗
i,Nj

+ ai,Lj
ū∗

i,Lj

)

+
(
p∗li − p∗ni

) · Ai,P + bi,P . (26)

Notice that Eq. (26) is obtained by replacing
φ̄ with ū∗

i and extracting the pressure gradient force
from the source term in Eq. (22). The variable Ai,P is
area of side face in i-direction, and bi,P is the remain-
ing source term.

The guessed pressure field p∗ needs to be cor-
rected. Define the correction p′ as the difference be-
tween true pressure field p and the guessed pressure
field p∗, so p = p∗ + p′. Similarly, define velocity cor-
rection ū′

i, which satisfies ūi = ū∗
i + ū′

i.
The true fields p and ūi also satisfy the transport

equation (Eq. (26)). Substitution of the transport
equations of true field and guessed field yields the cor-
rection of velocity field:

ai,P ū′
i,P =

∑
j

(
ai,Nj

ū′
i,Nj

+ ai,Lj
ū′

i,Lj

)

+
(
p′li − p′ni

) · Ai,P . (27)

Equation (27) implies that the remaining source
term maintains the same between the true field and
guessed field.

Since neglecting the term
∑
j

(
ai,Nj

ū′
i,Nj

+

ai,Lj
ū′

i,Lj

)
would not change the final convergence

value, SIMPLE algorithm omits these terms to sim-
plify Eq. (27) and obtain the correction formula for
guessed velocity field:

ū′
i,P = di,P

(
p′li − p′ni

)
, (28)

with di,P =
Ai,P

ai,P
.

To complete the correction, correction p′ is

needed. The velocity field is also subject to the con-
straint of continuity equation, which replaces φ̄ with
number 1 and sets the source term to zero in Eq. (20)
or Eq. (22). With ūi = ū∗

i + ū′
i and Eq. (28), the

equation for p′ can be deduced from continuity equa-
tion:

a′
P p′P =

∑
i

(
a′

Ni
p′Ni

+ a′
Li

p′Li

)
+ b′P , (29)

where

a′
Ni

= ρAi,P (di,P )ū′
i,ni

, (30a)

a′
Li

= ρAi,P (di,P )ū′
i,li

, (30b)

a′
P =

∑
i

(a′
Ni

+ a′
Li

), (30c)

b′P =
∑

i

[
ρli ū

∗
i,li − ρni

ū∗
i,ni

] · Ai,P . (30d)

The notation (di,P )ū′
i
denotes the coefficient di,P of ū′

i

when solving Eq. (28).
The whole iteration procedure of SIMPLE algo-

rithm used in our model is given in Fig. 2.

4. Results and discussion

In order to validate the proposed numerical mo-

Fig. 2. The SIMPLE algorithm.
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del, simulations of dispersion sources release, which
are expected to reproduce the wind tunnel experi-
ments, have been carried out. Three datasets from
the Compilation of Experimental Data for Valida-
tion of Microscale Dispersion Models (CEDVAL) pro-
vided by the Environmental Wind Tunnel Labora-
tory in University Hamburg are used in this study.
The datasets are chosen because all the experiments
were well organized and clearly documented, and the
datasets are fully accessible at http://www.mi.uni-
hamburg.de/Data-Sets.432.0.html. These wind tunnel
experiments were carried out at a scale of 1:200 in the
BLASIUS wind tunnel at the Meteorological Institute
of the University of Hamburg. The first two corre-
sponded to detailed measurements of the flow and dis-
persion characteristics around an isolated rectangular
obstacle, respectively, and the third one corresponded
to array of obstacles. Dynamic similarity was main-
tained between simulations and wind tunnel experi-
ments.

4.1 Simulation setup

Urban areas with densely built-up landuse would
significantly affect the local atmospheric condition,
such as the airflow field and air quality, so it is nec-
essary to evaluate the dynamic effects of buildings.
On the other hand, for the purpose of validating a
newly built numerical model, numerical simulations
for simple cases are appropriate, because the factors
which influence the experiments are fewer and easier
to control and to evaluate. In this study, the first nu-
merical validation case was performed for an isolated
rectangular obstacle.

The A1-1 and A1-5 data of CEDVAL were se-
lected to validate the simulations of isolated obstacle.
Although the A1-1 and A1-5 data belong to different

experiments, they share the same experimental pa-
rameters, including roughness length (= 7×10−4 m),
friction velocity (= 0.377 m s−1), obstacle size (= 100
mm×150 mm×125 mm) and so forth. The difference
between these two datasets is the type of measured
data: the A1-1 dataset contains the measured data of
flow characteristics and the A1-5 dataset contains the
measured data of dispersion.

In this case, two simulations were set up to cor-
respond to A1-1 and A1-5 data, respectively. These
simulations applied the real scale (H=25 m). Ta-
ble 1 and Fig. 3 show detailed parameters and a
schematic representation of the computational domain
and mesh used. The setup sketch of the single obsta-
cle and sources is available at http://www.mi.uni-
hamburg.de/fileadmin/files/forschung/techmet/phys-
mod/cedval/datafiles/A1-5/A1-5-SS-1.GIF. The sour-
ces were released continuously and constantly. Be-
cause the concentration in this study is defined in a
dimensionless form, the source strength can be pre-
scribed as any value and is omitted in this paper.
The default turbulent Schmidt number for diffusion
of tracer, σC , is set to 1, because of no implication
for this value in measured data. The domain was ex-
tended up to a large distance in three directional axes
to ensure that zero gradient assumption is rational
along the lateral, outlet, and top boundaries. At the
inlet boundary, velocity components v̄ (y-direction)
and w̄ (z-direction) are considered to be equal to zero
and the wind velocity and TKE profiles are provided
according to the measured data.

The second case is considered for a little more
complex situation with an array of obstacles, which
stands for an extremely orderly city block. It is a
well-organized group of buildings and also a common
element in an urban area. Still this case is not too

Table 1. Numerical grids for the simulation conducted in this study

Parameter (unit) Symbol Isolated obstacle simulations Obstacle array simulations

Grid points Nx × Ny × Nz 92×84×47 139×76×38

Length scale (m) H 25 25

Domain size (H) L × W × Z 18.4×19.1×7.4 41.2×25.0×9.1

Obstacle size (H) l × w × h 0.8×1.2×1.0 0.8×1.2×1.0

Horizontal grid spacing (H) Δx, Δy 0.025–1 0.056–1

Vertical grid spacing (H) Δz 0.012–1 0.02–1

Time step of dispersion (s) Δt 0.05 0.05
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Fig. 3. Schematic representation of isolated rectangular obstacle simulation domain: (a) mesh used for the computa-

tional simulations (the whole area is shown in the insert) and (b) positions of comparisons between simulation results

and measured data. The points and lines indicate the positions for the validation in Section 4.2.

complex for the same reason. The B1-1 dataset of
CEDVAL, which contains measured data of both flow
and dispersion, was selected to validate the simulation
of array of obstacles. This dataset also shares the same
experimental parameters and the same-size obstacles.
The simulation setup adopted the same principle of
the isolated rectangular obstacle simulation. Table 1

and Fig. 4 show detailed parameters and a schematic
representation of the computational domain and mesh,
respectively. The 3×7 array of rectangular obstacles
(Fig. 4) is applied in this simulation and the obstacles
have exactly the same dimension as that in simulation
of isolated obstacle. The sources are set up at the lee-
ward side of the building at origin (x/H=0, y/H=0),

Fig. 4. Schematic representation of the array of rectangular obstacles and the simulation domain: (a) mesh used for the

computational simulations (the whole area is shown in the insert) and (b) positions of comparisons between simulation

results and measured data. The points and lines indicate the positions for the validation in Section 4.3.
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which is shown in the setup sketch of the sources.

4.2 Validation of the isolated rectangular

obstacle simulations

Figure 5 shows the streamline of velocity around
the isolated obstacle. It is found that the mean flow
impinging the windward face of the obstacle is dece-
lerated rapidly and part of the momentum in the main
direction is transferred to the spanwise and vertical
momentum. Streamline deflects and separates from
the horizontal plane (Fig. 5b), and the flow is driven
into vertical downward and upward. The downward
part creates a reverse flow extending to about 0.4H
in front of the lower half height of the obstacle (Fig.
5b), reattaches on its front face, and generates the
horseshoe vortex (Fig. 5b). The upward part flow se-
parates at the sharp leading edge and then reattaches
to the roof of the obstacle, and separates again at the
downwind edge (Fig. 5b). Similar behavior is also
found at the sides of the obstacle (Fig. 5a). The sepa-
rated flow passes over the building, and reattaches on
the ground further downwind at about 1.4H after the

leeward side of the obstacle (Fig. 5b). The flow comes
from the flow adjacent to the roof and lateral side of
the obstacle travels upstream at the reattaching point
and results in the formation of a recirculation region
behind the obstacle (Figs. 5a and 5b).

The TKE field is given in Fig. 6. Values of
the TKE close to corners of the building front walls
are the highest (Fig. 6b), which results from the ex-
tremely high wind velocity gradient. On the roof and
the lateral sides of the obstacle, the TKE values are
also much higher than that of the free flow because of
the high wind velocity gradients there. In the recircu-
lation region, though the values of the TKE are not as
high as that close to the corners, the values are higher
than those on the roof and side of the obstacle. In the
downstream region of recirculation, which is about 4H
after the leeward side of the obstacle, the turbulence
levels are still slightly higher than those in the free
flow, which proves that the flow is still disturbed by
the obstacle.

Comparison of the computed and measured ve-
locity is shown in Fig. 7. The velocities are non-dime-

Fig. 5. Computational streamline of isolated obstacle at (a) z/H = 0.5 (plan view) and (b) y/H = 0 (side view).
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Fig. 6. Computational TKE contours of isolated obstacle at (a) z/H = 0.5 (plan view) and (b) y/H = 0 (side view).

Fig. 7. Streamwise velocity from experimental data (unfilled circles) and simulation (filled circles and lines) of (a) A

(x/H = –0.816, y/H = 0), (b) B (x/H = 0, y/H = 0), (c) C (x/H = 0.6, y/H = 0), (d) D (x/H = 0.84, y/H = 0), (e)

E (x/H = 1.44, y/H = 0), and (f) F (x/H = 3.2, y/H = 0) in the case of an isolated obstacle.
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nsionalized by the reference velocity at the height of
4H. The velocity profiles appear to be predicted rea-
sonably well, especially in Figs. 7a and 7c–f. In Fig.
7b, the measured velocity adjacent to the roof is neg-
ative, while the computational velocity is not, which
indicates that the model under-predicts the separation
intensity of the flow on the roof.

Comparison of the computed and measured TKE
is given in Fig. 8. The data of velocity fluctuations in
spanwise (y) direction at the center plane (y = 0) are
unavailable in A1-1 dataset. The sum of velocity fluc-
tuations in streamwise (x) and vertical (z) directions
instead of complete TKE are used here. The Reynolds
stress tensor in Eq. (3) is used to predict the velocity
fluctuations. Although the general trend of predicted
TKE is not as good as that of wind field, the shape
and peak locations of the turbulence field are well pre-
dicted. At the location of long distance from the lee-
ward side of the obstacle (Figs. 8e and 8f), the model
predicts the TKE much better in both the shape and
peak value. Figure 8b shows a large difference between
the measured peak value and the simulated one on the
roof. The measured peak value is over three times as

much as the simulated one. The reason may be the
underestimation of the velocity gradient due to under-
prediction of the separation intensity of the flow on
the roof (Fig. 7b).

The concentration has been non-dimensionalized
by using the following equation:

Kc =
CUrefH

2

CsQ
, (31)

where C is the mean concentration, Uref is the mean
wind speed at reference height, which is 5.28H in this
case, Cs is the tracer concentration in the sources,
and Q is the total volumetric flow rate of the gas
source.

The concentration field after the time when it
reaches equilibrium is chosen to validate.

In Sections 4.2 and 4.3, only experimental data
(unfilled circles) and simulation with non-corrected
turbulent Schmidt number (filled circles and solid
lines) are used for discussion. The simulation with
corrected turbulent Schmidt number (dashed lines)
will be discussed in Section 4.4 exclusively.

Fig. 8. As in Fig. 7, but for velocity fluctuations.
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Comparison of the computed and measured con-
centration is shown in Figs. 9 and 10. Although the
overall tendency of the model is to under-predict the
spread and overestimate the peak values, the shape
and peak locations are well predicted.

4.3 Validation of the rectangular obstacle ar-

ray simulations

The simulated wind fields are shown in Fig. 11.
Even when an array of obstacles are present, general
characteristics of the wind field are quiet similar to

Fig. 9. Dimensionless concentration in spanwise (y) direction of line (a) LA1 (x/H = 0.48), (b) LA2 (x/H = 0.60), (c)

LA3 (x/H = 0.84), (d) LA4 (x/H = 1.36), (e) LA5 (x/H = 1.84), and (f) LA6 (x/H = 3.2) at z/H = 0.08 in the case of

an isolated obstacle. Results from the experimental data (unfilled circles), the simulation with non-corrected turbulent

Schmidt number (solid curves with filled circles), and the simulation with corrected turbulent Schmidt number (dashed

curves) are shown in each panel.

Fig. 10. As in Fig. 9, but of line (a) LB1 (x/H = 0.44), (b) LB2 (x/H = 0.68), (c) LB3 (x/H = 1.04), (d) LB4 (x/H

= 1.40), (e) LB5 (x/H = 1.88), and (f) LB6 (x/H = 3.60) at z/H = 0.28.
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Fig. 11. Computational streamline around the array of obstacles at (a) z/H = 0.5 (plan view) and (b) y/H = 0 (side

view).

those in Fig. 5 in the impinging region. The reverse re-
gion extends to about 0.2H in front of the first column
of obstacles (Fig. 11b). However, the recirculation
region shows something different. The recirculation
region extending to about 2.7H after the last column
of obstacles only appears after the middle row of the
obstacles (Fig. 11a). The flow that wraps the lat-
eral sides of the whole array only reattaches further
downwind and does not travel upstream to form a re-
circulating flow. Within the array of the obstacles,
the velocity decreases as the column number of the
obstacles increases (in the positive i-direction). The
recirculating flow appears in each region between any
two obstacles in the streamwise (x) direction.

The simulated turbulence fields are shown in Fig.
12. The general turbulence field wrapping the whole
array of obstacles is also similar to that in Fig. 6.
Within the array, the values of TKE maintain highly
close to top corners of the obstacle front walls (Fig.
12b), although the values there decrease with the in-
creasing column number. In the channel between two
rows of obstacles and the recirculation region between

two columns (Fig. 12a), the values of TKE also de-
crease as the column number increases. Some values
of TKE in the regions near the last column are even
lower than those in the free flow. This is due to the
decreasing of the wind velocity gradients caused by the
reduction of wind velocity within the array along the
streamwise direction (Fig. 11).

Comparison of the simulated and measured ve-
locity is shown in Fig. 13. The velocity field appears
to be predicted well in general. The prediction of the
streamwise velocity above the obstacle height H is bet-
ter than that below it. At the center plane (Figs. 13a–
c), prediction of the velocity underestimates the wind
speed below about 0.3H, resulting in the underestima-
tion of the intensity of the recirculation flow. At the
plane of y/H = –1 (Figs. 13d–f), the prediction turns
out to under-predict the wind speed below the obsta-
cle height.

Comparison of the simulated and measured TKE
is shown in Fig. 14. Although the general prediction
of TKE is not as good as that of wind field, the TKE
field shape and peak locations are also predicted rati-
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Fig. 12. Computational TKE contours around the array of obstacles at (a) z/H = 0.5 (plan view) and (b) y/H = 0

(side view).

Fig. 13. Streamwise velocity from the experimental data (unfilled circles) and simulation (filled circles) of (a) A1 (x/H

= 0.56, y/H = 0), (b) B1 (x/H = 0.8, y/H = 0), (c) C1 (x/H = 1.04, y/H = 0), (d) A2 (x/H = 0.56, y/H = –1), (e)

B2 (x/H = 0.8, y/H = –1), and (f) C2 (x/H = 1.04, y/H = –1) in the case of an array of obstacles.
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Fig. 14. As in Fig. 13, but for TKE.

onally well. At the center plane (Figs. 14a–c), the
model tends to under-predict the values of TKE below
the obstacle height, while the simulation shows a bet-
ter agreement with the observation above that height.
At the plane of y/H = –1 (Figs. 14d–f), the model
under-predicts the entire TKE profiles, especially in
the region near surface.

Comparison of the simulated and measured con-
centration is shown in Fig. 15. The concentration has
also been non-dimensionalized by using Eq. (31). The
concentration field shape and peak locations are also
well predicted in the simulation. While the spread of
the concentration field near leeward side (Figs. 15a
and 15b) of the source building appears to be under-
predicted, the peak value is over-predicted. In the
middle (Figs. 15c and 15d) of the source building and
the building behind, both the spread and the peak
values are under-predicted, while near windward side
(Figs. 15e and 15f) of the building behind, the model
predicted the concentration well both in the spread
and peak values.

4.4 Discussion about the turbulent Schmidt

number

Clearly, the simulations have underestimated dis-
persal ability of the tracer. This may result from the

improper turbulent Schmidt number (σC= 1) for the
tracer in the model. Flesch et al. (2002) reported
that the turbulent Schmidt number could range from
0.17 to 1.34. Other studies (Koeltzsch, 2000; Tomi-
naga and Stathopoulos, 2007) also suggested different
values of turbulent Schmidt number in a large range.
Therefore, it is necessary to determine a proper value
for our simulations.

The correction used here is based on the measured
dimensionless tracer concentration in the wind tun-
nel experiment and the simulation with non-corrected
turbulent Schmidt number. The correction will be ob-
tained by adopting some assumptions from the Gaus-
sian plume model. It is emphasized hereby that: as
mentioned in Section 1, the Gaussian plume model is
not comprehensive enough to be applied to an urban
area; thus, our correction would not come from the
area that is strongly disturbed by the building. The
detailed selections would be shown after the deduction
of the correction factor.

Define the correction factor

γ =
σCm

σCs
, (32)

where σCm is the corrected turbulent Schmidt number
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Fig. 15. Dimensionless concentration in spanwise (y) direction of line (a) L1 (x/H = 0.52), (b) L2 (x/H = 0.60), (c)

L3 (x/H = 0.76), (d) L4 (x/H = 0.92), (e) L5 (x/H = 1.08), and (f) L6 (x/H = 1.16) at z/H = 0.06 in the case of

an array of obstacles. Results from the experimental data (unfilled circles), the simulation with non-corrected turbulent

Schmidt number (filled circles and solid curves), and the simulation with corrected turbulent Schmidt number (dashed

curves) are shown in each panel.

of tracer and σCs is the non-corrected turbulent
Schmidt number of tracer.

In the Gaussian plume model with Taylor’s frozen
turbulence hypothesis, the turbulent diffusivity can be
obtained following the formula (Sykes and Gabruk,
1997) below:

σ2
y = 2

∫
ΓCdt, (33)

where σy is the standard deviation of displacement of
tracer in spanwise (y) direction.

Combining Eq. (6) with Eq. (32), γ can be
rewritten as below:

γ =
σ2

ys

σ2
ym

, (34)

where σys is the standard deviation of displacement of
simulation and σym is the standard deviation of dis-
placement of observational data.

Figures 9 and 10 show that the simulations us-
ing the non-corrected dimensionless concentration in
spanwise direction have a symmetrical shape with two
peaks. In this study, we assume that the dimensionless
concentration in the region far enough from the area

where the flow is strongly disturbed by the obstacle,
corresponds to a Gaussian plume diffusion model as-
sumption with two symmetrical point sources. The
formula is superposition of two symmetrical Gaussian
distributions:

KC(y) =
QKC√
2πσy

(
e
−

(y − y0)2

2σ2
y + e

−
(y + y0)2

2σ2
y

)
. (35)

This assumption of two sources is rational, be-
cause symmetrical recirculation regions shown in Fig.
5 tend to mix the tracer in each region and form two
symmetrical sources.

The correction factor was obtained from the
measured and simulated results of the isolated ob-
stacle. In order to ensure the above Gaussian
plume model’s assumption can be satisfied as much
as possible, we avoided use of the data that came
from the region strongly affected by the obsta-
cle. Data beyond x/H= 2 seemed a reasonable
choice, since the region of x/H � 2 was af-
ter the recirculation region caused by the obstacle.
The fitting values of σys and σym are shown in
Table 2.



NO.6 CHEN Bicheng, LIU Shuhua, MIAO Yucong, et al. 939

Table 2. The fitting standard deviation of displacement in spanwise (y) direction of the simulation and the

observational data

x (H) 2.00 2.20 2.40 2.80 3.20 3.60 2.00 2.16 2.32 2.48 2.64 2.80 3.00 3.20

z (H) 0.28 0.28 0.28 0.28 0.28 0.28 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

σys (H) 0.3188 0.3293 0.3394 0.3587 0.3769 0.3943 0.3048 0.3138 0.3224 0.3308 0.3389 0.3466 0.3557 0.3642

σym (H) 0.6375 0.7049 0.7536 0.7600 0.7698 0.8634 0.6342 0.6754 0.6628 0.7011 0.7083 0.7556 0.7486 0.6960

γ 0.2501 0.2182 0.2029 0.2228 0.2397 0.2085 0.2310 0.2159 0.2366 0.2226 0.2290 0.2104 0.2258 0.2738

In the present case, the average correction factor
γ is 0.2277. This value is used to conduct another
simulation of the isolated obstacle. The results are
represented by dashed lines in Figs. 9 and 10. The
simulation predicted the shape and spread much bet-
ter. In the region close to the leeward side of the ob-
stacle (Figs. 9a, 9b, 10a, and 10b), the simulation also
showed good prediction of the peak values. However,
it underestimated the concentration in other regions
not close to the leeward side of the obstacle (Figs. 9c–
f and Figs. 10c–f).

The underestimation may have several reasons:
1) the point source assumption, which does not ex-
actly match the real condition because the recircula-
tion region behind the obstacle is relatively broad; 2)
the assumption of Gaussian-distributed concentration
in spanwise (y) direction, which implies homogeneous
turbulent diffusivity (μt and ΓC) in the same direction,
while Fig. 16 shows the heterogeneity of predicted tur-
bulent diffusivity, which is obviously against the above
assumption. It is also noted in Fig. 16 that the het-
erogeneity decreases as x/H increases, indicating that
the choice of standard deviation of displacement in
spanwise (y) direction from a much larger x may re-
sult in a better correction of turbulent Schmidt num-
ber. Unfortunately, no measured data were available
at x/H > 3.6 in this dataset, which may need a future
investigation; 3) use of a constant turbulent Schmidt
number as used in most CFD approaches, but many
investigations (e.g., Koeltzsch, 2000; Tominaga and
Stathopoulos, 2007) indicated that turbulent Schmidt
number is not a constant and depends on the local
flow characteristics.

The corrected turbulent Schmidt number ob-
tained above was also applied in another simulation
for the case of an array of obstacles, since they shared
the same experimental parameters. The simulation ge-

nerally predicted much better results in terms of both
the spread and the peak values, especially in the mid-
dle (Figs. 15c and 15d) of the source building and the
building behind. However, we still need to take this
result carefully because of the underestimation of the
peak concentration in the isolated obstacle simulation
with corrected turbulent Schmidt number.

5. Conclusions

A framework, based on a CFD approach solv-
ing steady-state RANS equations with the standard
k-ε turbulence model, has been developed to simu-
late the flow, turbulence, and dispersion fields in ur-
ban builtup areas. Transport and dispersion model-
ing is made by solving an unsteady Eulerian transport
equation using the velocity and turbulence field ob-
tained from the steady RANS solution. The validation
compares simulated to measured velocity, turbulence,
and dispersion fields for the neutral flow in a series
wind tunnel experiments conducted by Environmen-
tal Wind Tunnel Laboratory in University Hamburg.

Fig. 16. Normalized turbulent diffusivity of momentum

in spanwise (y) direction in the case of an isolated obstacle.

Note: μtc is the turbulent diffusivity at y/H = 0.
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It is found that the approach is able to predict
the velocity fields very well both above and below the
building height for the majority of simulated results.

The simulated TKE also corresponds to the mea-
sured one in both the shape and the location of the
peak, although the TKE values are not predicted as
good as those of wind velocity.

Without the correction of turbulent Schmidt
number, the spread of simulated concentration fields
is underestimated by the model. All peak values in
spanwise (y) direction are overestimated in the simu-
lation with an isolated obstacle, while in the case of
an array of obstacles, the peak values near the lee-
ward side of the source obstacle are overestimated,
but those in the middle of the source obstacle and the
obstacle behind are underestimated. Both cases with
the correction of turbulent Schmidt number show a
better spread prediction, especially the array of obsta-
cles case, while the prediction of the isolated obstacle
case underestimates the value of tracer concentration
in the areas far (x/H > 1) from the source obstacle.
The imperfect point sources, heterogeneous turbulent
diffusivity, and the constant turbulent Schmidt as-
sumption used in the simulations may be responsible
for the underestimation of the concentration spread.

Future work will focus on applying this CFD ap-
proach in real urban regions, as well as the application
of more sophisticated turbulent closure, and a more
comprehensive treatment of the turbulent Schmidt
number problem.
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