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Abstract
The large amount of data collected by structural health monitoring systems deployed in the bridge contains dynamic 
information about the structure. To enhance the prediction accuracy of the structural dynamic responses and to evaluate 
the frequencies from predicted restructured responses, this paper develops an approach of optimized variational mode 
decomposition (OVMD) combined with a genetic algorithm-back propagation (GA-BP) neural network. The procedure 
is first to establish the OVMD algorithm using relative root mean square error (RRMSE) and correlation coefficient to 
determine reasonable decomposition and retention of the intrinsic mode function (IMF) components in the response 
decomposition. Then each retained IMF component is used as input to the GA-BP for prediction. Finally, the frequencies 
and their characteristics of the structure are estimated from the predicted restructured responses. A damaged arch bridge 
test shows that OVMD overcomes the shortcomings of VMD, decomposes and reconstructs the signals effectively, and 
outperforms the other three methods in denoising. The experimental results of the long-span cable-stayed bridge prove 
that OVMD combined with GA-BP has higher prediction accuracy for the dynamic responses with high sampling rates. 
The structural frequencies are correctly determined from predicted recombined displacement and acceleration responses. 
This approach provides a useful tool for bridge dynamic response decomposition, reconstruction, prediction, and structural 
frequency evaluation.

Keywords Long-span bridge · Dynamic response prediction · Frequency evaluation · Optimized variational mode 
decomposition · Genetic algorithm-back propagation neural network

1 Introduction

Bridges have become a key pivot in transportation infra-
structure. Nowadays, numerous bridges are in service with 
the increasing sophistication of modern technology, like 
Hong Kong-Zhuhai-Macao Bridge, Akashi Kaikyo Bridge, 
and Golden Gate Bridge. However, some extreme environ-
ments may affect the safety of bridges [1, 2]. Therefore, 

bridge health monitoring has attracted widespread attention 
in recent years [3]. To ensure the proper function of bridges, 
it is necessary to assess the bridge structures in time.

The dynamic responses of a bridge are the results of the 
interaction between the external excitation and the structure, 
and contain various types of information about the structural 
state. With the development of sensor technology, a growing 
number of sensor monitoring systems are installed to collect 
structural dynamic responses. Among them, the global nav-
igation satellite system real-time kinematic (GNSS-RTK) 
and accelerometers are commonly employed [4–6]. They 
can acquire three-dimensional displacement and accelera-
tion of targets in real-time under almost any weather. One 
of the purposes of measuring response data is to identify the 
structural modal parameter (i.e., frequency, damping ratio, 
and mode shape), where the frequency is easier to obtain and 
is the most common modal parameter for bridge assessment. 
For example, Yu et al. [7] adopted a multi-positioning mode 
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GNSS system to get the displacement and frequency of a 
mid-span bridge. Moschas et al. [8] determined the dynamic 
deflections and dominant frequencies of a pedestrian bridge 
through multiple sensors based on GNSS and accelerom-
eters. Xiong et al. [9] extracted the first five-order modal 
frequencies of a suspension bridge from the vibration moni-
toring data of the GNSS and accelerometer. Although GNSS 
and accelerometer have advantages in bridge response meas-
urement, there are still some challenges. First, the response 
data (especially measured by high sampling rate sensors) is 
affected by noise pollution, which influences the identifica-
tion of the modal parameters as well. Second, internal and 
external factors such as sensor failures, extreme loads, poor 
weather, and so on make it difficult or even impossible to 
collect complete response data and thus may fail to capture 
structural modal information.

For the first problem, nowadays the time–frequency 
domain analysis methods can decompose the signal 
responses into several discrete intrinsic mode functions 
(IMF) to filter the noisy components. For instance, empirical 
mode decomposition (EMD) [10–12], empirical wavelet 
transform (EWT) [13–15], empirical adaptive wavelet 
decomposition [16], ensemble EMD (EEMD) [17–20], 
complete EEMD with adaptive noise (CEEMDAN) [21–23], 
and variational mode decomposition (VMD) [24–27]. He 
et al. [28] extracted the modal frequencies of the bridge 
via EMD and random decrement technique. Li et al. [29] 
investigated the time-varying characteristics of bridge 
frequencies under vehicle-bridge interactions based on the 
improved EWT and ridge detection method. Xiao et al. 
[30] applied CEEMDAN to capture the bridge frequency 
characteristics from the acceleration response. Nevertheless, 
the spectral segmentation of EWT is usually susceptible 
to noise. One major problem with EMD is mode mixing. 
EEMD alleviates mode mixing but does not eliminate 
the added auxiliary noise, which makes it unable to reach 
the desired decomposition. As for CEEMDAN, although 
it avoids mode mixing, the emerging problem is that it 
decomposes redundant IMF components and leads to a lag 
in the information components.

Fortunately, the VMD proposed by Dragomiretskiy 
et al. [31] is an innovative method that decomposes the 
signal response into inherent IMF components. It has no 
mode mixing and has better robustness than EMD and 
other algorithms. Yang et al. [32] presented VMD with a 
band-pass filter to deal with the contact point response of 
vehicles and bridges. The study demonstrated the ability of 
the approach to extract structural frequencies. Mazzeo et al. 
[33] estimated the frequency and damping ratio of a cable-
stayed bridge by VMD. The only issue with VMD is the 
difficulty in determining the preset number of decomposition 
parameter K. If a reliable and convenient criterion can be 
set up to decide the optimal number of K, the adaptiveness 

of the VMD will be enhanced. Although some studies 
proposed enhanced VMD algorithms, they are usually found 
in bearing fault diagnosis. Consequently, this study develops 
an improved VMD algorithm for large bridge structures.

For the second problem, machine learning algorithms are 
utilized for prediction to recover/increase the completeness 
of the response data, such as random forest [34], Bayesian 
[35–37], long short-term memory (LSTM) [38–41], and 
other neural networks [42–47], etc. Among numerous 
machine learning techniques [48, 49], neural networks are 
particularly popular in response prediction. Oh et al. [50] 
discussed the data recovery performance of neural networks 
in the numerical study and frame structure analysis. Betti 
et al. [51] evaluated the natural frequencies of a three-story 
steel frame at each damage level using artificial neural 
networks and genetic algorithms. However, some studies 
ignore whether the information that helps to assess the 
structural characteristics, such as modal parameters, can 
be extracted from the predicted response data. In other 
words, if the structural characteristic is not available from 
the predicted response data, the prediction results lose 
some practicality. Therefore, this paper applies the genetic 
algorithm-back propagation (GA-BP) neural network to 
the prediction of the bridge response data. Meanwhile, the 
predicted responses are used for modal frequency estimation 
to characterize the usefulness of prediction results.

Inspired by the above research, a combination approach 
of the optimized VMD (OVMD) and the GA-BP neural 
network is proposed and applied to the predictive evaluation 
of dynamic response and modal frequencies of a cable-stayed 
bridge. The OVMD algorithm aims to reduce the noise in the 
data and address the shortcomings of the VMD algorithm. 
In the GA-BP operation, to improve prediction accuracy, the 
selected IMF components are predicted individually to form 
the predicted responses. The frequency of the structure is 
finally estimated from the predicted restructured responses. 
Section 2 describes the methodology. Section 3 is a damaged 
arch bridge test to primarily examine the performance of 
OVMD. Section 4 processes the data responses of the field 
bridge experiment adopting the combined OVMD and 
GA-BP approach and performs a comparative analysis to 
verify the superiority of the proposed method. Section 5 
summarizes the main conclusions.

2  Methodology

2.1  VMD

VMD divides the signal into a specified number of mode 
components, then determines the center frequency and 
bandwidth of different mode component signals [52].



Journal of Civil Structural Health Monitoring 

123

1. The mode component signal has the following form:

where uk(t) is each mode component; Ak(t) is the 
instantaneous amplitude; �k(t) is the instantaneous 
phase.

2. The unilateral spectrum of each mode component is 
calculated through the Hilbert transform and is tuned 
to the estimated center frequency by multiplying the 
exponential term. The square of the signal gradient norm 
after frequency mixing is calculated. The bandwidth 
of the mode component after the frequency shift is 
estimated. Thus a constrained variational problem is 
constructed:

where 
{
uk
}
 and 

{
�k

}
 are the set of K mode component 

signals and the corresponding center frequencies; 
∗ represents the convolution symbol; �t is the Dirac 
function; �t denotes the partial derivative of t; f (t) is the 
input signal response.

3. The Lagrange multiplier � and the quadratic penalty 
factor � are introduced to replace the constrained 
variational problem with an unconstrained variational 
problem:

4. The alternating direction method of multipliers is 
adopted to update uk , �k , and � . Their expressions are 
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where n is the number of iterations; τ is the noise 
tolerance; ‘ ∧ ’ represents the Fourier transform.

5. The iteration termination condition is:

where ε is the convergence accuracy and ε =  10–7. 
Once the accuracy condition is satisfied, the K mode 
components, namely IMF components, are output.

2.2  OVMD

It is difficult for the VMD algorithm to set the decomposition 
parameter K reasonably depending on subjective experience. 
Improper K impacts the signal decomposition effect. In 
addition, the VMD only focuses on signal decomposition 
and does not involve signal reconstruction. Based on this, the 
OVMD algorithm for optimal decomposition and efficient 
reconstruction of signal responses is proposed. The specific 
steps are below:

i. Apply VMD on the input signal response and determine 
the IMF component with the highest correlation to the 
signal.

ii Compute the RRMSE to update K iteratively. When 
RRMSE is a local minimum value, the corresponding 
K is optimal. That is, the signal response is optimally 
decomposed into K IMF components. Otherwise, 
it is needed to continue updating K iteratively. The 
expression of RRMSE is:

where f (t) is the input signal response; CmaxIMFi(t) 
denotes the IMF that has the highest correlation with 
f (t) ; f  is the mean value of f (t).

iii As for a noisy signal, the noise is dispersed to the IMF 
components during the decomposition. Therefore, the 
correlation coefficient is presented to eliminate the 
noise components and choose valid IMF components to 
retain the signal information adequately. The correlation 
coefficient denotes the degree of correlation of each IMF 
component with the input signal response. Its expression 
is:
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n+1
k

− ûn
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where IMFi(t) is each IMF component; IMFi  is the 
average value of IMFi(t).

The range of the correlation coefficient is 0 to 1. The closer 
the value is to 1, the stronger the correlation between the IMF 
and the input signal. When 0 ≤   C≤ 0.3, the IMF components 
are very weakly correlated with the input signal response 
and are considered noise-dominant components to remove. 
The rest of the components are retained. Figure 1 depicts the 
OVMD procedure.

2.3  GA‑BP neural network model

BP neural network [53] is a multilayer feed-forward neural 
network trained by an error backpropagation algorithm. The 
procedure of the BP neural network is divided into two main 
parts, i.e., forward propagation of the sample signal and back-
ward feedback of the error. As depicted in Fig. 2, a typical 
BP structure includes the input layer, the hidden layer, and 
the output layer. Their number of nodes is expressed as n, L, 
and m, respectively. The input and predicted output values are 
expressed as Xi (i = 1, 2, …, n) and Yk (k = 1,2, …, m). Wij and 
Wjk mean the weights.

The training procedure of the BP neural network is given 
below.

The BP network structure is established. The values of n, 
L, and m are determined; the thresholds of the hidden layer 
and output layer, i.e., a and b, are initialized. The learning rate 
and the activation function are decided. The expression of the 
activation function is:

(9)C =

∑N

t=1
(IMFi(t) − IMFi)(f (t) − f )�∑N

t=1
(IMFi(t) − IMFi)

2
∑N

t=1
(f (t) − f )2

The output H of the hidden layer is calculated:

where L is the number of hidden layer nodes.
The predicted output of the output layer Y is calculated 

according to H, b, and Wjk:

(10)f (x) =
2

1 + e−2x
− 1

(11)Hj = f

(
n∑
i=1

WijXi − aj

)
(j=1, 2, ... , L)

(12)Yk =

L∑
j=1

HjWjk − bk (k=1, 2, ... , m)

Fig. 1  Flowchart of the OVMD 
algorithm

0.3

1

Fig. 2  BP neural network structure
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The expected output O subtracts Y to obtain the prediction 
error e:

The weights are updated based on the prediction error:

where η is the learning rate.
The thresholds are updated:

If the convergence condition is satisfied, the iteration 
ends. Otherwise, return to Eq. (11) and repeat the above 
steps.

The training process of the BP neural network is prone to 
trap the local optimum problem. The GA can optimize the 

(13)ek = Ok − Yk

(14)Wij = Wij + �Hj(1 − Hj)Xi

m∑
k=1

Wjkek

(15)Wjk = Wjk + �Hjek

(16)aj = aj + �Hj(1 − Hj)

m∑
k=1

Wjkek

(17)bk = bk + ek

structure of the BP model to improve its performance. In 
the GA-BP operation, firstly, the GA is employed to encode 
the initial values of weights and thresholds in the BP neural 
network. Subsequently, the optimal weights and thresholds 
are acquired by selection, crossover, and mutation. Finally, 
the optimal weights and thresholds from the GA are fed 
into the BP neural network for iterative operations to get the 
best prediction values. The GA-BP neural network model is 
shown in Fig. 3.

2.4  Framework of the proposed approach

The application of the proposed OVMD combined with the 
GA-BP approach in Fig. 4 includes the following steps:

(a) The measured displacement and acceleration are taken 
as the input signal responses.

(b) The signals are optimally decomposed based on 
RRMSE in the OVMD algorithm to yield a series of 
IMF components, and the correlation coefficient in 
OVMD is employed to eliminate the noisy components 
and retain the valid IMF components. The performance 
of OVMD is tested via comparative analysis.

(c) Each retained IMF component is predicted by GA-BP, 
and the prediction results are superimposed to form the 
predicted reconstructed signals.

Fig. 3  GA-BP neural network 
model GA 
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(d) The structural frequencies and their characteristics are 
evaluated from the predicted reconstructed signals by 
the fast Fourier transform (FFT).

3  Damaged arch bridge test

The signal's proper decomposition and reconstruction is 
the key to the predictive evaluation. Here, a test analysis 
of a damaged bridge is made before the formal experiment 
on the target bridge. Meanwhile, the following factors are 
mainly considered: (1) check the behavior of GNSS-RTK 
under only natural excitation (no vehicle loads) at the same 
sampling rate as the target bridge; (2) verify the advantages 
of OVMD in the decomposition and reconstruction for the 
actual measured signal; (3) evaluate the noise reduction 
effect of OVMD in strong noisy signal response.

The Rainbow Bridge, situated in Tianjin, China, was 
built in 1998. The overall appearance is shown in Fig. 5. 
The structure is a through concrete-filled steel tube arch 
bridge. The length of the main bridge is 504 m; the width 
of the longitudinal beam is 29 m, as shown in Fig. 6. On 
September 23, 2022, it was found that the arch foot of the 
structure was abnormal and part of the tie bar steel strands 
was broken. The bridge began repairs in September 2022 
with the replacement of all load-bearing rods. The bridge 
reopened to traffic on June 2, 2023, after nearly 9 months 
of maintenance. The test was conducted on March 10, 
2023, and lasted 12 h. The GNSS-RTK receiver at meas-
uring point P in Fig. 6 as a mobile station is placed in the 
middle of the main span downstream of the river. The RTK 
sampling rate is the same as the target bridge, i.e., 50 Hz. 
Partial vertical displacement response is intercepted for 
analysis, as seen in Fig. 7.

During the test, the damaged bridge was under repair 
and closed to traffic. Compared with the dead weight of the 
structure, workers and construction vehicles on the bridge 
deck can be negligible. Because of the lack of vibration 
generated by vehicle loads, the signal in Fig. 7 is a weak 
dynamic displacement excited only by natural environments 
such as wind load and ground pulsation. Naturally, the 
influence of noise on the weak dynamic displacement is also 
more pronounced.

To attenuate the noise effect, a comparative noise reduction 
analysis of the displacement signal response is made employ-
ing OVMD and CEEMDAN. With the procedure of OVMD, 
the K is updated iteratively using RRMSE. Table 1 gives the 
results. When K is 7, the RRMSE shows a local minimum, 

Fig. 4  Application flow of the proposed approach

Fig. 5  General view of the bridge
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which means that decomposing the signal into 7 IMF compo-
nents is optimal. Simultaneously, we decompose the signal via 
CEEMDAN to yield 14 IMF components. The decomposition 
results of the two methods are depicted in Figs. 8 and 9. Obvi-
ously, CEEMDAN generates redundant IMF components; this 
is not conducive to the selection of valid components. In con-
trast, OVMD decreases the redundancy of IMF components.

Then, this paper adopts the correlation coefficient in 
OVMD to select the valid IMF components for recon-
struction. Table 2 lists the correlation coefficients of 
each IMF component with the signal response in the two 
methods. The IMF components with correlation coef-
ficients higher than 0.3, i.e., IMF1–IMF2 in OVMD, 

IMF7–IMF9 and IMF11–IMF13 in CEEMDAN, are taken 
as valid information and reconstructed. Furthermore, the 
wavelet soft threshold and EEMD-wavelet soft threshold 
are adopted to denoise the signal response. To estimate 
the performance of four methods, signal-to-noise ratio 
(SNR), root mean square error (RMSE), and correlation 
coefficient are treated as criteria. The expressions of SNR 
and RMSE are:

where x(t) and x�(t) denote the real signal and denoised 
signal. The larger the SNR, the stronger the noise reduction 
ability; the lower the RMSE, the smaller the signal error 
before and after noise reduction; the higher the correlation 
coefficient, the better the correlation between two sequences. 
As shown in Table 3, the denoised signal response after 
OVMD has the largest SNR (9.3209 dB), the smallest RMSE 
(0.0032  m), and the highest correlation (0.9374). This 
indicates that using the correlation coefficient presented in 
OVMD effectively reconstructs the signal with fewer IMF 
components. Also, the proposed OVMD algorithm has the 
best noise reduction performance.

(18)SNR = 10log10

� ∑N

t=1
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√√√√ 1

N
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Fig. 6  Structure diagram (unit: 
m) and measurement point 
arrangement
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Table 1  RRMSE values when K 
is iterated

K 4 5 6 7 8 9 10 11

RRMSE 0.3236 0.3231 0.4985 0.3131 0.5058 0.5045 0.5040 0.5092
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The power spectral density (PSD) function of the sig-
nal reconstructed by OVMD is plotted in Fig. 10. It can be 
found that the first two-order frequencies (0.695 and 1 Hz) 

of the damaged bridge are different from those (0.6169 and 
1.0960 Hz) before the damage [54]. Probably mainly structural 

Fig. 8  OVMD decomposition
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Fig. 9  CEEMDAN decomposi-
tion
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damage and lack of moving vehicles cause variations in the 
frequency characteristics of the bridge.

In conclusion, the damaged bridge test reveals that 
the GNSS-RTK with 50  Hz can obtain the structural 
dynamic signal response even without significant 
vibration excitation and extracts structural frequency 
based on OVMD. OVMD method facilitates the optimal 
decomposition and reconstruction of the signal and shows 
superior noise reduction capability.

4  Practical application of a long‑span 
cable‑stayed bridge

This section applied the proposed method to the 
predictive evaluation of the responses and frequencies 
of a long-span cable-stayed bridge named Haihe Bridge 
using GNSS-RTK and acceleration data.

4.1  Bridge overview and experimental scheme

The Haihe Bridge, located in Tianjin, China, consists of 
two bridges with the same structure but built in different 
years, as shown in Fig. 11a. The old bridge was built in 2002 
and the new bridge was officially opened to traffic in 2011. 
Two bridges in the Haihe Bridge are single-tower double 
cable-stayed bridges and are reinforced concrete composite 
structures. Haihe Bridge has eight lanes in both directions, 
the main girder is 3 m high. The total lengths of the old and 
new bridges are 2650 and 2033 m; the spans of the two main 
bridges are (310 + 3 × 48 + 46) m and (310 + 2 × 50 + 2 × 40) 
m; the tower heights are 167.3 and 164.8 m, respectively, as 
seen in Fig. 11b. Haihe Bridge has a heavy traffic flow every 
day. Given the old bridge was completed earlier, thus it is 
taken as the object of this study.

The GNSS-RTK mobile station and triaxial accelerom-
eter with high sampling rates of 50 and 100 Hz, as displayed 
in Fig. 12a–b. They are positioned in the middle of the old 
main bridge (point M in Fig. 11b). The triaxial accelerom-
eter is installed on the iron guardrail of the bridge sidewalk. 
Another GNSS receiver as a reference station (Fig. 12c) 
is placed on the smooth ground about 100 m away from 
the bridge. The erection heights of the mobile station and 
the reference station are 1.50 and 1.66 m, respectively. The 
experiment lasts from 9:00 a.m. to 6:00 p.m. on March 11, 
2023, local time. In the monitoring period, the wind speed 
is 0.04–9.04 m/s, the temperature is 7.30–12.24 ℃, and the 
humidity is 25.71–43.27%RH.

4.2  OVMD processing

This study selects part of vertical GNSS displacement 
and acceleration dynamic signal responses for analysis. 
In Fig.  13, under the vehicle-dominated excitation, the 

Table 2  Correlation coefficients 
of each IMF component with 
the displacement response

OVMD IMF component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7
Correlation coefficient 0.9010 0.3587 0.2353 0.2122 0.1381 0.0935 0.0784

CEEMDAN IMF component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7
Correlation coefficient 0.1506 0.1722 0.2505 0.2876 0.2443 0.2323 0.3973
IMF component IMF8 IMF9 IMF10 IMF11 IMF12 IMF13 IMF14
Correlation coefficient 0.3947 0.3353 0.2728 0.4456 0.3447 0.3377 0.2920

Table 3  Performance evaluation results of different methods

Methods SNR (dB) RMSE (m) Correlation 
coefficient

Wavelet soft threshold 5.0724 0.0052 0.8552
CEEMDAN 5.8730 0.0047 0.8879
EEMD-wavelet soft threshold 7.5923 0.0039 0.9039
OVMD 9.3209 0.0032 0.9374
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Fig. 10  PSD function detected based on OVMD
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displacement is − 0.0797 to 0.0563 m, and the accelera-
tion is − 0.0334 to 0.0339 m/s2. It is observed that two sig-
nals are subject to noise; this impacts the precision of the 
response prediction and frequency evaluation. The excellent 
performance of the OVMD is demonstrated in Sect. 3. Con-
sequently, the OVMD algorithm is adopted to process two 
signal responses to determine the valid IMF components.

Following the OVMD operation rules, Table 4 illustrates 
the RRMSE values corresponding to different K when the 
two signals are decomposed. As can be seen, K is 11 and 9 
are the optimal decomposition parameters because the cor-
responding RRMSE has local minimum values. That is, the 
GNSS displacement and acceleration signals are decom-
posed into 11 and 9 IMF components, respectively.

Fig. 11  Haihe Bridge: a pano-
ramic view of Haihe Bridge; b 
structure schematic (unit: m) 
and measuring position

(a)

(b)

4846 48 31048 40 405050

Fig. 12  Equipment arrange-
ment: a triaxial accelerometer; 
b mobile station; and c refer-
ence station

(a)                      (b)                       (c)
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The correlation coefficients between two signals and 
their corresponding IMF components are computed via 
Eq. (9), as summarized in Table 5. The IMF components 
with correlation coefficients greater than 0.3 are effective 
components, so IMF1–IMF2 decomposed from the GNSS 
displacement signal and IMF1–IMF3 decomposed from the 
acceleration signal are retained.

4.3  GA‑BP prediction and analysis of dynamic 
signal responses

Subsequently, instead of restructuring the valid IMF compo-
nents, each retained IMF component is used as the input to the 
GA-BP neural network. That is, the IMF components retained 
by OVMD are predicted using GA-BP, and then the predicted 
IMF components are restructured. 70% of the sample data is 
considered for model training, and the remaining 30% is used 
for test validation. The parameters in the BP neural network 
are set as follows: there are five hidden layers and one output 

layer; the number of training epochs is 2000. A learning rate of 
0.001 is most appropriate. In the GA method, if the crossover 
probability is too large, the individuals with high fitness in 
the population will be destroyed due to rapid updating. But 
too small a value can bring the search to a standstill. Thereby, 
the crossover probability after attempts here is 0.7. The rest of 
the parameters in the GA approach are as follows: the number 
of evolution is 150; the population size is 60; the mutation 
probability is 0.05. Figures 14 and 15 display the predicted 
IMF components and signals reconstructed by the predicted 
IMF components. It can be observed that the predicted results 
are in good agreement with the actual ones. The noise in the 
predicted reconstructed signals is attenuated compared with 
the original signals in Fig. 13. The amplitudes of the two sig-
nals decrease, within −0.0712 to 0.0491 m and − 0.0329 to 
0.0330 m/s2, respectively.

Besides, other three methods are adopted for comparison 
with the proposed method. For the three cases, the signals are 
also first processed via OVMD. Then in method 1, the BP 
neural network is used to predict the retained IMF components 
and then reconstruct the predicted IMF components. In 
methods 2 and 3, BP and GA-BP neural networks are applied 
to predict the reconstructed signals. Namely, recombination 
followed by prediction. The parameters of the BP model are 
the same in each case. The mean error (ME), mean absolute 
error (MAE), mean square error (MSE), normalized root mean 
square error (NRMSE), and coefficient of determination (R2) 
are utilized as precision indicators. Their expressions are 
expressed as:

Fig. 13  Original GNSS 
displacement and acceleration 
signals

0 50 100 150 200
-0.10

-0.05

0.00

0.05

0.10

0 50 100 150 200
-0.04

-0.02

0.00

0.02

0.04

G
N
SS

di
sp
la
ce
m
en
ts
ig
na

l(
m
)

Time (s)

A
cc
el
er
at
io
n
sig

na
l(
m
/s2

)

Time (s)

Table 4  Corresponding RRMSE values when iterating K 

Displacement K 7 8 9 10
RRMSE 0.1712 0.1785 0.1792 0.1635
K 11 12 13 14
RRMSE 0.1511 0.1820 0.1522 0.1589

Acceleration K 7 8 9 10
RRMSE 0.6019 0.6022 0.6016 0.6341
K 11 12 13 14
RRMSE 0.6345 0.6344 0.6346 0.6346

Table 5  Correlation coefficients 
of two signals with their 
corresponding IMF components

Displacement IMF component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
Correlation coefficient 0.9797 0.3011 0.1064 0.0871 0.0659 0.0477
IMF component IMF7 IMF8 IMF9 IMF10 IMF11
Correlation coefficient 0.0393 0.0334 0.0307 0.0291 0.0264

Acceleration IMF component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
Correlation coefficient 0.7352 0.6565 0.3710 0.1440 0.0946 0.0652
IMF component IMF7 IMF8 IMF9
Correlation coefficient 0.0375 0.0324 0.0288
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Fig. 14  Actual and predicted 
IMF components: a actual and 
predicted IMF components of 
GNSS displacement; and b 
actual and predicted IMF com-
ponents of acceleration

(a)

(b)

0 50 100 150 200
-0.14

0.00

0.14

46 48 50 520.00

0.04

Actual
Predicted

IM
F1

Time (s)
0 50 100 150 200

-0.023

0.000

0.023

46 48 0 52-0.01

0.00

0.01

Actual
Predicted

IM
F2

Time (s)

0 50 100 150 200
-0.038

0.000

0.038

46 48 50 52
-0.01

0.00

0.01

Actual
Predicted

IM
F1

Time (s)
0 50 100 150 200

-0.03

0.00

0.03

46 48 0 52-0.01

0.00

0.01

Actual
Predicted

IM
F2

Time (s)

0 50 100 150 200
-0.016

0.000

0.016

Actual
Predicted

IM
F3

Time (s)

46 48 50 52-0.006

0.000

0.006

Fig. 15  Actual and predicted 
restructured signals
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(20)ME =
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[
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where y(t) is the actual signal; ŷ(t) is the predicted signal; y 
is the mean value of y(t) . The smaller the ME, MAE, MSE 

(23)
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Fig. 16  Precision indicators 
of different methods: a ME; b 
MAE; c MSE; dNRMSE; and 
e R.2

)b()a(

)d()c(

(e)

4.8833

6.7118 6.4778

1.19981.0158
1.4146

0.9515 0.8213

method 1 method 2 method 3 Proposed
0

2

4

6

8

M
E
(×
10

-5
)

GNSS displacement
Acceleration

2.8616
3.4262

2.7208 2.6066

7.7573 7.731 7.7553 7.5012

method 1 method 2 method 3 Proposed
0

2

4

6

8

10

M
A
E
(×
10

-4
)

GNSS displacement
Acceleration

0.14524 0.1885
0.1338 0.1284

0.9995 0.9929 0.9695 0.9433

method 1 method 2 method 3 Proposed
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

(×
10

-6
)

GNSS displacement
Acceleration

0.3162 0.3602 0.3035 0.2973

1.5003 1.4953 1.4776 1.4575

method 1 method 2 method 3 Proposed
0.0

0.4

0.8

1.2

1.6

2.0

N
R
M
SE

(×
10

-2
)

GNSS displacement
Acceleration

0.9597 0.9487 0.9736 0.9898

0.9337 0.9249 0.9575 0.9668

method 1 method 2 method 3 Proposed
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
2

GNSS displacement
Acceleration



 Journal of Civil Structural Health Monitoring

123

and NRMSE are, and the larger the R2 is, the better the 
precision is.

The prediction precision of the four methods is illustrated 
in Fig. 16. In general, the ME values of the predicted accel-
eration signal are smaller than that of the predicted GNSS 
displacement signal, while other indicators are the oppo-
site. This is understandable, because the expression of ME 
in Eq. (20) is different from other indicators in that it is 
averaged before taking the absolute values. The accelera-
tion with more sample data reduces the ME values. Notice 
that method 2 has the poorest indicators in the GNSS dis-
placement prediction. In the acceleration signal prediction, 
method 1 appears to have the largest MAE (7.7573 ×  10–4), 
MSE (0.9995 ×  10–6), and NRMSE (1.5003 ×  10–2); method 
2 has the largest ME (1.4146 ×  10–5) and the smallest R2 
(0.9249). In short, the prediction precision of the BP neu-
ral network (i.e., methods 1 and 2) is inferior to that of the 
GA-BP neural network (i.e., methods 3 and proposed). Most 
notably, the performance of the proposed method is the best 
in all indicators, especially the R2 (0.9898) is the highest. 
The above indicates the proposed method has the best pre-
diction precision.

4.4  Predictive identification and evaluation 
of modal frequencies

In Sect. 4.3, the signal responses (Fig. 15) reconstructed 
by the predicted IMF components are precisely obtained 
with the proposed approach. This section will detect struc-
tural modal frequencies from predicted reconstructed signal 
responses. The FFT is executed on the responses to get the 
PSD functions, as depicted in Fig. 17.

Two frequency peaks, i.e., 0.3708 and 1  Hz, are 
observed from the PSD function of the predicted 
recombined GNSS displacement signal. However, there 
are five frequency peaks (i.e., 0.3692, 0.6462, 0.9538, 
1.1385, and 1.8308  Hz) in the PSD function of the 

predicted recombined acceleration signal. This implies 
that the predicted reconstructed GNSS displacement signal 
contains less structural modal information. In theory, the 
predicted recombined GNSS data with a sampling rate of 
50 Hz has the potential to measure more modal frequencies 
of interest synchronously. But this may be because the 
vertical dynamic positioning accuracy of GNSS is not as 
good as that of accelerometers and makes it fail to do so 
in a short time. In other words, the predicted restructured 
acceleration contains more order modal frequencies.

In the same way, this paper summarizes the structural 
frequency variation characteristics identified from the 
predicted reconstructed signal responses, as displayed 
in Fig. 18. Two order frequencies statistically derived 
from the predicted restructured GNSS displacements 
vary between 0.3663–0.3758 and 0.9938–1.0038  Hz. 
The five order frequencies counted from the predicted 
restructured accelerations change between 0.3692–0.3846, 
0.6462–0.6615, 0.9385–0.9692, 1.1385–1.1846, and 
1.8308–1.8769 Hz. On the whole, each order frequencies 
vary insignificantly. In contrast to the first- and third-order 
frequencies in Fig. 18b, the frequencies in Fig. 18a fluctu-
ate less, but the frequencies of the corresponding orders 
in the two figures have an acceptable agreement. Table 6 
lists the average frequencies calculated from Fig. 18 and 
frequencies measured in the literature [55]. The first-order 
average frequency determined from the predicted restruc-
tured GNSS displacements is slightly lower than that 
obtained from the predicted recombined accelerations. The 
opposite is true for the third-order frequency. However, the 
difference between them is minor. The first-order average 
frequencies and the second-order frequency from the pre-
dicted restructured accelerations are essentially the same 
as the frequencies in the literature [55]. Table 6 reveals 
the frequencies identified from the predicted recombined 
signal responses have satisfactory accuracy and also reflect 
the usefulness of the prediction. In addition, the structural 

Fig. 17  PSD functions: a 
PSD function of the predicted 
reconstructed GNSS displace-
ment; and b PSD function of 
the predicted reconstructed 
acceleration
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higher-order frequencies are captured in this study than in 
the literature [55].

Thus far, the precise prediction of the structural 
dynamic responses and the evaluation of the modal 
frequencies have been successfully obtained by applying 
the proposed approach.

5  Conclusions

In this study, an approach of OVMD combined with 
a GA-BP neural network is proposed for the predictive 
evaluation of the structural dynamic responses and 
frequencies based on GNSS displacement and acceleration 
at high sampling rates. The effectiveness of the approach 
was illustrated by field bridge experiments. The following 
conclusions are summarized:

(1) The capability of the OVMD to address the 
shortcomings of VMD is proven through the damaged 
arch bridge testing. Compared with CEEMDAN, 
OVMD effectively reduces the number of IMF 
components by optimal decomposition and realizes 

reasonable reconstruction of signals. Among the four 
methods (i.e., wavelet soft threshold, CEEMDAN, 
EEMD-wavelet soft threshold, and OVMD), the 
OVMD has the best noise reduction effect and 
applicability. Furthermore, the modal frequencies of 
the damaged bridge can be extracted from the 50 Hz 
GNSS-RTK displacement response handled by OVMD.

(2) The IMF components from GNSS displacements 
and accelerations processed by OVMD are used as 
inputs to GA-BP and realize the accurate prediction of 
dynamic responses of a long-span cable-stayed bridge. 
The comparative analysis indicates that the developed 
method enhances the prediction accuracy and its 
prediction indicators are better than the other three 
methods. This confirms the reliability and superiority 
of the proposed approach.

(3) The frequencies and their variation characteristics 
of the long-span cable-stayed bridge are determined 
successfully from the predicted restructured GNSS 
displacements and accelerations. The two-order 
and five-order average frequencies calculated from 
two predicted recombined responses are 0.3704, 
0.9996  Hz and 0.3723, 0.6457, 0.9518, 1.1508, 
1.8395 Hz, respectively. The frequency results are 
well consistent with the measurement in the previous 
study. Furthermore, this study detects higher-
order frequencies from the predicted restructured 
acceleration response. The identified results reveal that 
the frequency estimation adopting the proposed method 
has satisfactory accuracy and ensures the usefulness of 
the predicted information.

The results obtained in this study are beneficial in 
providing data support for bridge health assessment. 
In future work, the analysis of the approach in other 
data sources (such as temperature and strain) or other 
large structures (such as super-high-rise buildings and 

Fig. 18  Structural modal 
frequencies: a frequencies cap-
tured from the predicted recon-
structed GNSS displacements; 
and b frequencies captured from 
the predicted reconstructed 
accelerations
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Table 6  Statistical results of frequency evaluation

Orders Literature [55] This study

GNSS 
displacement 
response

Acceleration 
response

Frequency (Hz) Average frequency (Hz)

First-order 0.369 0.3704 0.3723
Second-order 0.649 – 0.6457
Third-order – 0.9996 0.9518
Fourth-order – – 1.1508
Fifth-order – – 1.8395
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offshore platforms) will be explored in depth to more 
comprehensively assess the potential integration of the 
proposed method.
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