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Abstract
Machine vision offers distinct advantages, such as enhanced efficiency and precision, in the segmentation and assessment 
of corrosion on hydraulic steel gates. This study addresses the challenge of demanding a substantial amount of pixel-level 
annotated data in machine vision-based corrosion segmentation and assessment approaches. To tackle this issue, a novel 
weakly supervised method for corrosion segmentation and assessment in hydraulic steel gates is proposed, leveraging 
class labeling. The technique employs a class activation map to pinpoint regions containing corrosion seeds and to train a 
network to capture semantic affinity relations. Subsequently, the concept of region growing is adopted to propagate semantic 
information across the entire image. The average feature vector of the seed region serves as the corrosion feature, enabling 
precise segmentation of corroded areas and circumventing the laborious pixel-level annotation process. Additionally, a fine-
grained corrosion classification network is established and trained using salt spray corrosion test data to accurately evaluate 
the corrosion severity. To validate the proposed method's accuracy, a dataset of steel gate corrosion images is curated based 
on real-world operational scenes. Experimental results demonstrate that, in practical scenarios, the segmentation method 
presented in this paper achieves a segmentation intersection ratio of 62.37% in corrosion, without pixel-level annotation. 
This performance closely approaches the performance of mainstream fully supervised methods. Additionally, the corrosion 
grade evaluation method proposed in this study achieves an accuracy of 95.77%.

Keywords Hydraulic steel gates · Weakly supervised · Corrosion region segmentation · Fine-grained corrosion 
classification

1 Introduction

In recent years, the development of water conservancy 
projects has driven the widespread adoption of hydraulic 
steel gates in water resource management and flood control. 
However, environmental factors and extended usage have 
exacerbated the corrosion issue on the surface of hydraulic 
steel gates [1], thereby escalating a threat to their operational 
efficiency and remaining lifespan [2]. The increasing sever-
ity of surface corrosion on hydraulic steel gates due to envi-
ronmental influences and prolonged usage poses a poten-
tial menace to their performance and longevity. Traditional 

methods for detecting corrosion on hydraulic steel gates pri-
marily rely on manual inspections and visual observations, 
a practice that not only increases maintenance expenditures 
but also fosters inefficiencies and delays [3]. Additionally, 
the scope of manual inspection is constrained by the opera-
tional environment, particularly in challenging settings like 
high-altitude, underwater, or high-temperature conditions, 
where personnel well-being may be compromised, elevating 
the associated risks [4]. Machine vision-based techniques 
for corrosion assessment offer the merits of automation, 
heightened efficiency, and precision, establishing a compel-
ling advantage in the realm of corrosion segmentation and 
evaluation concerning hydraulic steel gates [5].

Based on the characteristics of machine vision technol-
ogy, several researchers have endeavored to employ machine 
vision technology to address challenges in corrosion seg-
mentation and assessment. The study conducted by Bas-
tian et al. involved designing a customized convolutional 
neural network tailored to classify pipeline images based 
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on corrosion levels. Despite achieving a remarkable 98.8% 
accuracy in the binary classification problem of distinguish-
ing the presence of corrosion, it did not encompass the clas-
sification of corrosion degree and localization of corroded 
areas [6]. Chen et al. utilized the Faster R-CNN neural net-
work to pinpoint corrosion regions on a large crane structure 
captured by a UAV using a target detection algorithm. This 
approach facilitated real-time detection through communi-
cation between the UAV and a ground station [7]. Based on 
the above research, Yu et al. utilized the lightweight char-
acteristics of the Yolov3-tiny model to create a corrosion 
target detection method based on mobile devices [8]. Atha 
and Jahanshahi from Purdue University evaluated the per-
formance of U-Net, DeepLab, PSPNet, and RefineNet in 
semantic segmentation of corrosion using 600 finely labeled 
high-resolution corrosion images [9]. Liu et al. constructed 
a VGG19 and Faster R-CNN neural network to delineate 
the extent of surface and edge corrosion of large oceanic 
steel structures [10]. Wang devised a semantic segmentation 
network employing U-Net as the primary architecture, utiliz-
ing corrosion images of the Sutong Bridge steel structure. 
This culminated in the quantitative analysis of corrosion 
areas within individual images [11]. These studies accom-
plished target detection or pixel-level segmentation of cor-
roded areas, yet both necessitated extensive, meticulously 
labeled image datasets. However, corrosion segmentation 
tasks linked to hydraulic steel gate scenarios encounter dis-
tinct challenges. First and foremost, in-service hydraulic 
equipment undergoes routine corrosion removal and anti-
corrosion paint applications [12], creating a dearth of large-
scale image datasets illustrating the corrosion progression. 
Moreover, steel gates endure alternating wet and dry envi-
ronments, persistent darkness, a variety of corrosion types, 
and intricate corrosion boundaries during the prolonged ser-
vice. Capturing and annotating images within this context is 
a laborious, time-intensive endeavor, demanding specialized 
expertise and invariably incurring subjectivity and inconsist-
encies in actual execution. These factors make construct-
ing a comprehensive, high-quality corrosion image dataset 
profoundly challenging [13]. Although many researchers 
have already laid the foundation for deep learning corro-
sion segmentation by manually annotating corrosion images, 
this approach suffers from challenges such as high cost of 
annotation, difficulty in data acquisition, and limitations in 
specific environments. This study aims to bridge this knowl-
edge gap by proposing a method for corrosion segmentation 
and assessment of hydraulic steel gates without pixel-level 
annotations to address the challenges of existing methods.

Weakly supervised learning approaches offer succinct 
labeling information, offering an effective means to address 
the challenges of limited data volume and intricate data 
annotation in hydraulic steel gate corrosion segmentation. In 
contrast to fully supervised methods demanding substantial 

labeling, weakly supervised semantic segmentation 
techniques typically leverage labeling information that is 
more readily accessible, such as bounding box labels[14], 
graffiti labels [15], and image-level labels [16, 17]. Among 
these, image-level labels are extensively adopted due 
to their simplicity in annotation and cost-effectiveness. 
However, image-level labels lack crucial object localization 
details in segmentation tasks, leading to suboptimal model 
performance. To remedy this, Class Activation Map (CAM) 
[18] has been employed. Ahn utilizes the rudimentary 
localization information acquired from CAM as a seed 
region. This technique generates a probability transfer 
matrix of pixels grounded in the semantic correlation 
among image pixels, which is subsequently diffused across 
the image based on the random walk principle. This process 
rectifies the imprecisions of CAM [19]. However, the 
random walk method is susceptible to noise and indistinct 
regions [20]. Considering that corrosion segmentation tasks 
involving hydraulic gates frequently encompass noise and 
blurred features, such as uneven illumination and water mark 
shadows, the application of this method in the hydraulic gate 
corrosion segmentation domain poses challenges.

In this study, a corrosion segmentation and assessment 
methodology for hydraulic steel gates without requiring 
pixel-level annotations is introduced. Initially, the corrosion 
images collected from the Heiquan Reservoir site were 
used as a dataset to train the corrosion binary classification 
network to generate a CAM for each corrosion image. 
Subsequently, a semantic affinity network is constructed by 
extracting highly confident regions from the CAM, which 
serves as supervisory information. This network is utilized 
to refine the corrosion seed regions, resulting in an accurate 
corrosion segmentation outcome. Next, employing the 
minimum bounding rectangle of the corrosion's connected 
domain, the corrosion area is isolated and input into a fine-
grained corrosion classification network to assess the extent 
of corrosion. For the training of the fine-grained corrosion 
classification network, a dataset comprising images 
depicting the corrosion process is compiled through salt 
spray corrosion tests. These images facilitate the training 
of an efficient and precise corrosion classification network, 
tailored for grading the identified corrosion regions. 
The approach investigated in this paper achieves pixel-
level segmentation of corrosion on hydraulic steel gates, 
simultaneously evaluating the degree of corrosion within 
the corroded regions. Our proposed method is not limited 
to the field of hydraulic steel gate corrosion assessment. 
By adopting a weakly supervised learning approach, we 
successfully cope with some of the difficulties in image 
annotation and provide a more cost-effective and efficient 
image annotation solution for other domains. This generally 
makes our approach more widely applicable and able to 
cope with the challenges of image labeling in different 



1143Journal of Civil Structural Health Monitoring (2024) 14:1141–1154 

123

environments and objects. Thus, our research not only fills 
the knowledge gap in the field of corrosion assessment 
of hydraulic steel gates but also provides an innovative 
approach to the field of image annotation. We believe that 
the popularization and application of this method will bring 
new possibilities for future research and practice.

The subsequent sections are organized as follows. 
In Sect.  2, we commence by outlining the overarching 
framework of the proposed methodology. Subsequently, 
we delve into the particulars of training the pixel affinity 
network through the utilization of class activation maps, 
alongside the elucidation of how fine segmentation of 
corroded areas is realized. Following this, we expand upon 
the bilinear corrosion-level assessment network, which 
is trained utilizing comprehensive corrosion image data 
derived from salt spray corrosion experiments. Moving 
on to Sect. 3, we substantiate the efficacy of the proposed 
approach using on-site corrosion image data from the 
Heiquan reservoir gate located in Xining City. Concluding 
in Sect. 4, we offer an overview encompassing the strengths 
and limitations of our proposed methodology, while also 
outlining avenues for future optimization.

2  Methodology

The methodology of this study comprises three primary 
components. The first component involves CNN1 and the 
Grad-CAM algorithm. Utilizing annotated images of metal 
gates with labels corrosion and non-corrosion, a clas-
sification network is trained to determine the presence of 
corrosion in the images. Subsequently, the CAM (Class 
Activation Map) technique is applied to extract coarse seg-
mentation results. The second component employs CNN2 
as a feature extractor to capture high-dimensional feature 
information. Using the coarse segmentation results obtained 
from the first component as labels, a corrosion segmentation 

model based on pixel affinity is trained. The third component 
involves simulating real working conditions through a salt 
spray corrosion experiment to generate a dataset of corro-
sion grade images. A bilinear convolutional neural network 
model is trained on this dataset to evaluate the grade of cor-
rosion in the segmentation results. The overarching structure 
is depicted in Fig. 1.

2.1  Weakly supervised corrosion segmentation 
method

2.1.1  Computation of class activation maps

Grad-CAM is extensively employed in weakly supervised 
semantic segmentation. It efficiently retrieves the position 
information of the target in the image using only image 
category labels [21]. Grad-CAM represents a refinement of 
the conventional CAM approach. CAM is a method used 
to interpret predictions of deep learning models in image 
classification tasks. The core idea involves taking the feature 
maps of the last convolutional layer, applying global average 
pooling to obtain a weight vector for each channel, and then 
multiplying this vector with the weights of the classification 
layer. This process results in weighted sums for each spatial 
position, which are then applied to the original image to 
generate a class activation map. The formulation governing 
the class activation map is given in Eq. 1:

The feature map with n channels is globally average 
pooled to generate a feature vector comprising n elements, 
where w

k
 signifies the weight of the k th element within 

this vector concerning the classification task. Denoting 
fk(x, y) as the activation value at position (x, y) within 
the k th channel of the feature map, the region of interest 

(1)Mc(x, y) =

n
∑

k=1

wc
k
fk(x, y).

Seed Region Pixel

Get Feature Map

Get  CAM

VGG19

VGG16

Affinity Prediction
Classifier

Evaluate Corrosion

CNN1

CNN2

Segmentation Corrosion 

Fig. 1  Overall structure of the corrosion segmentation and assessment network
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pertinent to corrosion classification can be derived from 
the image using Eq. 1. However, this approach presents 
certain limitations. Specifically, due to the application of 
global average pooling, the computation of only the CAM 
corresponding to the last feature map is feasible. Moreover, 
obtaining the corresponding CAM mandates the retraining 
of the neural network.

Grad-CAM, renowned for its enhanced generalization 
capability, has gained widespread adoption. Its schematic 
representation is depicted in Fig.  2. The foundational 
concept behind Grad-CAM remains consistent with that 
of CAM. It involves calculating a weighted feature map by 
employing weights aligned with each channel of the feature 
map. However, the distinction lies in the weight computation 
process. While CAM entails retraining to acquire the weights 
through the replacement of the fully connected layer with the 
Global Average Pooling (GAP) layer, Grad-CAM employs 
gradients of the global average to compute the weights. 
This differentiation is evident in Eq. 2, where the gradient 
is derived through the automatic differentiation mechanism 
inherent in the backpropagation algorithm:

The yc is the output of the classification model, which 
represents the probability that the image is of the target 
category. By applying the backpropagation function, we can 
compute the gradient of each element Ak

ij
 in the target layer's 

feature map A with respect to the output yc . Here, i and j 
denote the spatial coordinates within the feature map, 
specifying the position of the element in question. 
Subsequently, the resulting gradient matrix, bearing the 
same dimensions as the feature map, undergoes global 
average pooling to derive the importance weight �c

k
 instead 

(2)�c
k
=

1

i × j

∑

i

∑

j

�yc

�Ak
ij

.

of the weigh wc
k
 employed in the CAM method. This 

substitution not only enables the acquisition of class 
activation maps for distinct layers within the neural network 
but also effectively circumvents the necessity of network 
retraining. Following the successful implementation of the 
Grad-CAM algorithm, it was subjected to testing using 
corrosion images of gates under field conditions. We employ 
Vgg16 as the foundation for our classification network, 
referred to as CNN1 in Fig. 1. The structure of CNN1 is 
illustrated in Fig. 3.

The CAM is generated using the convolutional layer 
before the pooling layer in the model to obtain five CAMs 
with dimensions 448*448, 224*224, 112*112, 56*56, and 
28*28. We employ a stepwise up-sampling and summa-
tion strategy to progressively enhance the resolution of the 
CAM. Beginning with a 28 × 28 feature map, we up-sample 
it to 56 × 56 and add it to the original 56 × 56 feature map, 
generating a refined map. This process iterates, sequentially 
up-sampling and summing, until a final 448 × 448 CAM is 
achieved. This method effectively integrates information 
from multiple resolutions, providing a detailed and com-
prehensive visualization of class-specific activations. The 
outcomes of these tests are showcased in Fig. 4b and c.

2.1.2  Pixel affinity label extraction

The class activation map typically captures responses 
primarily in the most discriminative region of the object 
intended for segmentation. However, this approach is 
plagued by issues such as unclear boundaries and suboptimal 
segmentation accuracy. Moreover, it fails to yield accurate 
positional information of the target. Following the 
computation of the class activation map, regions exhibiting 
higher confidence are extracted from the original CAM map 
using Eqs. 3 and 4:

Fig. 2  Schematic diagram of 
Grad-CAM

Classification Scores

Grad-Cam

CNN

Feature Maps A

yc

y

j

c

kAiGAP

Fully connected layer
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Where � represents the parameter for refining the con-
fidence score,Mbg denotes the activation score of the back-
ground class, and Mrust denotes the activation score of the 
corrosion class, adjusted by � . In this study, we set the 
parameter α to 32. Further discussion on the selection of 
parameter α is included in Sect. 3.2. If the corrosion con-
fidence score after α-square reduction remains larger than 
the original background score, the region is considered to 
be a corrosion confidence region. The same principle is 
used for the selection of the background confidence region. 
By employing the abovementioned formula, the corro-
sion and non-corrosion regions can be confidently isolated 
from the image. In Fig. 4d the red region represents the 

(3)Mbg(x, y) =
{

1 −max
c∈C

Mc(x, y)
}�

,

(4)Mrust (x, y) =
{

Mc(x, y)
}�

,

high-confidence corrosion region, the blue region represents 
the high-confidence background region, and the white area 
is an area that cannot be distinguished based on CAM as to 
whether it is corroded or not. After the above method, the 
corrosion and non-corrosion regions with high confidence 
can be effectively extracted, thus improving the segmenta-
tion accuracy.

After obtaining the high-confidence corrosion regions 
and high-confidence non-corrosion regions shown in Fig. 4d, 
We need to create a bar of data like [(x1, y1), (x2, y2),1] from 
the image, where (x1, y1), (x2, y2) are points randomly taken 
from high-confidence corrosion regions and high-confidence 
non-corrosion regions. The label is 0 if (x1, y1) is located in 
high-confidence corrosion regions and (x2, y2) is located in 
non-corrosion regions. The label is 1 if both (x1, y1) and (x2, 
y2) are located in high-confidence corrosion regions, and 
the label is also 1 if both (x1, y1) and (x2, y2) are located in 
non-corrosion regions.

Input
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Fig. 3  VGG16 network structure

Fig. 4  Class activation map 
with confidence region extrac-
tion

a Original images of the site b Corrosion region heat map

c Background region heat map d Corrosion and background seed region
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2.1.3  Training of pixel affinity network

Following the completion of label extraction, the subsequent 
step involves constructing and training the pixel affinity net-
work. The structure of the pixel affinity network is illustrated 
in Fig. 5, serving as a detailed explanation of "CNN2" and 
the process of "Get Feature Map" in Fig. 1.

The input image is first passed through a feature extractor 
to obtain a feature map. In the forward propagation process, 
1 × 1 convolutional layers are added at different locations 
to extract the features. Subsequently, these features are 
merged to form a feature representation that covers more 
comprehensive information. The resulting feature map is 
then up-sampled to match the dimensions of the original 
input image. The corroded and non-corroded confidence 
regions obtained in Sect. 2.1.3 are utilized as labels for 
the feature vectors at the corresponding locations in the 
convolutional feature map. A model for distinguishing 
whether the feature vectors belong to the same class is then 
trained. The concept of the region growing algorithm is 
harnessed through the utilization of the pixel affinity network 
to refine the corrosion seed region across the entire image. 
The image segmentation algorithm rooted in region growing 
commences from a seed point or seed region, progressively 
determining whether adjacent pixels pertain to the same 
class or not [22]. We designed a cosine similarity-based loss 
function to measure the similarity between the predicted and 
target feature vectors, as shown in Eq. 5:

where a and b are two vectors, a⃗ and b⃗ are the modulus of 
the two vectors respectively, and �⃗a ⋅ �⃗b is the dot product of 
the two vectors. This loss function has a value between 0 and 
2, 0 when the two vectors are identical and 2 when the two 
vectors are completely different. This loss function measures 
the similarity between the two input vectors. We get the local 
labels of the image by means of high-confidence regions, 

(5)L = 1 −
�⃗a ⋅ �⃗b

a⃗ × b⃗
,

compute the loss only on the labeled pixels, and then use this 
loss to update the parameters of the model. By this method, 
our model can perform effective image segmentation with 
only category labels.

The segmentation model in this paper draws on the prin-
ciple of region growing algorithm in the application phase. 
We use the first model to get the confidence region coordi-
nates and the second model to get the feature map. Then, 
the average feature vectors corresponding to the confidence 
region coordinates are computed on the feature map as the 
seed, and it is judged whether the seed belongs to the same 
class as each feature vector of the non-confidence region, so 
as to complete the segmentation task on the whole image. 
This process establishes pixel affinity across the entire 
image, propelled by the propagation of classification results, 
thereby engendering the expansion of the CAM seed region. 
The progression of this process is illustrated in Fig. 6. In the 
corrosion area correction process, the red color represents 
the corrosion area and black color represents the background 
area.

2.2  Construction of the corrosion grade assessment 
method

2.2.1  Corrosion classification dataset

After completing the segmentation of corrosion areas, a 
grade valuation must be conducted on these areas. However, 
due to the difficulty in obtaining image datasets of corrosion 
grades in engineering sites, salt spray corrosion experiments 
were used to simulate the actual working environment of 
gates, and image datasets of corrosion grade were obtained 
through experiments. This method provides us with a feasi-
ble way to evaluate the degree of corrosion. The salt spray 
corrosion test serves as a prevalent experimental technique 
for emulating the corrosion process of steel. In this section, 
we delve into the categorization of corroded steel plates, 
leveraging image information derived from the corrosion 
process as observed in salt spray corrosion tests.

Fig. 5  Structure of the pixel 
affinity network
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Aligned with the gate's design specifications and on-site 
research of operational conditions, the favored material for 
the steel gate is Q235. As a result, this study employs 20 
samples measuring 200× 200 mm, all composed of Q235. 
This selection not only aligns with the structural dimensions 
of the salt spray chamber but also enhances the scope of 
image capture. The parameters for the accelerated salt spray 
corrosion experiment adhere to the guidelines outlined 
by Wang et al.[23]. The test solution is configured as a 
neutral solution containing a 5% mass fraction of sodium 
chloride, with environmental parameters for the salt spray 
test chamber established accordingly. The precise parameter 
settings are detailed in Table 1.

Initially, the salt spray corrosion platform was 
commissioned to validate its operational integrity. 
Subsequently, the designated steel plate specimen for 
testing was positioned within the salt spray test chamber, 
as depicted in Fig. 8. A preconfigured 5% mass fraction 
sodium chloride solution was introduced into the brine 
tank. Following the experimental protocol, environmental 
parameters were configured in the control panel of the salt 
spray test chamber. Subsequently, the lid of the salt spray 
test chamber was sealed to isolate the external environment 
from the internal operational environment, thus initiating 
the acceleration of the corrosion process on the surface 
of the steel plate specimen. Ultimately, upon reaching 
the predetermined experimental duration, the steel plate 
specimens were individually removed and placed in a dry 
location. Subsequently, image acquisition was conducted 
after a 12-h interval.

The aforementioned experiments emulate the corrosion 
progression of steel plate specimens within a controlled 
environment and yield a series of image data. This method 
not only ensures the scientific validity and reproducibility 

of the experiment but also provides image samples depict-
ing varying levels of corrosion and morphologies, thereby 
enhancing the diversity of the dataset.

2.2.2  Image classification

Upon completing the acquisition of corrosion images, it 
becomes imperative to classify the corrosion levels based 
on the established standards, serving as the guidance for 
corrosion-level classification. In alignment with the Chinese 
national standard GB/T 8923.1–2011[24], a total of 785 cor-
rosion images derived from the salt spray test is categorized 
into three distinct classes, forming the basis for training the 
corrosion class classification network. The evolution of cor-
rosion is visualized through image slices, as illustrated in 
Fig. 7. The descriptions of the corrosion classes in GB/T 
8923.1–2011 are qualitative, and example pictures are given 
for categorization. In the first 6 days of corrosion images as 
Grade A, the original surface of the oxide layer gradually 
falls off. In the 7–16 days of corrosion images as Grade B, 
the stage of corrosion color deepening, the original surface 
has been completely removed, and hence the emergence of 
local corrosion pits. In the 17–26 days of images as Grade 
C, the previous stage of corrosion layer began to fall off, 
and continues to corrode downward, and local pits become 
larger. After this analysis, we categorized all collected 
images into corrosion grades, aligning with the time inter-
vals illustrated in Fig. 8.

2.2.3  Corrosion classification networks

Within the realm of corrosion image classification, the dis-
parity in inter-class feature distinctions among varying cor-
rosion classes is relatively slight, whereas intra-class feature 
distinctions are substantial. This necessitates that the clas-
sification network is adept at discerning nuanced feature dif-
ferences across different corrosion class images. Achieving 
fine-grained feature learning entails an elevated capacity for 
perceptual acuity and representation within the network. To 
address this challenge effectively, the Bilinear Convolutional 
Neural Network (BCNN) proves instrumental [25]. BCNN 
conducts feature extraction from images through two branch 
networks, subsequently employing bilinear pooling to 
amalgamate features from these branches. This component 

Fig.6  Example of seed region 
correction

Original Image Corrosion Area Correction Process

Table 1  Salt spray test chamber experimental parameter settings

Parameters Retrieve a value

Salt spray acidity and alkalinity Neutral
Test chamber temperature 35 °C
Saturation temperature 47 °C
Test time 12 h
Interval time 1 h
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introduces a corrosion image classification model tailored 
for corrosion-level assessment by amalgamating the atten-
tion mechanism and bilinear pooling. The architectural con-
figuration of the network is shown in Fig. 9.

The model encompasses three primary components: bicolor 
space image input, bilinear feature extraction network, and 
bilinear feature vector classifier. On the input front, informed 
by Khayatazad's research [26], the saturation component 
within the HSV color space is responsive to overall corrosion 
color variations, while the blue component within the RGB 
spectrum responds to localized corrosion luminance altera-
tions. Accordingly, a bilinear convolutional neural network 
is harnessed in this study, aiming to enhance image classi-
fication task efficacy by capturing global features and inter-
feature interaction information. The network encompasses two 
separate neural networks for extracting images in the HSV 
and RGB color spaces. Subsequently, a bilinear pooling opera-
tion fosters a dot product computation between the two feature 
maps, capturing non-linear inter-feature interactions. These 
bilinear pooled features then channel into a fully connected 
layer, facilitating further integration and fine-grained feature 
learning. Ultimately, corrosion classification outcomes are 
furnished via an output layer, affording precise corrosion area 
class assessments.

Figure 10 shows in detail the logical relationship of 
the proposed method in this article. The input of the cor-
rosion segmentation model is the image, and the output is 
the segmentation result of the corrosion area in the image. 
The corrosion-level evaluation model takes the output of 
the corrosion segmentation model as input information to 
output the corrosion level of the corrosion area. The cor-
rosion grade assessment section is used after the corrosion 
segmentation is completed. In the output graph, the red area 
represents Grade C corrosion, the blue area represents Grade 
B corrosion, and the green area indicates Grade A corrosion.

3  Algorithm validation for field conditions

3.1  Corrosion segmentation dataset

The experimental dataset employed for the corrosion seg-
mentation analysis primarily originates from the Heiquan 
Reservoir and its scaled-down hydraulic experimental plat-
form model situated in Xining City, Qinghai, China, as 
shown in Fig. 11. The focal components within the experi-
mental setting encompass the arc gate of the water discharge 
outlet and the planar maintenance gate. Notably, the arc 

Fig. 7  Schematic diagram of 
salt spray accelerated corrosion 
test

a Uncorroded steel plate b Steel plates corroded in salt spray environment

Grade A CedarGBedarG

0-6days 7-16days 17-26days

Fig. 8  Corrosion development process of steel in salt spray test
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gate bears a weight of approximately 16.7 tons, featuring 
dimensions of 3.0 m in width, 4.0 m in height, and a gate 
panel length of 6.0 m. Functioning under a design head of 
65 m, the cumulative water pressure can ascend to 6500 
KN. Likewise, the planar gate, weighing around 15.5 tons, 
boasts dimensions of 3.0 m by 4.0 m, while accommodating 

a total water pressure of 8560 KN under a design head of 
57.5 m. In a comprehensive endeavor to grasp the intricacies 
of hydraulic steel gate corrosion, this study was conducted 
within the genuine operational environment of the Heiquan 
Reservoir and the corresponding experimental platform, 
utilizing image acquisition protocols. The experimental 

……

……

…
…

Fuse feature vectors

Classifier
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platform takes the form of a gate model scaled at a ratio 
of 1:10, embodying a gate structure akin to the in-service 
gate. A segment of the image data is procured from this 
downscaled gate model. Within the dataset, a sum total of 
140 corrosion images is encompassed. Given the relatively 
modest size of the original dataset, precautionary measures 
are undertaken to avert network overfitting. To this end, 
data augmentation techniques are employed in this study to 
amplify the original dataset. Post-capturing, the images are 
subjected to horizontal and vertical flipping, followed by 
illumination adjustments. Consequently, a cumulative tally 
of 607 augmented images are generated.

3.2  Corrosion segmentation test results

In order to verify the effect of the corroded segmentation 
model proposed in this paper, the weakly supervised 
segmentation method based on the research in this paper is 
compared with the fully supervised semantic segmentation 
networks U-Net and DeepLabV3, and four evaluation 
metrics are mainly used, Precision (Pre), Recall (Rec), 
Accuracy (Acc), and Intersection over Union (IoU). The 
evaluation metrics for corrosion segmentation are as follows: 
True Positives(TP ), where corroded regions were accurately 
identified; True Negatives(TN  ), correctly pinpointing 
non-corroded areas; False Positives(FP ), indicating 
misclassification of some non-corroded regions; and False 
Negatives(FN ), highlighting instances where corroded areas 
were mistakenly predicted as non-corroded. The formulae 
are as follows:

The outcomes of the algorithm testing are shown in 
Table 2. For the training of U-Net and DeepLabV3 + using 
fully supervised data, the source is the Heiquan Reservoir 
field dataset. To ensure a fair and comprehensive evaluation 
of the proposed approach, all models underwent training 
and testing within environments consisting of Windows 
10, Python 3.6, and Pytorch 1.12. The computational 
acceleration was facilitated by an RTX3060 graphics card 
with 6 GB of RAM. In the corrosion segmentation part 

(6)Pre =
TP

TP + FP

× 100,

(7)Rec =
TP

TP + FN

× 100,

(8)Acc =
TP + TN

TP + TN + FP + FN

× 100,

(9)IoU =
TP

TP + FP + FN

× 100.

mainly contains two neural networks, when training the first 
classification network for generating Grad-CAM, VGG16 
is used as the backbone, and the stochastic gradient descent 
method is used for network optimization, the initial learning 
rate is set to 0.1, and polynomial decay is used to reduce 
the learning rate for each iteration with a weight decay 
coefficient of 0.0005, and 85 epochs are iterated during 
the training process. In training the second pixel affinity 
network for extracting high-dimensional semantic features, 
the same backbone and optimization approach as the first 
stage network is used. The default value of α in Eq. 2 and 
Eq. 3 has a default value of 32, which was changed to 16, 
and 64 for validation in the experiments, respectively.

To validate the efficacy of the network architecture pro-
posed in this paper, a set of corrosion images captured from 
gate conditions was chosen for segmentation testing. The 
outcomes of this test are illustrated in Fig. 12. Figure 12a 
and 10b show partial portions of an in-service gate leaf, 
respectively. Figure 12c and d localizes the gate experimen-
tal platform. In the individual algorithm segmentation result 
plots in Fig. 12, black represents the background that was 
correctly segmented ( TN ), red represents the corrosion that 
was correctly segmented ( TP ), green represents the back-
ground that was misidentified as corrosion ( FP ), and white 
represents the corrosion that was misidentified as back-
ground ( FN).

Based on the aforementioned data comparison and visual 
examples, as shown in Fig. 12a and b, it becomes evident 
that both the approach proposed in this paper and U-Net 
exhibit commendable resistance to interference. The encod-
ing–decoding structure of U-Net establishes a link between 
high-level features and low-level details, thereby enhanc-
ing its anti-interference ability. The technique proposed in 
this paper uses a semantic affinity network based on seed 
regions. It can be seen in all the segmentation results in 
Fig. 12 that the proposed method in this paper has the least 
number of TP regions in the segmentation results and the 
method in this paper has a better ability to recognize the 
regions that look like corrosion but are not actually cor-
roded. Nonetheless, a comprehensive comparison of the 
segmentations in Fig. 12c and d indicates that the proposed 
method in this paper is more susceptible to the influence 
of the seed region. In Fig. 12d, instances arise where dark 
corrosion is incorrectly identified as background due to the 
stark disparities in the features of distinct corrosion regions. 

Table 2  Quantitative evaluation of the effect of each model

Accuracy (%) Recall rate (%) Precision (%) IOU(%)

Ours 85.78 69.56 91.65 62.37
U-Net 78.91 75.91 97.22 63.11
DeepLabV3 78.43 46.58 89.10 38.94
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In contrast, Fig. 12c illustrates that regions with slight fea-
ture differences in corrosion are more accurately classified. 
Furthermore, DeepLabV3 + incorporates features like dila-
tion convolution that can lead to the blurring of boundary 
information, thus constraining its ability to perceive cor-
rosion boundaries effectively. As a result, during testing, 
DeepLabV3 + exhibits a generally conservative prediction 
of corrosion, emphasizing caution when employing it for 
corrosion segmentation.

In Eq. 3 and Eq. 4, we used the parameter α. Here, we 
discuss the effect of parameter α on the segmentation results. 
The results are shown in Fig. 13. From the figure, we can 

see that the best segmentation results can be achieved when 
α is defined as 32. The reason is that α can only affect the 
selection of the confidence region; in the refinement seg-
mentation process we use the average feature vector of the 
confidence region to represent the confidence region, so 
when α becomes larger the smaller the confidence region, 
the smaller the impact on the average feature vector.

3.3  Corrosion grade classification test results

To validate the efficacy of the corrosion grade classification 
method, ResNet50, MobileNetV2, VGG16, and VGG19 

Original 
figure

Ground
Truth

U-net

DeepLabV3

Model of 
this paper

a b c d

Fig. 12  Project site image corrosion segmentation results
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were chosen as comparative testing approaches. These 
networks were trained using the image dataset derived from 
the salt spray corrosion experiments. Subsequently, the 
trained models were evaluated using images of corrosion 
areas acquired through segmentation under the field 
conditions of the Heiquan Reservoir. The loss function 
of the model is a multicategorical cross-entropy function. 
The Adam optimizer is used to train the network model 
and update the weights. The exponential decay rate of the 
first-order moment estimation is set to 0.9, the exponential 
decay rate of the second-order moment estimation is set to 
0.999, and the weight decay coefficient is set to 0.000001. 
The batch size of the dataset is set to 16, and the number 
of training rounds is set to 80 epochs. In the later stage, 
when the network is closer to the optimal solution, the loss 
function converges slower and needs to be adjusted with 
a smaller learning rate in a longer number of iterations. 
Therefore, in this paper, we use the MultiStepLR dynamic 
learning rate adjustment strategy to realize the automatic 
adjustment of the learning rate, set the initial learning rate 
to 0.001, and reduce the learning rate to 20% of the original 
learning rate at the 5, 10, 30, 40, and 70th epochs of training. 
The mean values of the evaluation metrics are presented in 
Table 3.

The outcomes demonstrate that VGG19, VGG16, and 
ResNet50 yield superior classification test accuracies, 
with VGG19 achieving the highest accuracy of up to 
89.17%. Conversely, MobileNetV2 is deemed unsuitable 
for corrosion grade classification tasks. This discrepancy 
arises from the fact that both VGG and ResNet-50 possess 
relatively deep network architectures, incorporating multiple 
convolutional and pooling layers. Deep networks typically 
deliver enhanced performance when dealing with diverse 
scales, textures, and shapes. In contrast, MobileNetV2 

exhibits a shallower structure and lacks the capacity for 
robust feature extraction, particularly when intricate texture 
and shape features are involved.

Drawing from the outcomes of the individual neural 
network experiments, this study opts for VGG19, VGG16, 
and ResNet50 as the foundational models for constructing a 
bilinear classification network. The objective is to enhance 
the neural network's proficiency in extracting intricate 
corrosion details. The test outcomes, illustrated in Table 4, 
demonstrate that the bilinear network combining VGG19 
and VGG16 exhibits superior feature extraction capability. 
Consequently, the test accuracy experiences a notable 
enhancement in comparison to that of the single neural 
network, achieving a remarkable accuracy of 95.77%.

4  Conclusion

1) In the corrosion region segmentation aspect, this paper 
presents a method that achieves corrosion segmentation 
and evaluation in field condition images of gates under 
the constraint of image category labeling only. This 
method effectively addresses the issue of insufficient 
high-quality labeled data in the gate corrosion detection. 
Experimental results demonstrate the competitiveness of 
this paper's approach with fully supervised U-Net and 
DeepLabV3 + . However, it is important to note that 
the pixel-level labeling of corrosion regions can have 
some subjective errors, making accurate labeling of 
all corrosion regions in an image challenging. The test 
results on actual working conditions depicted in Fig. 9 
indicate that this method possesses better corrosion 
region identification capabilities.

2) Regarding corrosion degree assessment, this paper 
conducts comparison experiments involving single 
CNN and BCNN. VGG16, VGG19, ResNet50, and 
MobileNetV2 are compared for their classification 

Fig. 13  Effect of parameter α on IOU

Table 3  Comparison of different single neural network model metrics

Backbone Precision Recall F1-score Accuracy

ResNet50 0.8430 0.7656 0.7551 0.7656
MobileNetV2 0.7509 0.6984 0.6636 0.6984
VGG16 0.8956 0.8906 0.8907 0.8906
VGG19 0.9077 0.8906 0.8893 0.8917

Table 4  Comparison of bilinear neural network model metrics

Backbone Precision Recall F1-score Accuracy

VGG19&VGG16 0.9601 0.9577 0.9575 0.9577
VGG19&esnet50 0.9279 0.9218 0.9224 0.9218



1153Journal of Civil Structural Health Monitoring (2024) 14:1141–1154 

123

effects. Results reveal that MobileNetV2 yields the 
least effective performance, achieving only a converged 
test accuracy of 67.3%. Among the remaining three 
models, their test accuracy is approximately 90%, with 
VGG19 achieving the highest accuracy, rendering the 
use of MobileNetV2 in a bilinear network unfavorable. 
Through the combination of different CNN structures, 
it is concluded that the VGG19 + VGG16 combination 
proves more effective, attaining a classification accuracy 
of 96.54%. This offers a dependable solution for assess-
ing the degree of corrosion in hydraulic steel gates.

3) The segmentation algorithm proposed in this study 
utilizes a region growing approach. While steel gate 
corrosion is a gradual process with relatively lenient 
real-time requirements, the algorithm's slower speed 
poses a limitation, especially when dealing with 
large-scale images. Although real-time processing is 
not a primary concern in engineering scenarios, the 
algorithm's speed remains an area for optimization, 
particularly in situations where a significant number of 
images may need to be processed.
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