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Abstract
Dynamic displacement response is an essential indicator for assessing structural state and performance. Vision-based struc-
tural displacement monitoring is considered as a promising approach. However, the current vision-based methods usually 
only focus on certain application scenarios. This study introduces a Sparse Bayesian Learning-based (SBL) algorithm to 
enhance robustness, accuracy, and computational efficiency in target tracking. Furthermore, a robust and versatile Vision-
based Dynamic Displacement Monitoring System (VDDMS) was developed, capable of monitoring displacements of varying 
application scenarios. The robustness of the proposed algorithm under changing illumination conditions is validated through 
a specially designed indoor experiment. The feasibility of field application of VDDMS is confirmed through an outdoor 
shear wall shaking table test. Furthermore, a large-scale bridge shaking table test is conducted to evaluate the reliability and 
versatility of VDDMS in monitoring natural feature targets on large structures subjected to different seismic excitations. 
The root mean square error, when compared to laser displacement sensors, ranges from 0.2% to 2.9% of the peak-to-peak 
displacement. Additionally, VDDMS accurately identifies multi-order frequencies in bridge structures. The study investigates 
the influence of initial template selection on accuracy, highlighting the significance of distinctive texture features. Moreover, 
two error evaluation schemes are proposed to quickly assess the reliability of vision-based displacement sensing technolo-
gies in various application scenarios.

Keywords Dynamic displacement monitoring · Vision-based sensing technology · Illumination changes · Large-scale 
structures · Shaking table tests · Natural feature targets

1 Introduction

Structural Health Monitoring (SHM) aims to provide valua-
ble information for assessing structural integrity and making 
maintenance decisions by measuring the structural response 
[1]. Among various structural indices used in SHM, dis-
placement response plays a crucial role [2]. Monitoring 
the dynamic displacements of structures under different 
load types offers valuable insights into their condition and 

behavior. These dynamic displacements allow for calculat-
ing important structural properties such as bearing capacity, 
deflection, deformation, load distribution, and modal param-
eters. Furthermore, they can be converted into physical indi-
cators for assessing structural safety.[3] However, traditional 
displacement measurement methods, which involve placing 
a limited number of sensors on the surface of a structure, 
such as Laser Displacement Sensors (LDS) and wireless 
accelerometers, have limitations. They are cumbersome to 
install, expensive to maintain, and provide measurements 
only at discrete points, limiting spatial resolution [4].

In recent years, vision-based displacement sensing tech-
nology has emerged as a promising alternative [5]. This 
technology initially tracks the movement trajectory of the 
measured target in video and subsequently determines the 
dynamic displacement of the structure by analyzing the posi-
tional relationship between the camera and the structure.
[6] Vision-based displacement sensing technology offers 
advantages such as long-distance capability, non-contact 
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operation, and wide range coverage [7–9]. It has garnered 
significant interest from researchers and engineers in the 
field of SHM and has been further developed to achieve 
modal identification [10, 11], model updating [12], damage 
detection [13, 14], load identification [15, 16], and cable 
force estimation [17], and other applications.

The core of vision-based displacement sensing technology 
lies in target tracking algorithms. However, commonly used 
algorithms have certain limitations. Optical flow methods 
[18–22] and phase-based motion magnification methods [23, 
24] are effective for minor displacement changes but may fail 
with large target displacements and exhibit limited robustness. 
Optical flow methods are sensitive to illumination changes and 
prone to accumulating errors, while phase-based motion mag-
nification methods are prone to noise from non-measurement 
target movements. Feature point matching methods [25–27] 
can track larger displacements but require adjusting multiple 
parameters and thresholds. Among these, correlation-based 
template matching methods [28–31] stand out due to their 
robustness, versatility, and minimal user intervention require-
ment. However, this method typically necessitates mounting 
targets on the structure and can only extract displacements 
with integer pixel accuracy [32]. Several scholars have pro-
posed enhanced techniques to address these limitations. Feng 
& Feng [33] employ upsampling techniques through Fourier 
transform, which results in a substantial computational bur-
den without significant accuracy improvement. Pan et al.
[34] significantly enhance measurement accuracy using the 
Inverse-Compositional-Gauss–Newton (IC-GN) nonlinear 
optimization algorithm, yet the iterative and interpolation 
procedures involved result in high computational costs. Zhang 
et al.[35] introduce the Modified Taylor Approximation-based 
sub-pixel refinement (MTA) algorithm as an additional step 
after correlation-based matching. This algorithm demon-
strates excellent computational efficiency and accuracy, but 
it remains sensitive to changes in illumination or noise. The 
existing correlation-based template matching approaches still 
lack the desired robustness and efficiency.

In addition, despite the attention received by vision-based 
displacement sensing technologies in SHM, their practical 
applications are still in their infancy. Most research has pri-
marily focused on specific scenarios, such as measuring the 
dynamic displacement of small-scale structures or the quasi-
static displacement localized areas of larger structures [36]. 
However, for comprehensive SHM, it is crucial to extend the 
application of monitoring dynamic displacements to full-
scale structures, particularly for modal analysis of slender 
bridge structures. Before vision-based displacement sen-
sors can fully replace traditional sensors in the SHM field, 
it is essential to conduct further research that explores their 
application on larger full-scale structural targets and in more 
challenging environmental conditions.

The study aims to address these gaps through the fol-
lowing objectives:

(1) Introducing a Sparse Bayesian Learning-based (SBL) 
algorithm to enhance robustness, accuracy, and 
computational efficiency in target tracking. Further-
more, developing a robust and versatile Vision-based 
Dynamic Displacement Monitoring System (VDDMS) 
capable of monitoring displacements of varying appli-
cation scenarios.

(2) Verifying the effectiveness of the proposed algorithm 
and VDDMS through a specially designed indoor test 
and an outdoor shear wall shaking table test.

(3) Conducting a shaking table test on a large-scale (1:40) 
steel arch bridge model. Employing a single entry-level 
consumer camera, VDDMS monitors the displacement 
and frequencies of the bridge under different seismic 
excitations and lighting conditions, targeting the natural 
texture features of the structure’s surface.

(4) Examining the effect of initial template selection on 
the accuracy of VDDMS and proposing two fast and 
convenient error assessment schemes suitable for field 
applications.

The organization of this paper is as follows: Sect. 2 
explains the theoretical framework of the VDDMS, includ-
ing the introduction of the SBL algorithm. In Sect. 3, two 
experiments are conducted to verify the validity of the 
proposed algorithm and system. Section 4 encompasses 
the shaking table test conducted on the bridge. Finally, 
Sect. 5 summarizes the conclusions drawn from this study 
and outlines potential directions for future work.

2  Theoretical framework

The robust and versatile Vision-based Dynamic Displace-
ment Monitoring System (VDDMS) framework is com-
posed of three phases, as depicted in Fig. 1. In phase 1, a 
camera calibration process is performed to acquire camera 
distortion parameters and a projection matrix that includes 
both camera intrinsic and extrinsic parameters. Phase 2 
involves tracking selected targets using the proposed SBL 
algorithm. In phase 3, the physical displacement of the 
targets in world coordinates is calculated. The VDDMS 
enables efficient and robust monitoring of dynamic dis-
placements at multiple points. This approach allows for 
accurate and reliable displacement measurements in vari-
ous scenarios, providing a practical and accessible solution 
for monitoring dynamic movements.



Journal of Civil Structural Health Monitoring 

123

2.1  Camera calibration

(1) Full camera calibration process
  The camera calibration process establishes the pro-

jection relationship between three-dimensional (3D) 
world coordinates and two-dimensional (2D) image 
coordinates. The transformation from image coordi-
nates � = (x, y) to world coordinates � = (X, Y , Z) is 
represented by Eq. (1)
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where s is the scale factor, � is the camera intrinsic 
matrix related to the lens, and [�|�] is the camera 
extrinsic matrix related to the relative position between 
the camera and the measurement object.

  The intrinsic matrix is unchanged so long as the lens 
focal length does not change. However, the extrinsic 
matrix must be recalibrated whenever the camera posi-
tion is changed. Therefore, this study proposes to divide 
camera calibration into two steps. The intrinsic camera 
matrix and distortion parameters are estimated using a 
checkerboard method [37]. The extrinsic camera matrix 
is obtained through the Perspective-n-point method 
[38] using 2D-to-3D point correspondences.

(2) Simplified camera calibration process
  In scenarios where the full camera calibration pro-

cess poses challenges, two simplified calibration proce-
dures can be used. The first is the planar homography 
matrix method [38], simplifies Eq. (1) using the pla-
nar homography matrix � , as shown in Eq. (2). The 

Fig. 1  Framework of the Vision-based Dynamic Displacement Monitoring System (VDDMS)
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Perspective-n-point method can be applied to solve this 
equation.

The second is the scale factor method, which is the most 
frequently used method in other studies. [39] The scale fac-
tor method estimates calibration parameters using the physi-
cal size D of the selected object and its corresponding pixel 
number d in the image plane. The scale factor method can 
be represented by the following equation.

The scale factor method, while simple, has several limita-
tions [40]. The choice of camera calibration process depends 
on the specific characteristics of the camera, lens, and 
motion involved. Here are some suggestions for selecting 
the camera calibration process: (1) For scenarios where the 
measured structure exhibits one-dimensional motion and the 
camera is positioned perpendicular to the movement plane, 
the scale factor method is a suitable choice for camera cali-
bration. However, it is important to note that when working 
with targets at different positions, recalibration might be 
necessary. (2) When measuring a structure that moves on a 
2D plane and the distortion of the lens is small, the homog-
raphy matrix method is suitable. The camera tilt angle does 
not affect the measurement results. (3) In scenarios requiring 
3D displacement measurement, a large field of view, or sig-
nificant lens distortion, a full camera calibration process is 
necessary [41]. This comprehensive calibration accounts for 
the lens distortion and ensures accurate and reliable meas-
urements for each target in the complex environments.

By considering these suggestions and selecting the appro-
priate camera calibration process, the VDDMS can adapt to 
different scenarios and provide reliable and precise displace-
ment measurements for dynamic movements. In the experi-
mental part of this study, three camera calibration process 
are used separately.

2.2  The SBL algorithm

2.2.1  Initial integer‑pixel displacement

The framework of the Sparse Bayesian Learning-based (SBL) 
targets tracking algorithm, shown in Fig. 2, comprises two 
main steps: initial integer-pixel displacement estimation and 
further sub-pixel refinement. In the initial integer-pixel dis-
placement estimation, correlation-based template matching is 
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used. The selected template is slid on another image, and the 
best match is found by calculating the correlation between the 
template and the overlapping region during the sliding pro-
cess. The zero-mean normalized cross-correlation coefficient 
(ZNCC) is utilized to quantify the correlation strength between 
the variables in this paper. Compared with other correlation 
coefficients, it provides more accurate and reliable results and 
is insensitive to offsets and scale changes in the intensity of the 
target area [42]. The ZNCC is calculated as follows.

where T(x, y) and Ii(x, y) represent the grayscale intensity of 
the first frame and i-th frame, respectively. The u and v val-
ues denote integer-pixel displacement change. 
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I(x + u, y + v) , where A represents the 
area of the template.

While the ZNCC is at its maximum, indicating the best 
match in overlapping region. While sliding the template over 
the entire image can be time-consuming, an adaptive match-
ing region algorithm is proposed to improve efficiency in this 
paper. The algorithm performs the template matching process 
on a local region instead of the entire image. The center of the 
sliding matching region for the template in each frame cor-
responds to the center of the best match in the previous frame. 
This region is larger than the template, with its size denoted as 
� ⋅A . If the maximum ZNCC of the current frame is less than 
0.8, increase the value of � and repeat the template matching 
process until the local region expands to the image boundary. 
This adaptive matching region technique improves the effi-
ciency of the matching process while reducing the probability 
of false matches.

2.2.2  Refined sub‑pixel displacement

The correlation-based template matching can only estimate 
the pixel-level displacement changes. Further refinement is 
required to obtain more accurate and reliable sub-pixel dis-
placement changes. The relationship between the intensity of 
a physical point in the template of the first frame and the inten-
sity of the corresponding point in the best matching region of 
the i-th frame can be expressed as:
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(5)T(x, y) = Ii(x + u + Δu, y + v + Δv)
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where u and v are the initial integer-pixel displacement com-
ponents, Δu and Δv are the sub-pixel displacement compo-
nents, respectively.

To account for grayscale changes caused by illumina-
tion variations or overexposure/underexposure, a nonlinear 
brightness variation model is introduced as follows:

where �i is a parameter vector that describes the grayscale 
transformation between the initial template and the best 
matching region of the i-th frame. More complex nonlinear 
brightness variation models can be formulated by modifying 
this equation.

The first-order Taylor expansion of Eq. (5) at 
(x + u, y + v) is as follows

where Ii
x+u

 and Ii
y+v

 are the spatial gradients of the i-th frame 
at (x + u, y + v) , calculated using the gray gradient algorithm 
based on the Barron operator [43].
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A sub-pixel displacement regression reference model 
is established using the sparse Bayesian learning scheme 
[44, 45]. It assumes that the grayscale change of each pixel 
point within the template is consistent. Let n represent the 
index of the pixel points, ranging from n = 1 to N, where 
N is the total number of pixels in the template. The gray-
scale data on both sides of Eq. (7) are represented as input 
samples �n and target values tn , respectively. The training 
dataset D =

{
�n, tn

}N

n=1
 is then used in the sparse Bayesian 

learning scheme, and noise �n is introduced:
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Fig. 2  Framework of the Sparse Bayesian learning-based targets tracking (SBL) algorithm
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In order to avoid overfitting and promote sparsity, the 

prior distribution of � of Eq. (9) is assumed to be a zero-
mean Gaussian distribution, and a separate hyperparameter 
�j is introduced for each wj . The prior distribution of � is 
given by

where �j represents the precision of the corresponding 
parameter wj.

Through the Bayesian inference, the distribution of the 
posterior parameter � can be derived as follows:[44]

where the posterior parameter distribution is denoted by 
� ∼ N
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The values of � and � are determined using the maximum 

likelihood method of the second kind.[46] In this method, 
the marginal likelihood function is maximized by integrating 
the weight vector. It can be expressed as:

Directly maximizing the marginal likelihood function is 
computationally complex. Therefore, the logarithm of the 
marginal likelihood function is maximized, which can be 
expressed as:
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In the final step, the optimized parameters � and � are 
substituted into Eq. (12) and Eq. (13). The resulting pos-
terior mean � is considered to be the precise value for the 
parameter vector � , which includes sub-pixel displace-
ment and illumination change parameters.

For a more detailed explanation of the proposed SBL 
algorithm procedure, please consult Fig. 3. The process 
follows the steps outlined below.

(1) Choose a template from the initial frame of the video;
(2) Read the current frame of the video, then determine 

the search region for the current frame based on the 
position of the template from the previous frame;

(3) Perform template matching based on correlation using 
Eq. (4);

(4) If ZNCCmax > 0.8 , determine Integer-pixel displace-
ments u and v , otherwise, expand the search region and 
go back to step 3;

(5) Set initial values for � and �;
(6) Calculate the mean � and covariance 

∑
 of the posterior 

probabilities using Eq. (12) and Eq. (13);
(7) Update hyperparameters � and � using Eq. (16) and Eq. 

(17);
(8) Cycle steps 6 and 7 until reaching the maximum num-

ber of cycles or convergence;
(9) Extract sub-pixel displacement from the mean vector 

�.

The implementation of the proposed method, as pre-
sented in this study, is carried out using the Python 3.8 
programming language in conjunction with the open-
source computer vision library OpenCV 4.5.

2.3  Physical displacement estimation

When a full camera calibration process is employed, it 
can provide the essential camera distortion parameters 
required for correcting lens distortion in displacement 
measurements. However, directly correcting the raw video 
would impose a significant computational burden. There-
fore, in this study, the proposed approach involves run-
ning the target tracking algorithm first, followed by the 
correction of the coordinate points representing the center 
position of the target in each frame. The correction process 
is as follows:

(16)�
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j

= �j∕m
2
j

(17)(�new)−1 =
‖� −��‖2

N − Σj�j
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where (x, y) are the image coordinates, 
(
xc, yc

)
 are the cor-

rected coordinates, r is the Euclidean distance of the dis-
torted point to the distortion image center, ki and pi are the 
distortion parameters.

Next, the image coordinates are transformed into world 
coordinates based on the camera calibration results. It is 
important to note that recovering the out-of-plane (Z-axis) 
coordinates of the measured structure using a single camera 
is theoretically impossible. [47] Therefore, in this study, the 
assumption is made that the Z value is a constant. Based on 
Eq. (1), the modified transformed equation when Z is set to 0 
can be expressed as follows:

with 
[
x� y� 1

]T
= �

−1
[
x y 1

]T.
To estimate the physical displacement, the initial template 

center coordinates are subtracted from the world coordinates 
of the center of the best match in each frame. This calculation 
yields the physical displacement change of the measured tar-
get, which can be expressed as follows:
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3  Verification

3.1  Indoor experiment

To verify the robustness and computational efficiency advan-
tages of the SBL algorithm, we conducted a novel experi-
ment was conducted for dynamic displacement monitoring. 
The experiment involved the synthesis of a video depicting 
target movement, which was then played on a liquid crystal 
display (LCD). By leveraging the precise physical distance 
between adjacent pixels, the displacement of the moving tar-
get on the LCD could be accurately controlled. The VDDMS 
system was employed to measure the physical displacement 
of the moving target.

The experiment employed an RMMNT27NQ LCD 
model, featuring a resolution of 2560 × 1440 pixels with a 
pixel pitch of 0.233 mm. The moving target consisted of a 
logo pattern containing a Schneider code [48], measured 
69.9 × 69.9 mm. The target exhibited horizontal motion at 
a speed of 4.66 mm/s over a duration of 10 s. As shown 
in Fig. 4, the experimental setup included compact entry-
level action camera, DJI Pocket 2, featuring a resolution of 
1920 × 1080 pixels and a frame rate of 60 fps. The camera 
was positioned perpendicularly to the target, and the cali-
brated scale factor was established at 0.48 mm/pixel.

The experiment comprised four subtests, except for Sub-
tests (a), each introducing specific variations. Subtests (b) 
and (c) involved gradual changes in the gray intensity of 
the moving target to simulate varying illumination con-
ditions. In subtest (d), Gaussian noise with an increasing 
standard deviation up to 0.2 was applied to the target during 

Fig. 3  Flowchart of the proposed SBL algorithm
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its movement. The variations in the moving target for each 
subtest are depicted in Fig. 5. All subtests use a consistent 
initial template of size 145 × 145 pixels. The MTA algorithm 
[35], IC-GN algorithm [34], Kanade-Lucas-Tomasi (KLT) 
algorithm [49], and the SBL algorithm were employed for 
the four subtests. The MTA and IC-GN algorithms were 
initialized using the same ZNCC-based integer-pixel level 
displacement search process as the SBL algorithm. All 
experiments in this study were performed on a computer 
equipped with an AMD Ryzen 7 5800X @3.80 GHz CPU.

To evaluate the measurement error globally, the Root 
Mean Square Error (RMSE) was calculated using the fol-
lowing equation:

where n is the number of displacement data points, dgt are 
the ground truth of displacement values, and dv is the value 
measured by the vision-based displacement sensors.

Figure 6 and Table 1 illustrate the error and computa-
tional speed of each target tracking algorithm. In subtest 

(21)RMSE =
1

n

√√√√
n∑

i=1

(
dgt − dv

)2

(a), the MTA, IC-GN, and SBL algorithms have consistent 
accuracies with an RMSE of 0.05 mm. The RMSE, which 
is 1/10 pixel when applying the inverse transformation of 
the scale factor, demonstrates the effectiveness of the algo-
rithms employed in this experiment. The KLT algorithm 
exhibited an increasing error over time, with an RMSE 
of 0.34 mm. The KLT algorithm is prone to errors when 
tracking fast targets, and these errors gradually accumu-
late over time. This accumulation of errors is a result of 
calculating displacements between consecutive frames in 
the KLT algorithm[27].

In subtests (b) and (c), as the gray intensity variation of 
the moving object increases, the MTA algorithm is more 
affected, leading to a larger error range. The IC-GN algo-
rithm show good robustness for small brightness changes, 
but when significant dimming occurs, the iterative opti-
mization process of the IC-GN algorithm deviates from 
the correct direction, causing a sudden increase in error 
range. In contrast, the SBL algorithm consistently main-
tains the error within a controllable range regardless of the 
intensity variation. In subtest (d), the accuracy of the SBL 
algorithm decreases slightly but remains at a reasonable 
level of accuracy.

Among the four algorithms, the KLT algorithm stands 
out for its high computational efficiency, processing an 
average of 42.3 frames per second (fps). On the other 
hand, due to the interpolation and iterative calculations 
involved, the IC-GN algorithm has a significantly lower 
average computation speed of only 0.24 fps. The MTA and 
SBL algorithms exhibit comparable computation speeds of 
16.4 and 15.8 fps, respectively. It is worth noting that the 
computation speed is influenced by the size of the template 
used. Opting for a smaller template size can enhance the 
speed of the SBL algorithm.

In summary, the SBL algorithm demonstrates greater 
robustness in terms of measurement accuracy across dif-
ferent subtests, while maintaining satisfactory computa-
tional efficiency. Its ability to consistently keep the error 
within a controllable range makes it a promising choice for 
vision-based displacement sensing technologies.

Fig. 4  The indoor experimental setup

Fig. 5  The variations in the 
moving target for each subtest
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Fig. 6  Error and computational speed of each target tracking algorithm

Table 1  RMSE and 
computation speed of the 
different algorithms

Algorithm RMSE (mm) Average compu-
tation speed (fps)

Subtest (a) Subtest (b) Subtest (c) Subtest (d)

SBL 0.05 0.10 0.08 0.10 15.8
IC-GN 0.05 0.10 0.18 0.10 0.24
MTA 0.05 0.15 0.12 0.11 16.4
KLT 0.34 0.72 0.31 1.58 42.3
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3.2  Field experiment

In 2018, the University of California, San Diego conducted 
shake table tests to investigate the lateral response of steel 
sheet sheathed cold-formed steel framed in-line wall sys-
tems. The test details, reports, videos, and data can be found 
on DesignSafe [50]. Among the test specimens, SGGS-1 
from Test Group 1 was a shear-gravity-gravity-shear wall 
line specimen measuring 4.8 × 2.7 m, as shown in Fig. 7. To 
measure the wall drift, a string potentiometer was installed 
on the side face of the beam at the top of the specimen.

The “EQ1” test, which used the amplitude-modulated 
Canoga Park record component CNP196 of the 1994 
Mw = 6.7 Northridge Earthquake, was selected for analy-
sis. The specimen remained within the elastic range during 
the test. A fixed digital video recorder (DVR) camera placed 
south of the specimen recorded the dynamic test process. 

The captured video had a resolution of 1920 × 1080 pixels, 
a frame rate of 30 fps, and a total of 2008 frames. VDDMS 
analyzed the video data to monitor the displacement of the 
specimen.

On top of the specimen, a concrete weight plate was 
equipped with a 3 × 3 checkerboard, with each grid hav-
ing a side length of 12 cm [51]. The corner coordinates of 
the checkerboard were extracted, and the planar homogra-
phy matrix method was employed to estimate the projec-
tive transformation. Two adjacent initial templates, sized 
87 × 87 pixels, were selected on top of the specimen. One 
template contained artificial targets, while the other had 
natural targets.

Figure 8 illustrates the displacement of the specimen’s 
top measured by VDDMS and the string potentiometer. The 
RMSE and computation speed of VDDMS are presented in 
Table 2, assuming that the measurement results of the string 
potentiometer are considered ground truth. The RMSE of the 
natural target measured by VDDMS was 0.37 mm, which 
is 2.7% higher than that of the artificial target. After apply-
ing the inverse projective transformation, the RMSE of the 
natural target was 1/12 pixel. For templates of the same size, 
VDDMS processed both natural and artificial targets at a 

Fig. 7  The specimen SGGS-1 of Test Group 1 (Shot by the DVR)

Fig. 8  Displacement compari-
son between VDDMS and string 
potentiometer measurements at 
the top of the specimen

Table 2  RMSE and computation speed of VDDMS

Template RMSE (mm) RMSE (pixel) Computa-
tion Speed 
(fps)

Artificial Target 0.36 0.08 (1/12) 39
Natural Target 0.37 0.08 (1/12) 39
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speed of 39 fps. Hence, the computation speed was found to 
be independent of the target type within the template.

4  Shaking table test of large‑scale bridge

4.1  Experimental setup

A shaking table test of a large-scale (1:40) steel box bas-
ket-handle arch bridge model was conducted in February 
2022 at the Beijing University of Technology. VDDMS was 
used to monitor multiple points on the model bridge under 
various seismic excitations. As shown in Fig. 9, the bridge 
model features a main span of 7500 mm, two side spans of 
1250 mm each, and is supported by 24 stay cables.

The shaker system consists of six small shakers with 
dimensions of 1 × 1 m. Table 3 provides details of the 
seismic excitation input scenarios used in the experi-
ment, including the type of excitation, peak ground accel-
eration, and direction. Three LDS and accelerometers 
were installed at specific locations on the bridge model 
to measure longitudinal displacements. The response of 

the bridge model to seismic vibration was captured using 
the Panasonic Lumix DMC-FZ2500 camera, which is an 
entry-level consumer camera. The camera, positioned 
approximately 12 m away from the bridge model, was not 
precisely adjusted and had a noticeable tilt angle. The cap-
tured video had a resolution of 3840 × 2160 pixels and a 
frame rate of 30 fps, covering the vibration modes of most 
civil engineering structures.

Fig. 9  Shaking table testing 
of large-scale steel arch bridge 
model

Table 3  Seismic excitation cases

Case Seismic excitation Peak ground 
acceleration

Direction

0 White noise 0.075g Longitudinal
1 Artificial wave 1 0.6 g Longitudinal
2 Artificial wave 2 0.6 g Longitudinal
3 Natural Chi-Chi wave 0.6 g Longitudinal
4 Artificial wave 1 1.2 g Longitudinal
5 Artificial wave 2 1.2 g Longitudinal
6 Natural Chi-Chi wave 1.2 g Longitudinal
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A complete camera calibration process was adopted 
in this experiment. The intrinsic and distortion param-
eters of the Panasonic Lumix DMC-FZ2500 camera were 
determined in advance by analyzing checkerboard images 
from different locations and orientations. The camera’s 
focal length was locked, and the extrinsic parameters 
were determined by using four pairs of 2D-to-3D points. 
The distances between these control points were obtained 
from field measurements. A world coordinate system was 
established, with the X-axis aligned along the bridge span 
direction and the Y-axis in the vertical direction. Initial 
templates, sized 51 × 51 pixels, were selected near the LDS 
measurement points (T1: mid-span of the bridge, T2: top 
of the arch rib, T3: 1/4 height of the arch rib), as show 
in Fig. 10. These templates captured the natural texture 
features on the structural surface. All pixel points within 
the templates are on the same plane and share a common 
motion trajectory.

4.2  Results of displacement

Figure 11 illustrates the displacement measurements of three 
targets obtained from both the VDDMS and LDS in case 1. 
To ensure accurate comparison, the signals from both meas-
urement methods were aligned to a common reference time, 
and any minor time shifts were corrected using the maxi-
mum cross-correlation technique. The figure demonstrates 
a good agreement between the displacement measurements 
obtained from VDDMS and LDS. This indicates that the 
VDDMS is capable of accurately capturing the vibration 
displacements of the targets, comparable to the measure-
ments obtained from the traditional LDS. Figure 12 show the 
distribution of absolute displacement differences measured 
by VDDMS in cases 1 to 6. Table 4 provides the Peak-to-
peak (Pk-pk) and RMSE values of the VDDMS displace-
ment measurements, assuming the measurement results of 
the LDS are considered ground truth.

One notable observation from the experiment is related 
to the Pk-pk displacement of different cases. Case 3 has a 
smaller Pk-pk displacement compared to Case 1 and Case 
2. Similarly, Case 6 exhibits significantly smaller Pk-pk dis-
placement than Case 4 and Case 5. The displacement ampli-
tudes induced by artificial waves are larger than those caused 
by natural waves.

Another noteworthy observation pertains to measure-
ment accuracy. Despite higher peak ground accelerations in 
the seismic excitation, resulting in faster and larger vibra-
tions of the structure, the RMSE does not show a signifi-
cant increase. Interestingly, the Normalized RMSE actually 
decreases noticeably. These indicates that the velocity of the 
target motion has a limited impact on the measurement accu-
racy of the VDDMS system. It can also be inferred that the 
primary errors in the VDDMS are fixed systematic errors, 
likely introduced during camera calibration.

Fig. 10  The location of the initial templates

Fig. 11  Displacement measurements of three targets obtained from VDDMS and Laser Displacement Sensors (LDS) in Case 1
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Furthermore, it is observed that the RMSE of target T3 
is generally larger than the other two targets, indicating a 
larger error for the target at the edge of the image. This 
could be attributed to the greater degree of distortion for 
consumer cameras farther away from the image center. 
Additionally, different initial templates may have varying 
displacement measurement accuracies.

Across all measurement targets and seismic excitation 
conditions, the maximum and minimum values of RMSE 
are 0.64 mm and 0.20 mm, respectively, while the maxi-
mum and minimum values of Normalized RMSE are 2.9% 
and 0.2%. These results demonstrate that the VDDMS 
accurately monitors multiple targets within a large range 
on the steel arch bridge model under different seismic 
excitations, utilizing an entry-level consumer camera 
and the natural texture features of the structure’s surface. 
Remarkably, this monitoring system does not require 

precise camera position adjustments, making it practical 
and effective for real-world applications.

4.3  Illumination change robustness and computing 
efficiency

In this section, we evaluate the illumination robustness and 
computational efficiency of VDDMS, highlighting its advan-
tages. To simulate the changing illumination during the 
movement of the bridge structure, we modify the grayscale 
values of frames in the recorded video from case 1. Three 
illumination conditions are considered: (a) no change, (b) 
brightened at 2nd seconds, and (c) dimmed at 2nd seconds. 
We measure the displacement of target T1 under these dif-
ferent illumination conditions.

Figure 13 illustrate the difference from LDS and com-
putation speed of VDDMS using four target tracking 

Fig. 12  Distribution of absolute displacement differences measured by VDDMS and LDS from Case 1 to 6

Table 4  Pk-pk and RMSE of 
displacement measured by the 
VDDMS

Note: Normalized RMSE = Pk-pk/RMSE

Case Pk-pk (mm) RMSE (mm) Normalized RMSE

T1 T2 T3 T1 T2 T3 T1 T2 T3

1 56 55 59 0.22 0.34 0.45 0.4% 0.6% 0.8%
2 47 48 52 0.23 0.38 0.41 0.5% 0.8% 0.8%
3 10 10 11 0.24 0.20 0.32 2.4% 2.0% 2.9%
4 109 108 114 0.26 0.64 0.43 0.2% 0.6% 0.4%
5 93 95 99 0.23 0.60 0.44 0.3% 0.6% 0.5%
6 19 19 21 0.27 0.30 0.27 1.5% 1.5% 1.3%
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algorithms: MTA, ICGN, SBL, and KLT. The correspond-
ing RMSEs are listed in Table 5. The initial template plate 
size for each condition is set to 51 × 51 pixels. Under illu-
mination condition (a), the accuracy of VDDMS using all 
four algorithms is consistent, yielding an RMSE of 0.22 mm. 
However, for conditions (b) and (c), the MTA and KLT algo-
rithms exhibit increased errors as the illumination becomes 

brighter or darker, while IC-GN and SBL algorithms remain 
stable. The MTA algorithm calculates the displacement 
change between the initial frame and subsequent frames, 
resulting in measurement errors when there is a difference 
in illumination compared to the initial state. In contrast, the 
KLT algorithm computes displacement changes between 
adjacent frames, introducing errors only when there is a 

Fig. 13  Difference from LDS and computation speed of VDDMS using MTA, ICGN, SBL, and KLT algorithms for Target T1
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change in illumination, but these errors accumulate over 
time. The SBL and IC-GN algorithms exhibit higher illu-
mination robustness.

In terms of computational speed, the IC-GN algorithm 
operates at a significantly slower pace, with approximately 
1.5 fps. In contrast, the SBL algorithm achieves a much 
faster computation speed of 52.6 fps. Therefore, the pro-
posed SBL algorithm demonstrates better illumination 
robustness and computational efficiency in the VDDMS 
system.

4.4  Identify structural dynamic characteristics

We conducted an analysis of the displacement spectrum of 
the model bridge subjected to white noise excitation. It is 
worth noting that the measured displacements do not require 
conversion into real physical displacement units. Figure 14 
presents the measurements obtained from VDDMS and 
accelerometers under white noise excitation, along with the 
corresponding spectral analysis results. The first-order vibra-
tion mode of the model bridge is characterized by beam 
longitudinal drift, while the second-order vibration mode 
corresponds to arch transverse bending. Table 6 provides 
the frequencies of the model bridge obtained from both the 
accelerometer and VDDMS measurements. The frequencies 
measured by VDDMS closely match those obtained from the 
acceleration spectrum analysis, with values of 0.90 Hz and 
7.53 Hz. Specifically, the VDDMS frequencies are lower by 
0.01 Hz and 0.03 Hz compared to the acceleration-based 
results.

In conclusion, the displacement spectrum analysis dem-
onstrates the reliability of VDDMS in accurately capturing 

Table 5  RMSE and computation speed of VDDMS using MTA, 
ICGN, SBL, and KLT algorithms

Algorithm RMSE(mm) Average 
computation 
speed (fps)Condition 

(a)
Condition 
(b)

Condition 
(c)

MTA 0.22 0.73 1.31 58.1
IC-GN 0.22 0.22 0.22 1.5
SBL 0.22 0.24 0.22 52.6
KLT 0.22 3.31 0.85 97.2

Fig. 14  Spectral analysis comparison of VDDMS and accelerometer measurements under white noise excitation
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the vibration frequencies of the model bridge under white 
noise excitation, with close agreement to the acceleration-
based results.

4.5  Initial template selection

The selection of the initial template is a crucial step in 
VDDMS, and this section investigates its influence on meas-
urement accuracy. Five initial templates were chosen near 
the top of the arch ribs, and their information is presented 
in Table 7. The distinctiveness of template features was 
quantified using the Sum of the Square of Subset Intensity 
Gradients (SSSIG) [52] in the x and y directions, where 
higher SSSIG values indicate richer texture features within 
the template. VDDMS measured the displacement changes 
of five targets in case 5, and the error distribution is depicted 
in Fig. 15. The RMSE values for templates F1 and F3 were 
0.64 mm and 0.59 mm, respectively, which were lower than 
templates F2 and F4. Template F5, lacking distinctive tex-
ture features, caused VDDMS to lose track of the target dur-
ing the measurement process.

These findings emphasize the significance of template 
distinctiveness in influencing measurement accuracy. Tem-
plates with higher SSSIG values, indicative of richer tex-
ture features, exhibited lower RMSE values. Therefore, it is 
crucial to carefully select initial templates with distinctive 
texture features to ensure reliable target tracking throughout 
the measurement process.

4.6  Error evaluation schemes

The accuracy of vision-based displacement sensing tech-
nologies is affected by various factors, including hardware 
devices, methods, environment, and so on [53]. In practi-
cal application, fast error evaluation is crucial. However, 
practical applications often lack comparable measurements 
from LDS, making it challenging to evaluate the reliabil-
ity of vision-based displacement sensors. Hence, this study 
proposes two evaluation schemes for measuring the error of 
vision-based displacement sensors.

The first scheme involves extracting the displacements of 
measurement targets in the static state of the structure before 
the test, while the second scheme focuses on extracting the 
displacements of stationary background targets during the 
test. Since the actual displacement value of these targets 
should ideally be zero, any non-zero measurements can be 

considered as measurement errors. The first error evaluation 
scheme is designed to assess errors arising from hardware 
devices and algorithms, making it particularly suitable for 
short-term displacement measurements. On the other hand, 
the second scheme aims to evaluate errors attributed to envi-
ronmental factors and is more applicable for long-term dis-
placement monitoring purposes.

In this study, a video of the bridge in the static state before 
case 1 was captured, and the displacements of targets T1 to 
T3 were extracted using the first error evaluation scheme. 
Additionally, the displacements of the three stationary back-
ground targets BJ1 to BJ3 were extracted from the video of 
case 1. The results of the two error evaluation schemes are 
presented in Fig. 16 and Table 8. In the first scheme, the 
maximum RMSE is 1/7 pixels, and for the second scheme, 
the maximum RMSE is 1/10 pixel. It is observed that the 
measurement accuracy of T3 is lower than that of T1, con-
sistent with the experimental results in the previous section. 
Furthermore, the second scheme indicates that the environ-
mental factors had a minimal impact on measurement error, 
less than 1/10 pixel, in this experiment. 

Table 6  Frequency comparison 
of model bridge obtained by 
accelerometer and VDDMS

Order Frequency (Hz) Measurement position

VDDMS Accelerometer Difference

1 0.90 0.93 0.03 The mid-span of the bridge (T1)
2 7.53 7.54 0.01 The top of arch ribs (T2)

Table 7  Information on the five initial templates

Templates F1 F2 F3 F4 F5

Size (pixel) 21 × 21 21 × 21 21 × 21 21 × 21 21 × 21
Feature type Corner Spot Color Edge Void
SSSIG 1.3 × 10

5 4.2 × 10
3

1.2 × 10
5 7.3 × 10

3
1.5 × 10

2

RMSE (mm) 0.64 0.82 0.59 0.90 invalidity

Fig. 15  Displacement difference distribution of targets F1 to F5 as 
measured by VDDMS
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5  Conclusions

This research contributes to the advancement of vision-
based sensing technologies in SHM. The robustness and 
versatility of VDDMS in different application scenarios 
are proven by a series of experiments. The key conclusions 
derived from this research can be summarized as follows:

1. The SBL algorithm demonstrates superior robustness 
in handling illumination changes compared to the KLT 
and MTA algorithms. It also offers a faster computa-
tional efficiency than the ICGN algorithm, approaching 
the high-efficiency MTA algorithm. The VDDMS accu-
rately monitors natural targets on large-scale shear walls 
under outdoor conditions, achieving an RMSE of 0.37 
mm, which is 3% higher than that of artificial targets.

2. By utilizing an entry-level consumer camera and lev-
eraging the natural texture features of the structure’s 
surface, VDDMS showcases its accurate monitoring 
capability for multiple targets on bridge models under 
various seismic excitations, eliminating the need for pre-
cise camera position adjustments. The RMSE, in com-
parison to laser displacement sensors, ranges from 0.2% 
to 2.9% of the peak-to-peak displacement. Furthermore, 
VDDMS effectively identifies the multi-order frequen-
cies of the model bridge, which closely align with the 
results obtained from accelerometers.

3. The distinctiveness of initial template features is found to 
be a crucial factor influencing the accuracy of VDDMS. 
Furthermore, the proposed two error evaluation schemes 
can quickly evaluate the reliability of vision-based dis-
placement sensing techniques, and they can be conveni-
ently applied in field measurements.

These findings provide valuable insights for the future 
development of vision-based displacement sensing tech-
nologies. It is important to noted that VDDMS may face 
challenges when natural texture features lack prominence, 
a common limitation in vision-based displacement sensing 
technologies. To overcome this limitation, future research 
should focus on extracting deeper target features, poten-
tially through advanced deep learning techniques. Fur-
thermore, the development of computer vision-based 3D 
displacement sensing techniques is necessary to address 
the challenges associated with 3D measurements in SHM 
applications.
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Table 8  RMSE of error 
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