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Abstract
To conduct structural health monitoring, it is important to establish mathematical monitoring models with good prediction 
and interpretation performance. Generally, the thermal deformation effect interpreted in a displacement monitoring model 
of concrete dams is represented by the seasonal harmonic factor. The main purpose of this paper is to replace this factor 
with directly measured dam body temperatures. This approach is conducted by optimally selecting a very small number 
of the most representative members from hundreds of temperature monitoring points on the dam body, during which the 
importance of modelling factors is evaluated by a support vector machine (SVM), and automatic and manual criteria are 
formulated to eliminate the large number of unimportant or similar temperature monitoring points. Then, a hysteretic effect-
considered hydraulic, exponential, thermal and time (HETT) model is established, and a causal interpretation of dam defor-
mation behaviour is carried out using a partial dependence diagram to separate displacement components from the SVM 
model. The world’s highest concrete dam, the Jinping I arch dam, is assessed in a case study. Research results demonstrate 
the efficiency and rationality of the proposed approach. On average, among the 140 total temperature monitoring points in 
the central cantilever dam section, only 6.3% of them are selected as temperature deformation factors, and these factors can 
fully characterise the temporal and spatial evolution characteristics of the measured dam temperature field. The prediction 
accuracy of the HETT model is significantly improved, in which the mean square error, maximum error and correlation 
coefficient of multiple displacement monitoring points are 60.1%, 86.5% and 101.5% of those of the hydraulic, exponential, 
seasonal and time (HEST) model, respectively. The thermal deformation effect interpreted by the HETT model is more in 
accordance with the actual operation condition of the Jinping I arch dam.

Keywords High arch dams · HETT model · Measured temperature deformation factor · Support vector machine · Partial 
dependence diagram-based causal interpretation

1 Introduction

Dams are indispensable infrastructure components used in 
flood control, power generation, irrigation and shipping. 
With improvements in engineering technology, the scale 
and maximum dam height of concrete dams have increased 
rapidly in recent years. The Jinping I arch dam is the highest 
concrete dam built in the world, with a maximum dam height 
of 305 m. However, dams bear complex static and dynamic 
loads and long-term environmental erosion during opera-
tion, and the actual load may be larger than the designed 
scenario, such as the increase in thermal load caused by 
global climate change in recent years, which is likely to 
cause potential safety hazards [1]. To ensure dam safety, 
structural health monitoring plays an important role in dam 
construction and operation management [2]. In this regard, 
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benefitting from the rapid development of analysis theory 
and computer technology, dam safety management has grad-
ually realised a transformation to the ‘digital dam’ and then 
developed towards the ‘smart dam’, which is characterised 
by the extensive intelligent real-time analysis of massive 
monitoring data and the full integration of in-site monitor-
ing, numerical simulations and intelligent control [3].

Among all measured quantities, displacement is the 
most intuitive reflection of the structural state of concrete 
dams. The most frequently used mathematical monitoring 
model is the hydraulic, seasonal and time (HST) model, 
which represents the thermal deformation effect of concrete 
dams by the seasonal harmonic factor [4, 5]. To adapt to 
the development of technology and the emergence of new 
engineering problems, the HST model has been optimised 
in two aspects. First, new causal factors have been estab-
lished to explain the abnormal deformation behaviours of 
some concrete dams. Hu et al. [6] added a crack opening 
component into the HST model, and the new component 
was used to quantitatively evaluate the influence of radial 
penetrating cracks on the Chencun arch dam. To interpret 
the measured hysteretic hydraulic deformation behaviour, 
Wang et al. [7, 8] established a hydraulic, hysteretic, sea-
sonal and time (HHST) model and a hydraulic, exponen-
tial, seasonal and time (HEST) model for the Jinping I arch 
dam, by which the viscoelastic parameters of dam concrete 
were inversed. Second, with the increase in dam height and 
the application of thermal insulation measures in severely 
cold areas, the time lag effects of reservoir water depth 
and operation mode on the temperature field of concrete 
dams become more complex, which makes it difficult for 
the seasonal harmonic factor in the HST model to accu-
rately reflect the actual thermal deformation effect of high-
concrete dams. Therefore, to improve the interpretation and 
prediction accuracy of the displacement monitoring model 
of concrete dams, it is an effective way to use the measured 
dam temperature to establish the temperature deformation 
factor [9]. However, there are hundreds or even thousands of 
thermometers embedded in each high-concrete dam; thus, it 
is unrealistic and unreasonable to use all of them as model-
ling factors. How to extract effective information from the 
measured massive temperature data is still a key problem 
that needs to be further solved in the current research. To 
achieve this goal, Kang et al. [10] took the nonequidistant 
piecewise average values of the previous air temperature 
at the dam site as temperature deformation factors, and the 
length of the previous air temperature period used was deter-
mined according to the dam type and dam body thickness. 
Tatin et al. [11] established the HST-Grad and HST-Layer 
models using the measured dam temperature in each eleva-
tion layer. Mata et al. [12] and Prakash et al. [13] used the 
main principal components as temperature deformation fac-
tors, the former of which were extracted from the measured 

temperature time series of multiple monitoring points. 
Based on the shape similarity of temperature time series, 
Wang et al. [14] proposed a spatial clustering method for 
the measured dam temperature field, and principal compo-
nents were then extracted from the temperature time series 
of all monitoring points in the same cluster. Belmokre et al. 
[15] used the concrete temperature of four points as thermal 
inputs of the random forest-based displacement monitoring 
model of arch dams. Two temperature points are located on 
the upstream and downstream faces, and the other two are 
2 m inwards of each face. These concrete temperatures can 
first be calculated through a deterministic thermal model 
proposed by the same team [16].

Based on optimised causal factors, it is important to 
improve the prediction and interpretation ability of math-
ematical monitoring models using different modelling 
methods. The traditional multilinear regression (MLR) 
method, including multiple regression and stepwise regres-
sion, regards dam response as a linear explicit function of 
causal factors. In practice, causal mechanisms are nonlin-
ear and dynamic. To solve this problem, artificial intelli-
gence algorithm-integrated machine learning models, such 
as artificial neural network (ANN), support vector machine 
(SVM), extreme learning machine (ELM), regression tree 
(RT), random forest (RF), and long short-term memory 
(LSTM), have strong nonlinear data mining ability and 
have been widely used in structural health monitoring [15, 
17–21]. With an optimal kernel function, the prediction 
performance of machine learning models is generally bet-
ter than that of the MLR model. However, the overfitting 
problem of the former should be handled carefully, and the 
Bayesian regularisation method and the deformation spatial 
association-coupled double objective optimisation method 
have been proven to be effective for alleviating overfitting 
[22]. Another disadvantage of machine learning models is 
that they are usually considered black box models, in which 
the nonlinear implicit relationship between model input and 
output is based on network structures. As a result, the appli-
cation of machine learning models mainly focuses on predic-
tion, while the actual demands for the causal interpretation 
ability of mathematical models in the field of dam safety 
monitoring are ignored [23].

The volume of a high arch dam is very large, and the 
lag influencing mechanisms of air temperature and reser-
voir water temperature on the dam temperature field are 
extremely complex [16]. To select a very small number of 
the most representative members from hundreds or even 
thousands of dam body temperature monitoring points, 
by which their measured temperatures are directly used as 
temperature deformation factors, the importance of model-
ling factors is evaluated by the SVM, and automatic and 
manual criteria are formulated to eliminate the large number 
of unimportant or similar temperature monitoring points. 
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Then, a hydraulic, exponential, thermal and time (HETT) 
model is established for the Jinping I arch dam, and the 
causal mechanisms of the hydraulic and thermal effects on 
dam displacement are quantitatively interpreted by a partial 
dependence diagram (PDP).

2  Measured dam temperature‑based 
displacement monitoring model

For the Jinping I arch dam, this paper intends to establish an 
HETT model for dam displacement based on the SVM and 
the measured temperatures of the dam body. The modelling 
process is shown in Fig. 1. The main approach is to select 
the most representative dam body temperature monitoring 
points through an importance evaluation of SVM input fac-
tors, and the selected dam temperature time series are then 
denoised and used as temperature deformation factors in the 
dam displacement monitoring model. To compare with the 
seasonal harmonic temperature factor-based model, pre-
diction evaluation indices of the mean square error (MSE), 
maximum error (ME) and correlation coefficient (R2) and 
the hydraulic and temperature components separated by the 
PDP are used to evaluate the prediction accuracy and causal 
interpretation ability of the proposed HETT model.

2.1  The HETT model

For the Jinping I arch dam discussed in this paper, previous 
research results indicate that the measured dam deformation 
behaviour shows an obvious viscoelastic hysteretic effect, and 
a hysteretic hydraulic component should be added to the HST 
model [7]. Therefore, the displacement of this dam needs to be 
interpreted by four causal components. (1) An instantaneous 
elastic hydraulic component caused by water pressure, �He . (2) 
A viscoelastic creep-induced hysteretic hydraulic component, 

�Hv , is used to characterise the abnormal phenomenon that 
the measured radial displacement of the dam body continues 
increasing towards the downstream direction, which mainly 
appears at the time period that the upstream reservoir water 
level maintains at the elevation of 1880 m for approximately 
100–170 days every year, and it can be represented by a step-
type exponential function [8]. (3) A temperature component, 
�T , where the measured temperature of the dam body is used 
to establish the temperature deformation factor, and it is then 
compared with the traditional harmonic temperature factor. (4) 
The irreversible time effect component, �� , is mainly accumu-
lated from creep, plastic deformation, material deterioration, 
bank slope extrusion and other factors of dam concrete and 
foundation rock mass. Based on the traditional HST model, 
the HETT model can then be established as follows:

where H is the water depth of the upstream reservoir on the 
displacement monitoring day, Tj is the measured temperature 
of the jth selected dam body temperature monitoring point, 
N is the total number of used temperature monitoring points, 
t  is the number of cumulative days from the initial moni-
toring day, and � = t∕100 . f (�) is the step-type function; 
when the upstream reservoir water level is maintained at an 
elevation of 1880 m, its value is 1; otherwise, it is 0. � is the 
duration days of the current water level stable stage, and ai , 
bj , c1 , c2 , d1 and d2 are regression coefficients. � = EK1∕�K1 , 
and � = EK2∕�K2 . Here, EK1 and EK2 are hysteretic elastic 
moduli in the generalised Kelvin model of dam concrete, and 
�K1 and �K2 are viscosity coefficients. For the Jinping I arch 
dam, � = 0.5283 , and � = 0.0052 [8].

(1)
� =

4
∑

i=1
aiHi +

N
∑

j=1
bjTj + c1� + c2 ln �

+ f (�) ⋅
{

d1[1 − exp(−��)] + d2[1 − exp(−��)]
}

,

Fig. 1  Modelling process of the measured temperature-based HETT model for the Jinping I arch dam
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2.2  SVM model

The essence of SVM regression is to find an optimal 
classification surface to separate the samples into two 
groups to minimise the training error. For a training set {(
xi, yi

)
, i = 1, 2,⋯ , n

}
 , where xi =

[
x1
i
, x2

i
,⋯ , xl

i

]T  con-
tains l input factors, yi ∈ R is the output of the SVM model, 
and n is the total number of samples. A linear regression 
model can be established in high-dimensional feature space 
as follows:

where �(x) is a nonlinear mapping function, w is the weight, 
and m is a constant.

� is the linear insensitive loss function and is defined as 
follows:

Using the Lagrange function, the above regression prob-
lem can be transformed into a coupled optimisation problem 
as follows [4]:

where K
(
xi, xj

)
= �(xi)�(xj) is the kernel function, C is the 

penalty factor, and �i ≥ 0 is the Lagrange multiplier.
The optimal solution of the Lagrange multiplier can be 

obtained as � =
[
�1, �2,⋯ , �i

]
 and �∗ =

[
�∗
1
, �∗

2
,⋯ , �∗

i

]
 , and 

thus, the SVM regression function can then be expressed as 
follows:

2.3  Measured temperature deformation factors

2.3.1  Importance analysis of SVM modelling factors

On the premise of ensuring accuracy, to reduce the number 
of modelling factors used in the dam displacement SVM 
model, the input factors of the initial SVM model can be 
optimised by eliminating some unimportant or similar 
modelling factors. The importance of an input factor can 

(2)f (x) = w�(x) + m,

(3)L(f (x), y, 𝜀) =

{
0

|y − f (x)| − 𝜀,

|y − f (x)| ≤ 𝜀

|y − f (x)| > 𝜀
.

(4)
max
�,�i

[
−
1

2

l∑

i=1

l∑

j=1

(
�i − �∗

i

)(
�j − �∗

j

)
K
(
xi, xj

)
−

l∑

i=1

(
�i + �∗

i

)
� +

l∑

i=1

(
�i − �∗

i

)
yi

]

s.t.

l∑

i=1

(
�i − �∗

i

)
= 0;0 ≤ �i, �

∗
i
≤ C,

(5)f (x) = w∗�(x) + b∗ =

l∑

i=1

(
�i − �∗

i

)
K(xi, x) + b∗.

be expressed as the partial derivative of the model output 
f
(
xi
)
 to the input factor, so the importance degree of the 

rth modelling factor can be quantified as follows [24]:

where n is the total number of model training samples.
For the frequently used radial basis kernel function, the 

partial derivative in Eq. (6) can be calculated as follows:

where ns is the total number of support vectors, s is the sup-
port vector, and � is the parameter optimised in the kernel 
function.

2.3.2  Optimisation of the most representative dam 
temperature monitoring points

In practice, there are hundreds or even thousands of tem-
perature monitoring points arranged on the dam body of 
a high-concrete arch dam, and the temperature evolution 
laws of different monitoring points have both similari-
ties and differences, which depend on the spatial distance 
between them. Therefore, the main issue of establishing 
a measured temperature-based displacement monitoring 
model is to select a very small number of the most repre-
sentative dam temperature monitoring points. To achieve 
this goal, based on the importance analysis of the input 
factors of the SVM model, some temperature monitoring 
points, the measured temperature of which has the low-
est effect on the performance of the displacement SVM 
model, can be eliminated in turn. The optimisation method 
can be implemented as follows:

Step 1: Take all effective temperature monitoring 
points of the dam body as temperature deformation 

(6)Sr =
1

n

n∑

i=1

|||||

�f
(
xi
)

�xir

|||||
r = 1, 2,… , l,

(7)

𝜕f (x)

𝜕xr
=

𝜕

𝜕xr

(
ns∑

i=1

(−�̂�i + �̂�∗
i
)K(xi, x) + b̂

)

=
𝜕

𝜕xr

(
ns∑

i=1

(−�̂�i + �̂�∗
i
) exp

(
−𝛾

n∑

j=1

(sij − xrj)
2

)
+ b̂

)

= 2𝛾

ns∑

i=1

(−�̂�i + �̂�∗
i
) exp

(
−𝛾

n∑

j=1

(sij − xrj)
2

)
(sij − xrj),
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factors, and an initial SVM model including all input 
factors can be established.
Step 2: According to Eq. (6), calculate the importance 
degree of each input factor used in the current SVM 
model.
Step 3: Eliminate the least important input factor and 
create a new input factor set with all remaining factors.
Step 4: Based on the optimised input factor set, a new 
SVM model can be established.
Step 5: Calculate the mean square error (MSE) of the 
new SVM model, which is used to evaluate the perfor-
mance of the SVM model, and return to Step 2 until 
only one modelling factor is reserved.
Step 6: Find the minimum MSE among all the above 
SVM models and mark it as MSEmin. On this basis, 
recur forwards from the last SVM model, and the best 
SVM model in the automatic elimination process can 
be determined according to the first exceeding crite-
rion of the MSE, namely, the MSE exceeds the value 
of (1 + preset threshold) * MSEmin for the first time.
Step 7: Implement the manual elimination process to 
further optimise the temperature deformation factors 
automatically retained in Step 6.

The implementation process of establishing the meas-
ured dam temperature-based HETT model is shown in 
Fig. 2. In Step 6, the preset threshold is the maximum 
allowable increase ratio of the MSE of the best SVM 
model with respect to the MSEmin, and it can be deter-
mined as 5%, according to the conventional accuracy 
requirement of engineering projects. If the reduction 
in the number of modelling factors of the best SVM 
model, compared with the SVM model with respect to 
the MSEmin, does not exceed 5% of the total number of all 
initial modelling factors, the latter can then be adjusted 
as the best SVM model to improve the accuracy. With the 
increase in elimination order, the remaining modelling 
factor has a greater effect on the prediction performance 
of the SVM model, and its elimination will cause a larger 
increase in the MSE; thus, the selection of the best SVM 
model should be conducted from the last towards the first 
SVM model in turn. Although the automatic process in 
Step 6 can effectively eliminate all unimportant factors 
before the MSE is exceeded, there are still a small number 
of similar temperature factors. Therefore, if the tempera-
ture time series of two automatically retained monitoring 
points and their importance degree are both similar, the 
lower importance point in each duplicate pair can then 
be manually eliminated on the premise that the MSE 
increase ratio of the new SVM model does not exceed 
the threshold.

2.3.3  Wavelet denoising of measured temperature time 
series

Measured temperatures of a dam body are usually affected 
by solar radiation, reservoir water level fluctuation and 
monitoring errors, especially because the monitoring 
points arranged near the dam surface are directly radi-
ated by sunlight; thus, temperature fluctuations are more 
severe. If these temperatures are directly used to establish 
a displacement monitoring model, it will lead to the over-
mining of fluctuation data in the machine learning model, 
which will ultimately affect the prediction accuracy of the 
SVM model. Therefore, it is necessary to denoise any tem-
perature time series with large fluctuations.

Wavelet multiple-resolution analysis is a signal analysis 
method in the time–frequency domain. It can decompose 
a temperature time series into subcomponents with dif-
ferent frequency characteristics, and some noise compo-
nents with high frequency can then be eliminated. In the 
decomposition process, only the low-frequency component 

Fig. 2  Implementation process of establishing the measured dam 
temperature-based displacement monitoring model
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obtained in the previous step is decomposed again, and the 
decomposition process can be expressed as follows:

where f0 is the original signal, and fi and di are the low- and 
high-frequency subcomponents.

2.4  Causal interpretation of dam deformation 
behaviour based on the SVM model

The nonlinear relationship between the input and output of 
a machine learning model is implicit and based on network 
structure, so it is difficult to interpret the causal mechanism 
of dam deformation behaviour. To solve this problem, the 
PDP can be used to mine the implicit relationship of machine 
learning models. For an established machine learning model, 
when using the PDP to quantify the influence of an input 
factor on model output, only this factor is determined as the 
independent variable, and its input data are all replaced by 
a fixed value, which continuously increases from the actual 
minimum value to the maximum value, while all other input 
factors are used as control variables with their actual values. 
Through the evolution law of the model output, a character-
istic function that only depends on the studied input factor 
can then be obtained. Finally, the causal interpretation of a 
machine learning model can be represented by calculating 
the relative increment of each input factor to the model out-
put. Therefore, in this paper, the PDP can be used to sepa-
rate the hydraulic and temperature components in machine 
learning models of dam displacement. However, it is not 
completely reasonable to use the PDP to quantify the influ-
ences of the two time effect factors because their input val-
ues in the training set increase sequentially, and each value 
appears only once.

If the model input factor X is divided into xs and its sup-
plement xc = X

/
xs , the partial dependence of the model out-

put on the response of xs can be defined as follows:

where pc
(
xc
)
 is the marginal probability density of xc , 

namely pc
(
xc
)
= ∫ p(x)dx.

This can be further estimated from a set of discrete train-
ing data as follows:

where xi,c(i = 1, 2,⋯ , n) is the value of training sample xc.

(8)

f0 = f1 + d1 = f2 + d2 + d1 = ⋯

= fN + dN + dN−1 +⋯ + d2 + d1 = fN +
N
∑

i=1
di,

(9)fs
(
xs
)
= Exc

[
∧

f
(
xs, xc

)]
= ∫

∧

f
(
xs, xc

)
pc
(
xc
)
dxc,

(10)fs
(
xs
)
=

1

n

n∑

i=1

∧

f
(
xs, xi,c

)
,

2.5  Model performance evaluation

The fitting and prediction accuracy of mathematical moni-
toring models are frequently evaluated by the MSE, ME and 
R2, as shown in Eqs. (11) to (13), in which a smaller MSE 
and ME and a larger R2 indicate better performance of the 
model:

where 𝛿 and � are average values of the fitted (predicted) 
displacement 𝛿t and measured displacement �t , respectively.

3  Case study

The Jinping I arch dam, located on the main stream of the 
Yalong River in Liangshan Prefecture, Sichuan Province, 
China, is currently the highest constructed concrete dam in 
the world. The maximum dam height is 305 m. It is a dou-
ble curvature arch dam and consists of 26 dam sections, of 
which the top and bottom thicknesses of the No. 13 central 
cantilever dam section are 16 and 63 m, respectively. Dam 
construction started in 2005, and on December 23, 2013, 
the dam body was fully poured to the dam crest elevation 
of 1885 m. The upstream reservoir water level reached the 
designed normal elevation of 1880 m on Aug. 24, 2014 
for the first time, and it then cycled with an annual period 
between elevations of 1800 and 1880 m.

The downstream view of the Jinping I arch dam and 
layout of the plumb line monitoring system are shown in 
Fig. 3a and b, respectively. To monitor the temperature 
field of the dam body, thermometer monitoring systems 
are arranged in the No. 9, 13 and 19 dam sections. Gener-
ally, the temperature field of the central cantilever dam 
section is the most representative for concrete arch dams. 
Therefore, all temperature monitoring points of the No. 
13 dam section, as shown in Fig. 3c, are preliminarily 
selected as temperature deformation factors. Except for 
the three bottom elevation layers, along the centreline of 
the dam section, there are five thermometers embedded on 
each elevation layer; two are 5 cm inside the upstream and 
downstream surface, respectively, and the other three are 
arranged with equal intervals between these two.

(11)MSE =
1

n

n∑

t=1

(
𝛿t − 𝛿t

)2
,

(12)ME = max
|||𝛿t − 𝛿t

|||,

(13)

R2 =

[
n∑

t=1

(𝛿t − 𝛿)(𝛿t − 𝛿)

]2/ n∑

t=1

(𝛿t − 𝛿)2
n∑

t=1

(𝛿t − 𝛿)2,
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The time period of the measured radial dam displace-
ment and temperature used in this paper is from September 
1, 2015 to December 31, 2018, and the sampling frequency 
is once a day, of which the observation data after May 
28, 2018 are used for model prediction performance test-
ing. To avoid the accidental influence of modelling results 
evaluated by a single monitoring point, a total of seven 
dam displacement monitoring points, which are all normal 
plumb line monitoring points on the No. 13 central canti-
lever dam section and the PL9-1 and PL11-1 monitoring 
points on the dam crest, are modelled by the proposed 
approach.

4  Results and discussion

4.1  Measured temperature‑based temperature 
deformation factors

There are 148 modelling factors in the initial SVM model, 
including 4 hydraulic factors, 140 measured temperature fac-
tors, 2 time effect factors and 2 hysteretic hydraulic factors. 
The main objective of the importance analysis of model-
ling factors is to reduce the total number of modelling fac-
tors, during which a large number of unimportant or similar 
members from the total 140 initial temperature factors are 
eliminated.

Fig. 3  a Downstream view of the Jinping I arch dam, b layout of the plumb line monitoring system, and c layout of thermometers in the No. 13 
dam section
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4.1.1  Optimisation of temperature monitoring points

The evolution of the MSE during the successive elimina-
tion process of modelling factors is shown in Fig. 4. Over-
all, before the 130th SVM model, after removing the least 
important modelling factors, the MSE of the SVM model 
decreases slightly or remains basically unchanged, and thus, 
the elimination of these modelling factors will not weaken 
the prediction performance of the SVM model. In contrast, 
in most cases, this elimination plays a role in improvement. 
In addition, modelling factors eliminated in an early order 
are all measured temperature factors, and only a small 
number of non-temperature factors are eliminated a little 
earlier before the first exceeding of the MSE. To compare 
with the seasonal harmonic factor-based HEST model, these 
non-temperature factors are still retained in the final HETT 
model. In this study, the threshold of the MSE increase ratio, 
compared with the MSEmin, is set to 5%. According to Fig. 4, 

the best SVM model can be determined and is shown in 
Table 1.

Taking the PL13-3 monitoring point as an example, in 
Fig. 5a and Table 2, it can be seen that among these auto-
matically selected temperature monitoring points, the tem-
perature time series of T13-146 and T13-139, T13-160 and 
T13-158, T3-65 and T13-70, and T13-15 and T13-38 are 
similar in pairs, in which the former in each pair is elimi-
nated in an early order. If T13-146, T13-160, T13-65 and 
T13-15 are eliminated in manual mode, the MSE of the 
new SVM model, compared with the previous SVM model 
before eliminating these factors in the overall elimination 
process, increases by no more than 5% or even decreases, so 
these four temperature deformation factors can be effectively 
eliminated.

Manual elimination processes are also conducted for 
the other six displacement monitoring points, and the final 
retained modelling factors are given in Table 3. The meas-
ured temperature time series of the selected dam body tem-
perature monitoring points for each displacement monitoring 
point are shown in Fig. 6. In addition, as seen in Table 3, 
the two time effect modelling factors, � and ln � in Eq. (1), 
have both been removed for all seven analysed displacement 
points in the automatic elimination process. The reasons are 
that these two factors are used to model the trend component 
of dam displacement, but their evolution laws are repeated 
with some of the measured temperature factors shown in 
Fig. 6.

The numbers of finally selected measured temperature 
factors for PL9-1, PL11-1, PL13-1, PL13-2, PL13-3, PL13-4 
and PL13-5 are 9, 4, 8, 7, 11, 12 and 11, respectively. On 
average, among the 140 temperature monitoring points in the 

Fig. 4  Evolution of the MSE during the successive elimination pro-
cess of modelling factors

Table 1  Sequence number of 
the best SVM model in the 
automatic elimination process

Displacement point PL9-1 PL11-1 PL13-1 PL13-2 PL13-3 PL13-4 PL13-5

Sequence number 135 141 135 138 130 129 129

Fig. 5  Measured temperature 
series selected for PL13-3
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central cantilever dam section, only 6.3% need to be used to 
represent the thermal deformation effect of the dam, which 
indicates the high efficiency of the proposed optimisation 
approach.

4.1.2  Rationality of the selected temperature deformation 
factors

In the displacement monitoring model of concrete dams, 
the influence of a temperature deformation factor is mainly 
reflected in two aspects: shape characteristics of the used 
time series and its time lag effect with respect to the air tem-
perature. Therefore, the measured temperature time series 
shown in Fig. 6 can be divided into six categories according 
to their shape characteristics and the lag effect mechanism of 
the dam temperature field. The measured temperature time 
series of some typical temperature monitoring points in each 
category are shown in Fig. 7, and their evolution character-
istics and distributions are summarised as follows:

(1) Category I: The downstream surface and crest of the 
dam body are directly affected by solar radiation, and 
thus their measured temperature time series are very 

similar to the air temperature of the dam site and have 
great fluctuations, such as T13-81, T3-121 and T13-
153. To reduce the interference of data fluctuation on 
machine learning models, temperature time series in 
Category I need to be denoised.

(2) Category II: Temperature monitoring points in Cat-
egory II are mainly distributed in the upstream surface 
and middle of the dam body that are affected by the 
beneficial regulation of the reservoir water level, such 
as T13-65, T13-102 and T13-112. In the annual rising 
stage of air temperature, the measured temperatures of 
these monitoring points rise rapidly due to the low res-
ervoir water level. However, when the air temperature 
annually drops, the reservoir water level at this stage 
is maintained at the highest elevation of 1880 m; thus, 
the reservoir water-induced heat conduction leads to an 
obvious time lag phenomenon between the temperature 
change at these monitoring points and the air tempera-
ture.

(3) Category III: The annual periodic evolution law of 
measured temperatures is basically in accordance with 
the seasonal harmonic factor, such as T13-47 and T13-
149, and they are mainly distributed in the upstream 
surface of the middle and lower elevation parts of the 

Table 2  Modelling factors of PL13-3 retained by automatic elimination

Model number Model MSE Least impor-
tant factor

Model number Model MSE Least impor-
tant factor

Model number Model MSE Least 
important 
factor

130 0.00554 T13-19 137 0.00703 T13-65 144 0.20133 T13-112
131 0.00558 T13-146 138 0.00725 T13-77 145 3.06870 H4

132 0.00579 T13-25 139 0.00695 T13-139 146 3.06471 H3

133 0.00586 T13-152 140 0.00684 T13-114 147 3.04936 H2

134 0.00656 T13-70 141 0.00765 T13-33 148 3.03707 H
135 0.00712 T13-38 142 0.00679 T13-15 / / /
136 0.00715 T13-160 143 0.00793 T13-158 / / /

Table 3  Retained modelling factors after automatic and manual elimination

Note: �
Hv2

 is the second modelling factor of the hysteretic hydraulic component. In this paper, the purpose of eliminating modelling factors is to 
optimise the measured temperature deformation factors; thus, the eliminated non-temperature factors are still retained in the final HETT model

Displacement point Modelling factors (the importance degree increases from left to right)

PL9-1 T13-131, T13-81, T13-79, T13-152, T13-47, T13-148, T13-20, T13-109, H,  H2, T13-65,  H4,  H3

PL11-1 T13-153, T13-133, T13-145, H, T13-111,  H4,  H3,  H2

PL13-1 T13-131, T13-94, T13-105, T13-158, T13-149, T13-107, T13-77, H, T13-82,  H4,  H3,  H2

PL13-2 T13-149, H, T13-151, T13-148, T13-120, T13-158, T13-82, T13-121,  H4,  H3,  H2

PL13-3 T13-19, T13-25, T13-152, T13-70, T13-38, T13-77, T13-139, T13-114, T13-33, T13-158, T13-112,  H4,  H3,  H2, H
PL13-4 T13-152, T13-65, T13-119, T13-43, T13-116, T13-158, T13-33, T13-15, T13-102, T13-80, T13-154, T13-114,  H3,  H4,  H2, 

H
PL13-5 T13-60, T13-37, T13-114, T13-152, T13-35, T13-153, �

Hv2
 , T13-140, T13-119, H,  H2,  H3, T13-135, T13-39,  H4, T13-154
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dam body and the interior of the dam crest. The influ-
ence of the annual cycle change in the upstream res-
ervoir water level on these areas has been gradually 
weakened.

(4) Category IV: This category is similar to Category III, 
and the temperature evolution law is also basically 
consistent with the seasonal harmonic factor, but the 
annual variation amplitude of measured temperatures 
has significantly decreased, such as T13-80, T13-119 

and T13-135. Category IV is mainly distributed in the 
middle and upper elevation parts of the interior dam 
body.

(5) Category V: The measured temperature time series 
shows a linear downwards trend, such as T13-19, T13-
43 and T13-79, which are mainly distributed inside the 
dam heel and the middle and lower elevation parts of 
the interior dam body. The upstream reservoir water 
depth and dam body thickness in these areas are both 

Fig. 6  Measured temperature 
time series selected for each 
displacement monitoring point
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very large, which makes them less affected by the ambi-
ent temperature. In addition, the influence of concrete 
hydration heat in these areas is significantly reduced, 
and the dam temperature will gradually drop to the joint 
closure temperature field and form a stable temperature 
field.

(6) Category VI: This category is obviously affected by the 
water storage process of the upstream reservoir, and the 
measured temperatures rise sharply during this period, 
such as T13-77, T13-82 and T13-109. The upstream 
surface of the dam body near the dead water level ele-
vation of 1800 m, with a height range of approximately 
100 m, belongs to Category VI.

In summary, for the modelled seven displacement moni-
toring points in this case study, the evolution characteristics 
of the measured dam temperature time series used for PL9-
1, PL13-1, PL13-2 and PL13-3 are the most complete. The 
main reason is that these displacement monitoring points are 
located in the middle and upper elevation parts of the dam 
body and are widely affected by temperature changes in the 
whole dam body. Other displacement monitoring points have 
also selected these representative temperature time series, 
which verifies the rationality of the proposed approach for 
optimising the measured temperature deformation factors.

4.1.3  Wavelet denoising of measured temperature time 
series

Temperature monitoring points in Category I are distributed 
on the downstream surface of the dam body and the dam 
crest; thus, the measured temperature is directly affected by 
solar radiation and fluctuates greatly. To ensure the predic-
tion accuracy of the SVM model, it should be denoised first. 
The temperature time series of T13-121 before and after 
wavelet denoising are shown in Fig. 8. By removing some 
high-frequency components with large fluctuations, the 

denoised temperature time series is smooth and still main-
tains the original evolution characteristics. Temperature time 
series of T13-11, T13-77, T13-81, T13-102, T13-116, T13-
131 and T13-153 are also denoised by wavelet multiresolu-
tion analysis.

4.2  Prediction performance of the HETT‑SVM model

Combined with the instantaneous hydraulic component, hys-
teretic hydraulic component and time effect component, the 
HETT and HEST models are established using the measured 
temperature factor and seasonal harmonic temperature fac-
tor, respectively, and an HETT-o model is also established, 
in which the selected dam temperature time series have not 
been denoised. The SVM is used to conduct the nonlinear 
modelling. The radial displacement time series of the meas-
ured and fitted (predicted) values of PL11-1 and PL13-4 are 
shown in Fig. 9, in which the positive and negative values 
represent the radial displacement towards the downstream 
and upstream directions, respectively. The results of other 
displacement monitoring points are similar to these two. 
For all seven analysed displacement monitoring points, in 
the fitting stage, the displacement time series of the HETT, 
HETT-o and HEST models are basically consistent and very 
close to the measured value. In the prediction stage, PL11-1 
has the best accuracy, while PL13-4 has the largest devia-
tion. With the duration extension of the reservoir water level 
maintained at an elevation of 1880 m, the prediction devia-
tions of some displacement monitoring points increase grad-
ually. In general, the displacement predicted by the HETT 
model is closer to the measured value.

The prediction performance evaluation indices of the 
three models are shown in Fig. 10. As seen in the figure, 
the prediction performance of the HETT-o model fluctu-
ates greatly. The reason is that this model is established 
without conducting the wavelet denoising process, whereas 
the measured temperatures of some monitoring points are 
seriously affected by solar radiation and have obvious fluc-
tuations. After wavelet denoising, the prediction MSEs of 
the HETT models of PL9-1, PL13-1, PL13-2, PL13-3, 

Fig. 7  Measured temperature time series of typical temperature 
deformation factors

Fig. 8  Temperature time series of T13-121
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PL13-4 and PL13-5 are significantly better than those of 
the HEST models. Overall, for the seven analysed dis-
placement monitoring points, the average prediction MSE 
of the HETT model is only 60.1% of that of the HEST 
model. The prediction MEs of the HETT models of PL9-1, 
PL11-1, PL13-3, PL13-4 and PL13-5 are also significantly 
smaller than those of the HEST models, which indicates 
that the HETT model can better describe the actual ther-
mal deformation effect of concrete arch dams. The average 
ME and R2 of multiple monitoring points are 86.5% and 
101.5% of those of the HEST model, respectively. In con-
clusion, compared with the traditional seasonal harmonic 
temperature factor, the measured temperature deformation 
factor, optimally selected through the importance analysis 
of SVM modelling factors, can better characterise the ther-
mal deformation effect of arch dams, and the established 
displacement monitoring model has higher prediction 
accuracy. However, wavelet denoising must be conducted 
for the temperature time series of these monitoring points 
that are directly affected by solar radiation.

4.3  Causal interpretation of the HETT‑SVM model

Based on the PDP, the evolution law of hydraulic dis-
placement separated from the SVM model with respect 
to reservoir water depth is shown in Fig. 11, and the tem-
perature component is shown in Fig. 12. The results of 
other displacement monitoring points are similar. On the 
whole, using the measured temperature factor, the hydrau-
lic and temperature components of displacement monitor-
ing points distributed at the middle and upper elevation 
parts of the dam body are almost unchanged, but they have 
changed obviously for displacement monitoring points 
with lower elevation. Figure 10 shows that the influence 
laws of reservoir water depth on the radial displacement of 
the dam body obtained by the three models are basically 
the same. The radial hydraulic displacement increases with 
reservoir water depth and the elevation of the displace-
ment monitoring point, and the nonlinear relationship is 
more obvious for the dam crest area. Except for PL13-5 
with lower elevation, the relationship between hydraulic 

Fig. 9  Radial displacement time 
series of the measured and fitted 
(predicted) values

Fig. 10  Evaluation indices of 
model prediction performance
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displacement and water depth can be expressed by the 
quartic polynomial function, which is consistent with the 
deformation theory of concrete arch dams.

The overall evolution laws of the temperature components 
in Fig. 11 are also basically the same, and they change with 
an annual periodicity, which is also in accordance with the 
actual situation of arch dams. The temperature component 
of PL13-5 shows an increasing trend towards the upstream 
direction. This phenomenon is caused by the lower elevation 
of this displacement monitoring point, whereas the meas-
ured temperature near the dam heel shows that this area is 
currently in an overall temperature drop state, as shown in 

Category V in Fig. 6. Therefore, the local temperature drop 
effect in the dam heel area causes the upstream direction 
temperature deformation trend of the low and medium eleva-
tion parts of the dam body. Although the HEST model also 
interprets this temperature deformation trend, its evolution 
process is discontinuous, and the trend component of the 
temperature displacement suddenly increases in the fourth 
year. However, the trend temperature displacements obtained 
by the HETT and HETT-o models are gentler and in accord-
ance with the actual situation of the Jinping I arch dam, the 
measured temperature field of which slowly drops to the 
joint closure temperature field at the current operation stage.

Fig. 11  Relationship between 
the SVM model-separated 
hydraulic radial displacement 
and upstream reservoir water 
depth

Fig. 12  Radial displace-
ment time series of the SVM 
model-separated temperature 
component
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The comparison results show that temperature monitor-
ing points selected through the importance analysis of SVM 
modelling factors can better represent the measured tem-
perature field and the thermal deformation effect of high arch 
dams, and thus the proposed approach can be used to extract 
effective information from the massive temperature moni-
toring data of the dam body. Compared with the traditional 
seasonal harmonic temperature factor-based HEST model, 
the newly established HETT model has better prediction and 
interpretation performance.

5  Conclusion

To use the measured dam temperature as the temperature 
deformation factor of high arch dams, the key issue is to 
extract effective information from the massive temperature 
monitoring data of the dam body. In this paper, the impor-
tance analysis of SVM modelling factors is used to select the 
most representative dam temperature monitoring points, and 
the proposed HETT model has good prediction performance 
and causal interpretation ability for the Jinping I arch dam. 
The following conclusions can be drawn:

(1) The importance analysis of SVM modelling factors can 
effectively optimise the measured temperature deforma-
tion factors used in the dam displacement monitoring 
model, and the temperature time series of the selected 
temperature monitoring points can comprehensively 
describe the temporal and spatial evolution character-
istics of the measured temperature field of high arch 
dams. For the seven analysed displacement monitoring 
points of the Jinping I arch dam, the selected maximum 
and minimum numbers of the measured temperature 
deformation factors are 12 and 4, respectively, with an 
average number of 8.9 and an average rate of 6.4% from 
the total 140 effective temperature monitoring points in 
the central cantilever dam section.

(2) The prediction performance of the measured tempera-
ture factor-based HETT model is better than that of 
the seasonal harmonic temperature factor-based HEST 
model, in which the average prediction MSE, ME and 
R2 of multiple displacement monitoring points of the 
former are 60.1%, 86.5% and 101.5% of those of the 
latter, respectively. However, the temperature time 
series of the solar radiation-affected temperature moni-
toring points on the dam surface must be denoised.

(3) The PDP can be used to explore the causal interpre-
tation of dam deformation behaviour modelled by 
machine learning models. The hydraulic and tempera-
ture components separated from the SVM model agree 
with the deformation mechanism of high arch dams. 
The temperature at the middle and lower elevation parts 

of a high arch dam is mainly affected by the stable tem-
perature field of the upstream reservoir water, and thus 
the measured temperature evolution laws of these dam 
areas obviously deviate from the seasonal harmonic 
temperature factor. The measured temperature factor 
has a better interpretation ability for the thermal defor-
mation behaviour of high arch dams.
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