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Abstract
Bayesian inference plays a vital role in Structural Health Monitoring (SHM) by assessing structural integrity through proba-
bilistic model updating using monitoring data. A crucial component in Bayesian inference is the evaluation of the likelihood 
function. For some situations, the likelihood function is not available in closed form or is analytically intractable, due to 
either a computationally intractable forward model solution or lack of measurements for some inputs. While likelihood-free 
Bayesian inference methods such as approximate Bayesian computation have been proposed to tackle this issue, the required 
computational effort is high, and the accuracy relies on similarity criteria, which makes these methods unsuitable for online 
monitoring. This study investigates a novel likelihood-free and computationally efficient Bayesian inference method, named 
BayesFlow, for probabilistic damage inference in SHM through model updating. It consists of a training phase and an online 
monitoring phase. In the training phase, BayesFlow approximates the posterior distributions of structural parameters by 
jointly training a conditional invertible neutral network (cINN) and a summary network. The cINN connects structural 
parameters with a latent of the posterior distribution. The summary network automatically learns the maximally informa-
tive statistics for model updating from data of output variables rather than hand-crafted features. In the online monitoring 
phase, BayesFlow directly predicts the posterior distribution for any given observations, without computing any likelihood or 
evaluating the forward prediction model, and thereby allows for real-time monitoring. Two benchmark examples, including 
an 18-story steel frame and a concrete building frame, are used to demonstrate the proposed method. Results comparison 
of the proposed method and the Differential Evolutionary Adaptive Metropolis (DREAM) sampling method demonstrates 
advantages of the proposed method in terms of both accuracy and computational efficiency.

Keywords Structural health monitoring (SHM) · Model updating · BayesFlow · Invertible neural network · Probabilistic 
damage detection

1 Introduction

Structural health monitoring (SHM) plays an important 
role in ensuring safety and serviceability of civil infrastruc-
ture. The general paradigm involves periodic or continu-
ous inspection and/or data collection with in situ monitor-
ing systems from which information regarding structural 

health is mined that can inform structural integrity or even 
maintenance actions [1, 2]. One widely used class of SHM 
approaches is finite element model updating (FEMU), which 
adjusts finite element model parameters by minimizing the 
discrepancy between model predictions and the measured 
counterparts [3, 4]. The updated model gives engineering 
practitioners a variety of benefits in model-based tasks, such 
as damage detection, risk and reliability assessment, struc-
tural control, and failure prognostics [5, 6]. An entire other 
class of SHM approaches involves data-driven paradigms, 
using both unsupervised or supervised learning strategies, 
but such strategies are challenging in most civil applications 
due to the sparseness or incompleteness of data as well as 
observations of failure/limit states.

FEMU methods in general can be categorized as deter-
ministic or probabilistic. Deterministic methods formulate 
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FEMU as an optimization problem that targets the goodness 
of fit between measurements and model-derived responses 
using optimization algorithms such as metaheuristic algo-
rithms [7, 8]. The main drawback of deterministic methods 
is that they only give point estimates without any sense of 
confidence or uncertainty bounds. For models with non-
linear responses, the ill-posedness of inverse problems and 
the presence of various uncertainty sources in the simula-
tion environment introduce significant challenges to classi-
cal optimization-based FEMU [9, 10]. On the other hand, 
probabilistic methods overcome these limitations by updat-
ing uncertain model parameters as a distribution function 
by considering the sources of uncertainty in the process, 
such as model form uncertainty and measurement error 
[11]. Among various probabilistic methods, one of the most 
popular methods used for SHM applications is Bayesian 
model updating, which has been extensively studied in the 
context of probabilistic damage detection and system iden-
tification [12–14]. In Bayesian model updating, the prior or 
existing knowledge (subjective information, or plausibility) 
and experimental/observation/monitoring data (new infor-
mation) are combined to estimate the posterior distribution 
of uncertain model parameters using Bayes’ theorem [15]. 
Due to the capability of accounting various uncertainty 
sources in model updating, Bayesian methods have rapidly 
become a promising tool for parameter identification and 
damage assessment of complex engineering structures in 
SHM community.

The most essential component of Bayesian inference is 
the likelihood function, which represents the probability of 
observing measurements conditioned upon a forward predic-
tive model in the presence of uncertainty. According to the 
way that the likelihood function is used, Bayesian model 
updating can be roughly grouped the traditional likelihood-
based approaches and the likelihood-free approaches. The 
likelihood-based approach, such as Markov chain Monte 
Carlo (MCMC) simulation, requires the evaluation of the 
likelihood function given in analytical or numerical form. 
For some situations, however, the likelihood function is: (1) 
computationally prohibitive to evaluate, due to either the 
involvement of a computationally expensive forward model 
or the need to solve high-dimensional integrals with the con-
sideration of various uncertainty sources [16, 17]; or (2) ana-
lytically or numerically intractable due to model complexity.

To address computational challenges with the forward 
model, various surrogate modeling methods have been 
developed using either reduced-order models [18] or meta-
models, such as Gaussian process regression [19], polyno-
mial chaos expansion [20], artificial neural network [21], etc. 
For SHM applications where structures respond with ambi-
ent vibration, the application of surrogate model in model 
updating, however, is limited to the use of scalar-valued or 
time-averaged data, such as modal data including natural 

frequency and modal assurance criterion (mode shape) 
extracted from time series data [22]. Multiple surrogate 
models are needed to relate a certain type of modal data with 
selected model parameters, which may increase the compu-
tational cost [23]. The performance of model updating is tied 
to how well modal data are identified and what modal data 
are adopted. The direct usage of output-only time series data 
for SHM under ambient vibration has been largely ignored 
in surrogate-based model updating. Furthermore, surrogate 
models may not lead to remarkable decreases in computa-
tional time, since the fundamental limitation of evaluating 
the likelihood function numerous times remains.

Motivated by tackling the challenge that the likelihood 
function is often intractable for Bayesian inference, like-
lihood-free approaches have been developed and received 
considerable attention. Likelihood-free approaches directly 
sample from, rather than directly evaluate, a likelihood func-
tion to approximate the posterior distribution. The most 
well-developed approach in the context of likelihood-free 
cases is approximate Bayesian computation (ABC) [24]. In 
ABC, model parameters are repeatedly drawn from a prior 
distribution, and synthetic datasets are generated by running 
the forward model with those parameter samples. If the simi-
larity between the simulated data and the actual observation 
satisfies a certain user-specified threshold, the corresponding 
parameters ‘survive’ as the samples of the target posterior 
or are otherwise discarded. ABC is particularly useful to 
treat problems with intractable likelihood functions and has 
grown in popularity in SHM. Several sampling methods 
have been combined with ABC to improve the accuracy of 
parameter estimation for complex systems. Fang et al. [25] 
incorporated ABC with Metropolis Hastings sampling and 
response surface method to achieve fast and probabilistic 
damage detection for a reinforced concrete beam. Fernández 
et al. [26] developed a novel gradient-free method based on 
ABC and subset simulation, which was experimentally veri-
fied by a composite material with fatigue damage. Ritto et al. 
[27] integrated reinforcement learning with ABC to realize 
efficient model selection and parameter updating for a non-
linear dynamic system. Kitahara et al. [28] also developed 
an ABC model updating framework incorporating staircase 
random variables and Bhattacharyya distance for stochastic 
model updating and uncertainty quantification. In addition, 
Barros et al. [29] proposed an adaptive ABC method to 
sequentially identify hyper-parameters for non-linear struc-
tural model updating. Fang and Chen [30] introduced a gray 
Bayesian model updating strategy based on ABC and popu-
lation Monte Carlo sampler, which was applied for multi-
damage detection on laboratory-scale beam.

However, ABC has disadvantages in some respects. First, 
the tolerance level of the “accept-reject” mechanism in ABC 
greatly affects the approximation accuracy of the posterior 
distribution. Strict tolerance levels result in a desirable 
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accuracy level while the required computational cost is 
amplified substantially due to a high rejection rate, since 
many candidate samples get rejected, and many simulations 
are required to ensure enough samples will span the poste-
rior distribution. On the other hand, a large tolerance level 
could increase sample efficiency at the expense of inference 
quality. Second, the entire estimation procedure in ABC 
needs to be repeated from scratch for any new measurement 
data, which restricts ABC’s application to a single dataset 
or up to a few data points in the independent and identically 
distributed case [31]. Third, ABC also suffers from data 
dimensionality challenges, as the required number of simu-
lations increases dramatically with dimensionality. These 
disadvantages can make ABC unsuitable for online SHM 
applications demanding accurate inference in reasonable 
time frames [32].

The goal of this paper is to address limitations of current 
likelihood-free approaches for probabilistic damage detec-
tion, by applying a novel likelihood-free and computation-
ally efficient Bayesian inference method, named BayesFlow 
developed by Radev et al. [31], to Bayesian model updating 
in SHM. In contrast to other likelihood-free methods (e.g., 
ABC), BayesFlow successfully realizes amortized infer-
ence, in which the entire parameter estimation is split into an 
upfront training phase that is computationally intensive and 
a subsequent inference phase that is very quick to execute. It 
is a fully likelihood-free approach that directly estimates the 
posterior distribution without repeatedly evaluating the like-
lihood function in the inference phase. BayesFlow encom-
passes two separate neural networks—a summary network 
and an inference network—to complete the task of parameter 
inference. The summary network is responsible for reducing 
data dimensionality from potentially large time series data-
sets to a fixed-size vector. Unlike traditional approaches that 
use summary statistics manually pre-selected by the user, 
BayesFlow automatically learns the maximally informa-
tive statistics from the raw data. The inference network is 
executed as a conditional invertible neural network (cINN), 
which predicts the posterior distribution efficiently for any 
given measurements after training. These two networks 
are jointly trained and aligned well for parameter infer-
ence given synthetic data generated from a forward model. 
The technical details will be explained in detail in Sect. 3. 
Another appealing feature in BayesFlow is that it allows for 
Bayesian inference using different sizes of dataset using a 
single trained model. This property is valuable in practice, 
since the number of measurements in damage detection may 
vary with time duration and measurement circumstances. 
The above features make BayesFlow a promising solution 
to the drawbacks of current likelihood-free approaches for 
Bayesian model updating-based damage detection. This 
work attempts to reveal this promising potential of Bayes-
Flow, and specifically adapt BayesFlow for the purpose of 

probabilistic damage detection in civil infrastructures. To the 
best of our knowledge, BayesFlow has not yet been applied 
in structural model updating and probabilistic damage detec-
tion in SHM applications.

The remainder of this paper is organized as follows. 
Background of damage detection using Bayesian inference 
and likelihood-free methods are introduced in Sect. 2. Sec-
tion 3 presents the fundamentals of BayesFlow method and 
discusses its application in damage detection. Two bench-
mark examples including an 18-story steel shear frame and 
a concrete frame building are utilized to demonstrate the 
capability of BayesFlow in damage detection in Sect. 4. 
A comparative study between BayesFlow and the existing 
method is also investigated in this section. Finally, conclu-
sions are drawn in Sect. 5.

2  Background

This section first provides a brief introduction of damage 
detection using Bayesian model updating. Following that, 
the current methods and their limitations are discussed.

2.1  Bayesian model updating for structural damage 
detection

In Bayesian model updating used for structural dam-
age detection, measurement data from a physical system 
are used to update its numerical representation (e.g., FE 
model) to estimate the structural damage characterized 
by uncertain model parameters � . Let �k = �(�, �1∶k) be 
an FE model, where �k ∈ ℝ

NY×1 are the model outputs 
at time step k (i.e., time tk ), NY is the number of outputs, 
�1∶k = [�T

1
, �T

2
, ⋯ , �T

k
] ∈ ℝ

(Nu×k)×1 are the input excitations 
over the past k time steps, and Nu is the number of input 
excitation variables. The FE model can be related to meas-
urements or observations �o, k ∈ ℝ

NY×1 as follows,

where �(�1∶k) is the model discrepancy of the FE model, 
�k ∼ N(�, �) is the Gaussian noise term with zeros means 
and covariance matrix � ∈ ℝ

NY×NY at tk , � is given by

in which �2
i
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If both the input excitation and the outputs are meas-
ured, the uncertain model parameters � can be estimated or 
updated using Bayes’ theorem as follows,

where f�(�) is the prior distribution of � which reflects 
existing knowledge, engineers’ opinions and expected 
physical meaning (and can be expressed as an uniformed 
prior if desired), �o, 1∶k = [�o, 1, ⋯ , �o, k] ∈ ℝ

NY×k are the 
observations/measurements of the outputs from t1 to tk , and 
f�|�(�o, 1∶k|�, �1∶k) is the likelihood function of observing 
�o, 1∶k for given � and measurements of �1∶k.The likelihood 
function reflects the degree of belief (“plausibility”) that the 
model, characterized by the parameter vector � . explains the 
actual observations.

The poster ior  probabi l i ty  densi ty  funct ion 
f�|�(�|�o, 1∶k, �1∶k) can be estimated using MCMC sampling 
methods such as Metropolis Hasting (MH) [33], delayed 
rejection and adaptive Metropolis (DRAM) [34], Differential 
Evolutionary Adaptive Metropolis (DREAM) [35], sequen-
tial Monte Carlo simulation (SMC) [36], etc.

2.2  Current methods and limitations

In structural dynamics, external excitations �1∶k can be 
either measured or unmeasured depending on circumstances. 
When the �1∶k are measured, structural damage detection 
can be performed directly using Eq. (3) and the methods 
mentioned above. For some situations, however, the �1∶k are 
unmeasured. For instance, for damage detection under ambi-
ent vibration, the external ambient excitation is unknown 
and unmeasured, and is usually assumed to be broadband 
Gaussian white noise [37]. Damage detection under ambient 
vibration has received considerable interests since it is eco-
nomically viable and commercially sustainable, particularly 
for large civil infrastructure systems [38]. The advances and 
development in sensor technology along with powerful data 
acquisition systems make it possible to collect vibration data 
under ambient vibration for SHM applications. The major 
benefit of using ambient vibration data, e.g., wind, traffic, or 
human induced vibrations, against that of forced vibrations 
is that any special, expensive, and/or intrusive excitation 
equipment are not required, and the system doesn’t have to 
be taken out of service for the specialized controlled-exci-
tation tests [39].

When the input excitations are not measured in this sce-
nario, Eq. (3) needs to be modified as follows,

(3)

f�|�(�|�o, 1:k, �1:k)

=
f�|�(�o, 1:k|�, �1:k)f�(�)

∫ f�|�(�o, 1:k|�, �1:k)f�(�)��
∝ f�|�(�o, 1:k|�, �1:k)f�(�),

where f�(�1∶k) is the join probability density function (PDF) 
of �1∶k . The goal of Eq. (4) is to account for the uncertainty 
in the unmeasured excitation during the evaluation of likeli-
hood function and Bayesian model updating.

The consideration of unmeasured excitations or other 
unmeasured uncertainty sources significantly increases the 
difficulty of evaluating the likelihood function and makes the 
likelihood function analytically intractable and computation-
ally expensive to compute. As a result, MCMC sampling 
methods, as representatives of current popular Bayesian 
inference methods, cannot be directly employed for damage 
detection in the time domain using only vibration responses 
measured under ambient vibration. As mentioned in Sect. 1, 
ABC method or its variants provide a potential solution to 
the aforementioned challenges with the likelihood function 
using likelihood-free inference methods. These likelihood-
free methods, however, require a user-defined tolerance level 
that greatly affects the accuracy of the approximated poste-
rior. A more accurate approximation usually requires a high 
rejection rate. Furthermore, the entire estimation procedure 
needs to be repeated from scratch for any given new dataset. 
They also suffer from curse of dimensionality [32].

In the context of damage detection with unmeasured exci-
tation, another commonly used approach is to convert time 
series measurement data from ambient excitation into fre-
quency domain data (e.g., modal data including natural fre-
quency and mode shapes) and then apply MCMC methods. 
Modal parameters can be identify by stochastic system iden-
tification methods for output-only measurement conditions, 
using Eigensystem Realization Algorithm [40], stochastic 
subspace identification [41], or Bayesian operational modal 
identification [42]. Based on this, the conventional MCMC-
based Bayesian model updating methods may be applied in 
the frequency domain to perform damage detection using 
modal data. Typically, MCMC-based Bayesian methods 
using modal data give a posterior PDF of model parameters 
� given the measured data �o, 1∶k as follows [43, 44],

where c0 is a constant normalizing the posterior PDF, the 
measure of fit function J(�) is given by

where Nm is the total number of modes to be considered 
in model updating; ‖⋅‖ is Euclidean norm; wFm

 and w�m
 are 

(4)
f�|�(�|�o, 1∶k) = ∫ f�|�(�|�o, 1∶k, �1∶k)f�(�1∶k)��1∶k,

∝ ∫ f�|�(�o, 1∶k|�, �1∶k)f�(�1∶k)��1∶kf�(�),

(5)f�|�(�|�o,1∶k) = c0 exp
(
−
1

2
J(�)

)
,

(6)J(�) =

Nm∑
m=1

(
wFm

(F̃m − Fm(�))
2 + w𝜙m

‖‖�̃m −�m(�)
‖‖2
)
,
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chosen weightings for the m-th measured frequency and 
mode shapes; F̃m and �̃m are respectively the m-th measured 
frequency and mode shape that are identified from �o,1∶k ; 
Fm(�) and �m(�) are respectively the m-th FE model-derived 
frequency and mode shape given � that can be calculated 
using commercial software, e.g., ANSYS, or characteristic 
equations (� − ��)� = � , where � and � are global stiff-
ness and mass matrix, respectively; and � and � are eigen-
values and eigenvectors, respectively.

It is worth noting that the features contained in modal 
data in Eq. (6) have been widely used as damage indicators 
for structural health assessment. For instance, Mustafa and 
Matsumoto [45] proposed a novel Bayesian model updating 
framework and performed damage detection on an exist-
ing truss bridge using modal data. The partial fracture on 
diagonal member was identified. Ding et al. [46] proposed a 
new damage identification method based on Jaya algorithm 
and Bayesian inference with modal data, which was vali-
dated by a pre-stressed concrete bridge. Yang and Lam [47] 
also developed adaptive sequential Monte Carlo for damage 
detection using Bayesian model updating and modal data. 
The methodology was verified by a laboratory shear build-
ing and transmission tower. Zhou et al. [48] investigated 
Bayesian model updating for incremental damage detection 
on an actual steel truss bridge. The natural frequency and 
mode shape were considered in the updating process. Zeng 
and Kim [49] presented a new Bayesian model updating with 
mass addition, two sets of modal data were used to perform 
probabilistic damage detection for a laboratory shear build-
ing. A comprehensive review on the application of modal 
data for model updating and damage detection can be found 
in [50].

Although numerous research efforts using MCMC sam-
pling methods and modal data for SHM applications have 
been reported, there are still some limitations. Due to 
unmeasured excitations, the raw vibration responses need 
to be pre-processed with extra effort for modal data. Despite 
mature and sophisticated modal identification methods, it 
still inevitably leads to identification error in modal data due 
to low-level data quality, deficiency of identification meth-
ods, and weak ambient excitation. In addition, modal data 
usually contains limited information, i.e., only the first few 
modes are accurately identified. The error in modal data will 
also be propagated to errors in parameter inference for dam-
age detection. In addition, in most cases, the posterior PDF 
is formulated based on the prediction error (i.e., frequency 
error and mode shape error, as shown in Eq. (6)), which is 
usually assumed to be independent identically distributed 
Gaussian errors with zero-mean and constant variance. 
This assumption, however, may be questionable and lead 
to a biased parameter identification [51]. Finally, in MCMC 
sampling methods using modal data, only uncertainty 

from measurement noise (e.g., wFm and w�m in Eq. (6)) is 
accounted for in parameter inference. There is a consen-
sus that modeling errors/bias are often the most significant 
source of uncertainty in modeling but usually ignored, which 
underestimates the uncertainty and may not guarantee the 
reliability of parameter estimation [52].

Furthermore, for both ABC and frequency-domain methods, 
they must be implemented from scratch whenever a new set of 
measurements is available. This makes damage detection using 
Bayesian model updating computationally expensive and not 
suitable for online model updating. The above discussed dam-
age detection under ambient vibration is just one example. In 
reality, even for systems with measured excitations, the likelihood 
functions could be numerically intractable and computationally 
expensive due to either high model complexity (e.g., multiple 
models connected in a hierarchical manner) or the influence of 
many sources of uncertainty, such as non-Gaussian and depend-
ent measurement noise, model form uncertainty, etc. [52] A new 
likelihood-free inference method is needed to overcome the limi-
tations of the current methods for probabilistic damage detection 
using Bayesian model updating.

Motivated by enhancing the accuracy and efficiency of 
damage detection using Bayesian model updating, a novel 
likelihood-free and computationally efficient Bayesian infer-
ence, named BayesFlow, is introduced in the next section.

3  Damage detection using a new 
likelihood‑free Bayesian inference 
method

This section first provides an introduction of normalizing 
flows and conditional invertible neural network (cINN). Fol-
lowing that, theories of BayesFlow are presented. Finally, 
this section discusses the application of BayesFlow for dam-
age detection using Bayesian model updating.

3.1  Normalizing flows

Let �∈ ℝ
N be random variables with complex and irregular PDF 

f�(⋅) ∶ ℝ
N
→ ℝ , and � ∈ ℝ

N be a multivariate Gaussian dis-
tribution with PDF f�(�) ∈ ℝ . There are two types of mapping 
between the two distributions, namely generative direction and 
normalizing direction. In the generative direction, we first sample 
� from f�(�) and then use generator � = �(�) , where �(⋅) is an 
invertible function, to obtain samples of � . Let �(⋅) = �−1(⋅) be 
the inverse of �(⋅) such that � = �−1(�) = �(�) , in the normal-
izing direction, �(⋅) maps the complex and irregular distribution 
of � to a multivariate Gaussian distribution [53].

Based on the above definitions, the two PDFs are related 
to each other as [53]
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In practice, it is difficult to construct complicated invert-
ible functions for the above-described non-linear bijective 
transformation. To overcome this challenge, Dinh et al. [54] 
express �(⋅) as a set of M  bijective functions as 
�(⋅) = �1(⋅)◦⋯◦�

M−1(⋅)◦�M(⋅) and that �j(⋅) = �−1
j
(⋅), j = 1,⋯ ,M exist. The 

resulting �(⋅) = �1(⋅)◦⋯◦�
M−1(⋅)◦�M(⋅) is also bijective. 

Based on this expression, they proposed the concept of affine 
coupling layers (ACL) as �j(⋅), j = 1, ⋯ , M to achieve the 
invertible mapping between inputs and outputs.

Each ACL implements an inverse non-linear trans-
formation, such as a general forward mapping fACL(⋅) 
and an inverse mapping f −1

ACL
(⋅) . In each ACL, four inter-

nal functions or subnetworks are embedded, denoted as 
s1(⋅), s2(⋅), t1(⋅), t2(⋅) , as shown in Figs. 1 and 2. The four 
subnetworks do not need to be inverted and can be selected 
as any arbitrary neural networks, such as fully connected 
neural networks. A single ACL splits the input and output 
vectors � and � into two halves � = (�1, �2) and � = (�1, �2) , 
respectively. The forward transformation is shown in Fig. 1 
and realized by the following operations [54]

where ⊙ is the element-wise multiplication.

(7)

f�(�) = f�(�)
|||||
det

(
��(�)

��

)|||||
= f�(�)

|||||
det

(
��(�(�))

��

)|||||

−1

.

(8)�1 = �1 ⊙ exp(s2(�2)) + t2(�2),

(9)�2 = �2 ⊙ exp(s1(�1)) + t1(�1),

Similarly, the outputs � = (�1, �2) are concatenated and 
inversely pass through the ACL. As illustrated in Fig. 2, the 
inverse operations are given by [54]

The simple mathematical expression of Jacobian in ACL 
(upper or lower triangle matrix) makes the determinant of 
Jacobian given in Eq. (7) computationally cheap to evalu-
ate, and thus facilitates bijective transformation of the 
distributions.

3.2  Conditional invertible neural network (cINN) 
architecture

By taking observations �o as an additional input of neural 
networks s1(⋅), s2(⋅), t1(⋅), and t2(⋅) in the original ACL, as 
shown in Fig. 3, a conditional ACL (cACL) can be con-
structed. For the forward transformation, the operations 
given in Eqs. (8) and (9) become

The inverse transformation given in Fig.  2 and Eqs. 
(10) and (11) can be revised accordingly for the cACL. By 
sequentially stacking multiple cACLs together to establish 
a sufficient neural network, it allows for a non-linear bijec-
tive mapping between a complex distribution f�(�|�o) and a 

(10)�1 = (�1 − t2(�2))⊙ exp(−s2(�2)),

(11)�2 = (v2 − t1(v1))⊙ exp(−s1(v1)).

(12)�1 = �1 ⊙ exp(s2(�2, �0)) + t2(�2, �0),

(13)�2 = �2 ⊙ exp(s1(�1, �0)) + t1(�1, �0).

Fig. 1  The forward transfor-
mation in ACL (normalizing 
direction)

Fig. 2  The inverse transfor-
mation in ACL (generative 
direction)
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multivariate Gaussian distribution f�(�) . The resulting net-
work is called a conditional invertible neural network (cINN) 
[55]. In the entire cINN, the output of each cACL serves as 
the input of the next one. cINN can be considered as an 
inverse surrogate model. In summary, the mappings between 
f�(�|�o) and a multivariate Gaussian PDF f�(�) in cINN can 
be realized using an invertible function � = ��(�; �o) with 
model parameters � for normalizing direction transforma-
tion, and its inverse function � = �−1

�
(�; �o) for generative 

direction transformation. The latent variable � following a 
multivariate Gaussian distribution plays a crucial role in 
cINN.

3.3  BayesFlow

BayesFlow is built upon normalizing flow-based theory [55, 
56] and cINN described above. It is proposed by Radev and 
co-workers for neurocognitive and epidemiology models 
[31]. The goal of BayesFlow is to approximate posterior dis-
tribution f�(�|�1∶T ) of � for any given observations �1∶T using 
cINN, where �1∶T = (�1, �2, ⋯ , �T ) and �i, ∀i = 1, ⋯ , T  
is the i-th vector of observations. In addition to cINN, Bayes-
Flow introduces and jointly trains a summary network along 
with cINN to deal with high-dimensional time series data 
in inference.

The summary network is essentially a preprocessing step 
for simulated or measured data prior to training cINN. Meas-
ured raw data (i.e., �1∶T ) is summarized or filtered using 
summary network to a fixed-size and low-dimensional vec-
tor. Mathematically, the summary network can be repre-
sented as

where ��(⋅) is the summary network with parameters � and 
�̃ is the summarized feature from the network which will be 
used as �0 in the inference network (i.e., cINN). The choice 
of the summary network depends on the properties of meas-
ured data �1∶T . For example, a bidirectional long short-term 
memory (LSTM) [57] as a summary network is well tailored 
for time series data, since LSTM network is designed to 
deal with sequential measurements with long-term memory. 
Another preferred summary network is a 1D fully connected 

(14)�̃ = 𝜑�(�1∶T ),

convolutional neural network (CNN), which has been widely 
adopted to learn summary statistics of temporal responses 
[58].

To jointly train the inference network ��(⋅) (i.e., cINN) 
and the summary network ��(⋅) for the mapping between 
f�(�|�1∶T ) and f�(�) , BayesFlow estimates neural network 
model parameters � and � by minimizing the expected Kull-
back–Leibler (KL) divergence between the target and the 
approximated posteriors for observations �1∶T as below [31]

where f�1∶T (�1∶T ) is the PDF of �1∶T  , E[⋅] is expectation 
operator, f̂�, �(�|𝜑�(�1∶T )) is the estimated posterior of � for 
given parameters � and � of the cINN and summery net-
work, and KL[⋅] is the KL divergence function. The expecta-
tion with respect to f�1∶T (�1∶T ) is to account for the fact that 
the observations are not available during the training phase. 
Synthetic observations of �1∶T need to be employed and the 
uncertainty in �1∶T needs to be considered.

According to the theory of normalizing flow given in 
Sect. 3.1, f̂�, �(�|𝜑�(�1∶T )) can be expressed as

Since f�(� = ��(�; ��(�1∶T ))) =
1√
2�

exp
�
−

1

2

�
��(�; ��(�1∶T ))

�2� , we 
have

The optimization model given in Eq. (9) can then be 
approximated using Monte Carlo simulation (MCS) as [31]

(15)

�̂, �̂ = argmin
�, �

E
f�1∶T

(�1∶T )

[
KL

[
f�(�|�1∶T )‖‖‖f̂�, �(�|𝜑�(�1∶T ))

]]
,

= argmin
�, �

E
f�(�1∶T )

[
E
f�|�(�|�1∶T )

[
log

{
f�(�|�1∶T )

}
− log{f̂�, �(�|𝜑�(�1∶T ))}

]]
,

= argmax
�, �

E
f�(�1∶T )

[
E
f�|�(�|�1∶T )

[
log{f̂�, �(�|𝜑�(�1∶T ))}

]]
,

= argmax
�, � ∬ f�,�(�1∶T , �) log{f̂�, �(�|𝜑�(�1∶T ))}����1∶T ,

(16)

f̂�, �(�|𝜑�(�1∶T )) = f�(� = ��(�; 𝜑�(�1∶T )))
|||||
det

(
𝜕��(�; 𝜑�(�1∶T ))

𝜕�

)|||||
.

(17)
log

�
f̂�, �(��𝜑�(�1∶T ))

�
= log

�
1√
2𝜋

�
−

1

2

�
��(�; 𝜑�(�1∶T ))

�2

+ log
�����
det

�
𝜕��(�; 𝜑�(�1∶T ))

𝜕�

������
.

Fig. 3  The structure of cACL 
for forward transformation
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where NMCS is the number of MCS samples, �(i) is the i-th 
MCS sample of � , and �(i)

1∶T
|�(i) is the synthetic observation 

generated using a forward model with inputs of �(i).
After the model parameters �̂, �̂ are estimated, Bayes-

Flow can be employed to efficiently obtain the posterior dis-
tribution f�(�|�1∶T ) for given �1∶T . In contrast to other meth-
ods for Bayesian inference that require to repeat the entire 
inference procedures from scratch for variant measurement 
sequence, BayesFlow amortizes the inference workflow by a 
computationally intensive upfront training phase and a much 
cheaper inference phase.

In summary, BayesFlow is a fully likelihood-free Bayes-
ian inference method, which directly approximates the pos-
terior distribution for model updating without computing the 
likelihood function in the inference phase. In BayesFlow, a 
summary network and a cINN are trained based on synthetic 
observations. Summary network focuses on automatically 
capturing the most informative features from time series 
measurements and enabling for dimension reduction for 
model updating. The cINN is used to learn the posterior dis-
tribution of model parameters for given summary statistics. 
The cINN bi-directionally transforms the irregular-shape 
posterior distribution to a latent standard normal distribu-
tion. Based on that, the posterior samples can be obtained 
directly by sampling the Gaussian latent distribution and 
through the inverse mapping made possible by the cINN. 
The cINN can be considered as an inverse surrogate model 
that maps observations to posterior distribution directly. The 
advantages of BayesFlow are summarized as four-fold. First, 
BayesFlow is a fully likelihood-free approach that directly 
estimates the posterior instead of evaluating a (usually com-
plex) likelihood function. It also strictly guarantees effective 
sampling process for the true posterior without any assump-
tions on the prior or posterior distributions. Second, Bayes-
Flow has a favorable scalability and allows to operate very 
well for arbitrary measurement sequence as it amortizes the 
Bayesian inference. In other words, BayesFlow can reasona-
bly deal with different sizes of datasets using a single trained 
model. Third, BayesFlow has a learnable summary network 
that is responsible for reducing data dimensionality and 
automatically learns the maximally informative statistics. 
Finally, BayesFlow is computationally efficient, especially 
for the problem that requires repeated parameter inference 
from scratch for different datasets and data sizes. In addition, 

(18)

�̂, �̂ = argmin
�, �

{
1

N
MCS

N
MCS∑
i=1

(
1

2

[
��(�

(i); 𝜑�(�
(i)

1∶T
|�(i)))

]2

− log

||||||
det

(
𝜕��(�; 𝜑�(�1∶T ))

𝜕�

|||||�(i), �(i)
1∶T

)||||||

)}
,

the use of summary network contributes to alleviate compu-
tational burden by compressing high-dimensional data to a 
feasible and controllable size.

3.4  Structural damage detection using BayesFlow

As described above, BayesFlow based on cINN offers a 
promising solution to the challenging issues of Bayes-
ian model updating-based damage detection discussed in 
Sect. 2. To apply BayesFlow to damage detection, we first 
parameterize the structural damage model. For a FE model 
as given in Eq. (1) in Sect. 2, model parameters can be rep-
resented by material and geometric properties or boundary 
condition. For damage detection through vibration-based 
mode updating, it is widely acknowledged that any structural 
damage leads to changes in vibration responses or modal 
data, is closely related to structural parameters, e.g., stiffness 
and mass. Damage detection is therefore usually performed 
by quantifying change in stiffness and mass parameters. 
However, in practice, only stiffness parameters are selected 
to be identified, since mass parameters are usually less criti-
cal. In addition, simultaneous identification of stiffness and 
mass parameters would result in un-identifiability issue due 
to the coupling of these two parameters [12]. It is also rec-
ognized that stiffness parameters are usually represented by 
elastic modulus rather than geometric properties, e.g., length 
and sectional area, since geometric properties may vary with 
elements and hence become uncontrollable in model updat-
ing. Instead, each structural component or structural group 
can be assigned to a single elastic modulus, rendering dam-
age detection more practical and feasible [47].

In this context, the global stiffness matrix is expressed 
as a linear combination of sub-structural elemental stiff-
ness matrices multiplied by updating stiffness parameters. 
Specifically, structural damage can be portrayed by a scalar 
reflecting stiffness change in each element. A general param-
eterization of stiffness matrix may be written as

in which �udl
 denotes the l-th elemental stiffness matrix 

under undamaged condition, �0 is the non-parameterized 
components of global stiffness matrix, �d is structural global 
stiffness matrix under the damaged condition,N� is the total 
number of updating stiffness parameters, and �l denotes the 
l-th stiffness change parameter to be estimated correspond-
ing to the l-th substructure, representing the relative change 
of stiffness from the baseline state value. For instance, 
�l = (Ed

l
− Eud

l
)∕Eud

l
 , where Ed

l
 and Eud

l
 are elastic moduli 

under damaged and baseline (“undamaged”) state, respec-
tively. It should be also noted that the choice of variation 
bounds of �l, l = 1, ⋯ , N� is a key aspect to guarantee the 

(19)�d(�) = �0 +

N�∑
l=1

(1 + �l)�udl
,
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physical meaning. The variation bound is usually assumed 
based on engineering judgment. In this study, parameter 
bound following a uniform distribution over an interval of 
(− 30%, 30%) is considered according to the studies in [19, 
59]. We noted that the parameterization in Eq. (19) has a 
limitation that the damage is homogenized over the scale 
of an element, which depends on how the sub-structuring is 
formulated. The presented method in this paper, however, 
is not limited to such a parameterization. It is applicable to 
any damage model where the damage can be parameterized.

Based on the parameterization, the task of damage 
detection is to estimate the posterior distribution of � using 
vibration observations �1∶T of the structure as described in 
Sect. 2. Figure 4 depicts the overall procedure of damage 
detection using BayesFlow. It consists of an offline training 
phase and an online detection phase. In the offline training 

phase, we first generate Nt training samples of � according 
to its prior distribution. Denoting the training samples as 
�train = [�(1)

t
, ⋯ , �

(Nt)

t ] and by accounting for various uncer-
tainty sources, we then obtain synthetic observation data 
�
syn

i,1∶T
, i = 1, ⋯ , Nt , where �syn

i,1∶T
 represents the synthetic 

observation generated using the i-th training sample of � 
and based on a random realization of the unmeasurable input 
excitation. The synthetic observations �syn

i,1∶T
, i = 1, ⋯ , Nt 

then pass to the initial summary network ��(⋅) to obtain 
the summary statistics �̃syn

i
, i = 1, ⋯ , Nt . Using the sum-

mary statistics and the initial inference network (i.e., cINN) 
�(i) = ��(�

(i)
t
; �̃

syn

i
), i = 1, ⋯ , Nt , samples of latent vari-

able � are obtained. The Jacobian matrix for each sample 
can also be computed using the cINN. After that, the objec-
tive function given in Eq. (18) can be evaluated using MCS 
based on the generated samples. Finally, the optimal model 

Fig. 4  Flowchart of damage detection using BayesFlow
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parameters �̂, �̂ of the summary network and inference net-
work (i.e., cINN) are estimated using an optimizer until the 
loss/objective function reaches the minimum. The obtained 
models can then be used in the online detection phase to 
enable for real-time damage detection using Bayesian model 
updating. It is worth mentioning that the accuracy of the 
Bayesian inference could be affected by the training data 
used trained the summary network and cINN. To ensure that 
the model is properly trained, we split the synthetic observa-
tion data into two parts, one part for training and the other 
part for validation. More training data will be added if the 
accuracy of validation cannot satisfy the requirement. 

In the online detection phase, as illustrated in Fig, 4, 
measured data �o,1∶T  are collected from field test, then 
passed through the trained summary and inference networks 
and obtain the posterior distributions directly without eval-
uating any likelihood function. The posteriors of damage 
parameters are approximated by samples from the latent 
distribution and the invertible neural network (see Sect. 3.2 
generative direction transformation using cINN). Finally, 
the posterior samples of � are used for probabilistic damage 
detection. Note that there are many factors affecting model 
updating and damage detection during online monitoring, 
e.g., environmental change and loading conditions. How-
ever, it is quite difficult to take all factors into consideration 
when performing online monitoring. As the environmen-
tal and operational conditions, such as temperature, wind, 
traffic or other loading, etc., are nonstationary and gener-
ally uncontrollable (and sometimes unmeasurable). These 
unconsidered factors manifest themselves as “uncertainty” 
sources in Bayesian model updating. As a probabilistic 
damage detection method, Bayesian model updating can 
naturally account for various uncertainty sources. Bayes-
Flow used in this study enables us to quantify uncertainty in 
damage states (i.e., posterior distribution) within just a few 
seconds (see Table 3). The near real-time inference using 
BayesFlow is a key step in enabling online health monitor-
ing. In addition, an alarming criterion for structural damage 
detection is usually needed in online monitoring. However, 
setting a universal alarming criterion is difficult and appli-
cation-specific, as different structures have their own char-
acteristics and varied operational conditions. For instance, 
in some civil infrastructures, stiffness reduction exceed-
ing 20% usually induces noticeable change in structural 
dynamics. An alarming threshold of 20% can then be used 
to inform engineers to perform necessary repairing work in 
that situation. Alternative to setting alarming criteria, one 
can detect damage by inspecting probabilistic damage curves 
(PDC) or cumulative distribution function (CDF) of model 
parameters based on uncertainty information acquired from 
Bayesian model updating or other stochastic model updat-
ing methods. PDCs or CDFs related to damage locations are 

clearly distinguishable from the ones at healthy locations 
[49, 60]. In other words, model parameters with outstanding 
and aberrant PDCs or CDFs tend to be damaged and should 
be of interest. Therefore, an alarming criterion may not be 
required for online damage detection, and the analysis of 
PDCs or CDFs allows to directly assess damage location and 
damage severity for online damage detection.

4  Case studies

In this section, BayesFlow is applied to damage detection 
of two benchmark examples, including an 18-story shear 
frame and a concrete building frame. Dynamic responses 
under unknown and unmeasured ambient vibration are used 
to identify structural parameters. BayesFlow is compared 
with DREAM sampling method [35] in frequency domain 
to verify its efficacy.

4.1  An 18‑story shear frame

An 18-story shear frame is selected as the first example to 
validate the efficacy of damage detection using BayesFlow. 
A one-third scale shear frame specimen was built and tested 
at the E-Defense shaking table in Japan [61]. The physical 
structure represents the dynamic behavior of a steel high-rise 
building designed and constructed from 1980 to 1990s. Fig-
ure 5(a) shows the front and side view of the structure. The 
plane at each floor has the same dimension of 5 × 6 (meters), 
and the total height is 25.35 m. The total weight of the steel 
frame is 3500 kN excluding the foundation. This numerical 
study simplifies the structure as a 9-DOF shear model as 
shown in Fig. 5(b).

It is assumed that mass is accurately known and not 
included in the updated parameters. The initial stiffness 
for each floor is obtained from nominal material proper-
ties (i.e., elastic modulus). In this study, the stiffness change 
parameters representing the relative change of stiffness at 
each floor are selected as updating parameters, denoted as 
�1 ∼ �9 , where �i = (Eact − Enom)∕Enom, ∀i = 1, ⋯ , 9 , Eact 
and Enom are respectively actual and nominal elastic moduli. 
�i, ∀i = 1, ⋯ , 9 range from − 0.3 to 0.3 based on empirical 
knowledge and study in [59, 62]. Assuming that the shear 
frame is subjected to ambient excitation, and the excita-
tion is unmeasured but modeled as Gaussian white noise 
at all floor levels with power spectral density of 3 N/

√
Hz , 

similar to ambient vibration test in [63]. Only output vibra-
tion responses are measured. Due to the limited number 
of sensors, only incomplete data can be measured in prac-
tice. Hence the three-minutes acceleration responses are 
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simulated only at the 1st, 2nd, 3rd, 5th, 7th, and 9th floor 
with a sampling frequency of 100 Hz based on structural 
dynamics and continuous state-space model implemented 
by functions ‘ss’ and ‘lsim’ in MATLAB.

4.1.1  Model training and validation

All summary and invertible networks described in Sect. 3.3 
are jointly trained by calibrating network hyper-parameters. 
In this example, all programs are implemented in Python 
using TensorFlow library and a personal computer with a 
single CPU. The Adam Optimizer is used to minimize the 
KL divergence in Eq. (15) with a default learning rate of 
0.001. The four subnetworks in cINN are designed as fully 
connected neural network with exponential linear units 
(ELU). The summary network is set as 1D CNN, and the 
cINN consists of 10 cACLs.

To generate training data, training samples of stiffness 
change parameter � are drawn from the uniform distribu-
tion U ∼ [−0.3, 0.3] using Latin hypercube sampling (LHS). 
Three-minute synthetic acceleration data are then simulated 
using an FE model of the shear frame. As a result, 800 sets 
of training data and additional 100 sets of test data are simu-
lated for model training and test. During training, 30 epochs 
with 200 iterations per epoch are adopted. Two different 
metrics, coefficient of determination (R2) and normalized 
root mean squared error (NRMSE), are employed to assess 
the accuracy of training. Figure 6 shows the validation 
results for the 100 sets of test data. As shown in this figure, 
R2 and NRMSE of all parameters are above 0.98 and close 

to 0, respectively, except for �2 and �4 . It implies a high 
agreement between the model prediction and true values. 
The accuracy of �2 and �4 is not as good as the others. This 
is probably attributed to the fact that these two parameters 
are not as sensitive as the others to responses. 

4.1.2  Probabilistic damage detection

In this section, probabilistic damage detection is performed 
to identify damage location and severity using the trained 
BayesFlow model. One damage scenario with multiple 
damage locations at different floors is studied, as shown in 
Table 1. The initial model of this shear frame is assumed to 
be under healthy condition (e.g., mass and stiffness at each 
floor are intact). For the damaged scenario, damage severity 
is quantified by the percentage of stiffness change, e.g., rela-
tive change in elastic modulus. The negative sign in Table 1 
denotes stiffness reduction, such as 20% and 10% stiffness 
reduction at the 1st and 3rd floor. Note that the stiffness 
reduction considered in this study is realistic and readily 
achieved in experimental study. For example, the stiffness 
reduction can be artificially created by changing geometric 
properties in elements, such as reducing the width of a col-
umn [64], replacing or removing structural components, e.g., 
braces or columns [65]. Then corresponding stiffness reduc-
tion can be calculated, which then can be used to measure 
the accuracy of identified stiffness reduction. 

Ten sets of three-minute vibration responses at the 1st, 
2nd, 3rd, 5th, 7th, and 9th floor corresponding to the dam-
age scenario are measured. Gaussian white noise of 5% Root 
Mean Square (RMS) noise–signal ratio (NSR) is added to 

Fig. 5  An 18-story shear frame
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all measured acceleration data to mimic additional meas-
urement fluctuation noise. Note 5% RMS NSR is a realistic 
measurement noise level in real-world application [66]. The 
data quality with 5% noise level can be readily achieved in 
typical ambient vibration. Figure 7 shows examples of the 
measured vibration responses at the 1st and 9th floor.

As mentioned above, the performance of BayesFlow on 
damage detection is compared with the DREAM method. 
DREAM is an advanced sampling method that parallelly 
runs multiple Markov chains to draw samples for the target 
posterior [35]. When applying DREAM for damage detec-
tion, acceleration data must be transformed into frequency-
domain modal data, such as natural frequencies and mode 
shapes, due to the assumption of ambient vibration and 
unmeasured excitation. Modal data can be extracted from 
time series data using either stochastic subspace identifi-
cation [41] or Bayesian operational modal identification 
method [42]. For this example, the first six identified modes 
in damaged condition are used in DREAM. In Bayesian 
inference using modal data, as shown in Eqs. (5) and (6), 

the frequency error and mode shape error between model-
derived and measured modal properties are utilized to con-
struct likelihood function. The use of natural frequency and 
mode shape in DREAM has some limitations. These two 

Fig. 6  Training accuracy verifi-
cation of BayesFlow

Table 1  Damage location and severity of shear frame

Damage scenario Damage location (damage severity)

1 1st (− 20%), 3rd (− 10%), 4th (− 20%), 7th 
(− 10%), 8th (− 20%)

Fig. 7  An example of measured acceleration
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features are globally identified from vibration responses. 
Therefore, they maybe exhibit more sensitivity to global 
damage, e.g., overall stiffness or mass change, but less sen-
sitivity to local damage, e.g., a small crack or hole. One 
solution is to incorporate damping in Bayesian inference, 
since it is recognized that damping is more sensitive to local 
change, such as structural internal change, than natural fre-
quency and mode shape [12, 45]. In this study, only global 
damage, such as overall stiffness reduction, is considered to 
compare DREAM with the proposed method. It is worth not-
ing that acceleration data in time domain are directly used in 
the proposed method using BayesFlow without transforming 

the data into frequency-domain modal data. The summary 
network in BayesFlow automatically extracts important fea-
tures for model updating. This is one of the advantages of 
BayesFlow over the conventional approaches.

Figure 8 presents the comparison of posterior distribu-
tions of damage parameters obtained by BayesFlow and 
DREAM using different number of datasets. The results 
show that BayesFlow has a more stable performance for 
damage detection than DREAM when the number of datasets 
varies. For example, when only a single set of acceleration 
data is utilized, DREAM has a very poor performance for 
damage detection (see Fig. 8a). The posterior mean obtained 

Fig. 8  Posterior distributions from BayesFlow and DREAM for different numbers of datasets
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from DREMA deviates from the ground truth, especially for 
�2 , �5 , and �8 , suggesting a failure of damage detection by 
DREAM. However, BayesFlow can still accurately captures 

the damage using one set of acceleration data. As the number 
of datasets increases, the performance of DREAM gets bet-
ter and closer to that of BayesFlow. The estimated posterior 
distributions overlap with each other in Fig. 8(d), implying 

Fig. 9  Damage identification by one datasets on shear frame

Fig. 10  Damage identification by two datasets on shear frame

Fig. 11  Damage identification by five datasets on shear frame
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a good agreement between BayesFlow and DREAM using 
10 datasets. But it is observed that some parameters (e.g., 
�5 ) identified by DREAM have larger uncertainty than their 
counterparts obtained from BayesFlow.

Figures 9, 10, 11 and 12 show the comparison of pos-
terior mean and standard deviation of the identified stiff-
ness reduction by BayesFlow and DREAM. As shown in 
Fig. 9, DREAM gives many false alarms of damage detec-
tion and large uncertainty when only one dataset is available. 
When the number of available datasets increases (i.e., from 
Figs. 9 to 12), the accuracy of identified damage severity 
by DREAM is greatly improved and becomes similar to 
the accuracy achieved by BaysFlow. The results also show 
that the standard deviations of posterior distributions from 
BayesFlow are overall smaller than that from DREAM, indi-
cating a more reliable damage detection using BayesFlow.    

As discussed in Sect. 3.3, one of appealing features of 
BayesFlow is its ability to perform parameter inference 
for different sizes of measurements using only one trained 
model. To demonstrate this capability, six cases with dif-
ferent data durations (ranging from 0.5 min to 3 min with a 
step of 0.5 min) are considered for damage detection using 
BayesFlow. Figure 13 presents the damage identification 
results with respect to different data durations. The black dot 
denotes the posterior mean, blue shaded area denotes 95% 
confidence interval (CI), and red dashed line denotes the 
ground truth. The results indicate that the posterior means 
of all parameters overall tend to be more accurate when the 
time duration for data collection becomes longer. In addition, 
there is persistent uncertainty in the posterior distributions. 
This may be attributed to the fact that for structural damage 
detection under ambient vibration, only vibration responses 
are measured, and the excitation is unknown. The results 

in Fig. 13 show that BayesFlow can successfully identify 
structural damage using arbitrary sizes of dataset using just 
one trained model. There is no need to build another model 
from scratch. This is a practical and convenient property, 
particularly for continuous SHM involving plenty of data 
analysis and different data information.

4.2  A concrete building frame

A concrete building frame, representing a full-scale test 
structure in Structural Engineering and Materials Labora-
tory on Georgia Tech Campus [67], is employed as a sec-
ond example. The building frame targets on investigating the 
structural behavior of typical low-rise reinforced concrete 
office buildings in the central and eastern United States built 
from 1950 to 1970s. The structure constitutes four identical 
frames (numbered as #1–#4) and two collapse frames. All 
frames are distributed separately with each other with a gap 
between every two adjacent ones, so that each frame can 
be modeled and analyzed independently. In this study, the 
BayesFlow is used to perform structural damage detection 
for frame #1. Figure 14(a) shows the front, elevation, and 
side view of frame #1.

The columns and beams of frame #1 are modeled by 
frame elements in SAP2000, as depicted in Fig. 14(b). In 
SAP2000, the entire structure is simplified as an FE model 
with 2302 DOFs. The mass matrix is a diagonal matrix with 
zero element at rotational direction. A more detailed FE 
model information can be found in [68]. In concrete build-
ing, a total of six stiffness change parameters are considered 
to be updated in this example, denoted as �1 ∼ �6 , as shown 
in Fig. 14(b), where �1 ∼ �4 respectively represents the 

Fig. 12  Damage identification by ten datasets on shear frame
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relative change between nominal and actual elastic modu-
lus of longitudinal beam members (x direction) at the first 
and second floor. �5 ∼ �6 respectively represents the rela-
tive change in elastic modulus of the first and second slab 
and associated lateral beam members (y direction). While 
material properties in columns are assumed to be known 
accurately and thus not updated here.

Dynamic vibration test is simulated to measure accel-
erations under ambient vibration. Accelerometers shown in 

Fig. 14(b) are deployed at two slabs to measure vertical and 
longitudinal vibrations (z and x directions). Only a total of 
26 DOFs are measured to mimic the reality. Four-minute 
acceleration responses are measured with a sampling fre-
quency of 100 Hz. Similar to the previous example, the exci-
tation is also modeled as Gaussian White noise with power 
spectral density of 3N∕

√
Hz.

Fig. 13  Damage identification 
using BayesFlow with varied 
data size

Fig. 14  Concrete building frame
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4.2.1  Model training and validation

The same initial setting of summary and invertible networks 
as the first example are used in BayesFlow for this exam-
ple. 800 sets of training samples in terms of six parameters 
are generated from uniform distribution U ∼ [−0.3, 0.3] 
using LHS, resulting in 800 sets of synthetic acceleration 
responses simulated from the FE model. Also similar to 
the first example, an extra 100 sets of data are generated to 
verify the accuracy of the trained model. 40 epochs with 200 
iterations each are adopted for training all neural networks. 
Figure 15 presents the validation results. As shown in this 
figure, R2 and NRMSE for all parameters exceed 0.94 and 
approach to 0 respectively, indicating accurate prediction 
by BayesFlow. It is also observed that �4 ∼ �6 appear to be 
well recovered, but �1 ∼ �3 turn out to be more difficult to 

estimate. This is probably because of �1 ∼ �3 are less sensi-
tive to vibration responses compared to �4 ∼ �6 . In addition, 
the concrete building is more complex compared to shear 
frame as given in example 1 (2302 DOFs vs 9 DOFs), which 
may increase the difficulty in parameter estimation with lim-
ited measurements.

4.2.2  Probabilistic damage detection

Commensurate with example 1, one damage scenario with 
multiple damage locations is artificially introduced to 
demonstrate BayesFlow’s capability of detecting damage. 
Table 2 lists the assumed damage location and severity. The 
structural damage is defined as stiffness reduction repre-
sented as the relative change of elastic moduli of beams and 
slabs, which is similar to that in example 1.

Ten sets of vibration responses at 26 DOFs corresponding 
to the damage scenario are measured. Gaussian white noise 
of 5% NSR is added to the measured accelerations again. 
Figure 16 shows an example of one measured acceleration 
response.

DREAM is also applied for damage detection using the 
same measurements, in which 20,000 samples are generated 
to estimate the posteriors. Same as the previous example, 
modal data is identified from accelerations when applying 
the DREAM, containing the first eight natural frequencies 
and mode shapes, since the excitation is unmeasured in this 
study. Figure 17 gives the results of the posterior estimates 
by BayesFlow and DREAM. Vey similar observations as that 
from the shear frame example, BayesFlow can detect struc-
tural damage across different datasets. The performance of 
DREAM, however, is significantly affected by the number of 
datasets. For instance, for one dataset case, it can be seen in 
Fig. 17(a) that the posterior estimates from DREMA either 

Fig. 15  Training accuracy veri-
fication of BayesFlow

Table 2  Damage location and severity of concrete building

Damage scenario Damage location (damage severity)

1 �1(− 10%), �3 (− 20%), �4 (− 10%), �5 (− 20%)

Fig. 16  An example of measured acceleration for 4 min
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deviate from the true values (e.g., �1 ∼ �3 ) or have very large 
uncertainty (e.g., �3, �4, �6 ). As in the first example, when 
more and more data available, the approximate posteriors 
from two methods get closer and closer to each other.

Figures 18, 19, 20 and 21 present the results of poste-
rior mean and standard deviation obtained from Bayes-
Flow and DREAM for different time durations of measure-
ments. Overall, BayesFlow outperforms DREAM, which 

Fig. 17  Posterior distributions from BayesFlow and DREAM for different numbers of datasets

Fig. 18  Damage identification by one datasets on concrete building



337Journal of Civil Structural Health Monitoring (2023) 13:319–341 

123

is consistent with the results in Figs. 9, 10, 11 and 12 in 
Sect. 4.1.2. As shown in Fig. 18, when only one dataset is 
available, BayesFlow accurately identifies stiffness reduc-
tion while DREAM falsely detects the damage severity for 

�2 . In addition, although the stiffness reduction for �3 − �5 
identified by two methods are similar, the uncertainty of 
posterior distributions from DREAM is much higher than 

Fig. 19  Damage identification by two datasets on concrete building

Fig. 20  Damage identification by five datasets on concrete building

Fig. 21  Damage identification by ten datasets on concrete building
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that from BayesFlow. These results again demonstrate that 
BayesFlow performs better than DREAM for probabilistic 
damage detection from two aspects: (1) BayesFlow has a sta-
ble and robust performance on damage detection given dif-
ferent amount of measurement data; (2) BayesFlow identi-
fies damage severity with less uncertainty, indicating higher 
confidence on damage detection.

As analogous to previous example, eight cases with dif-
ferent data duration are considered for the purpose of dam-
age detection using BayesFlow. Measurement duration 
ranges from 0.5 to 4 min with a step of 0.5 min. Figure 22 
shows the posterior results of different damage parameters. 
It clearly shows that when the time duration for data collec-
tion gets longer, the identified posterior mean overall tends 
to be more accurate and converges to the true values. The 
ability of working with different sizes of dataset indicates 
that BayesFlow has great potential in performing long-term 
SHM with varied number of observations due to restricted 
conditions of data acquisition.

4.3  Summary of computational time

Table 3 summaries the computational cost of BayesFlow 
and DREAM for damage detection using ten data sets in the 

two examples. It is noted that BayesFlow takes around 23 h 
and 25 h for training for shear frame and concrete building, 
respectively. After training, it takes less than 10 s to perform 
damage detection on ten datasets. On the contrary, DREAM 
takes about 1.2 h and 3.2 h respectively to complete the 
task of damage detection. Despite the substantially higher 
time required for training using BayesFlow, one can opt to 
perform offline training using simulated data. Subsequently, 
real-time damage detection can be realized within a few 
seconds using measured data from the field. Furthermore, 
the studied structures in this work, e.g., an 18-story shear 
frame modeled with 9 DOFs and a concrete building frame 
modeled with 2302 DOFs, is relatively simpler compared to 
real-world engineering structures that are usually complex 
and large-scale. Such structures are often modeled as high-
fidelity FE models consisting of hundreds of thousands of 
elements and nodes. Therefore, it would take a few minutes 
to run such models once. To ensure a satisfactory conver-
gence, it usually requires a huge amount of model evalua-
tions, e.g., at least  104 times. In the case of limited computa-
tional budget, performing DREAM or other sampling-based 
methods for SHM is impractical due to the required prohibi-
tive computational cost. BayesFlow provides a promising 
alternative for real-time online model updating and damage 
detection. Once a pre-trained model is obtained offline with-
out the disturbance of field test, the damage detection can 
be efficiently conducted online within a few seconds, while 
DREAM or other conventional methods such as ABC may 
take hours to perform one model updating.

Fig. 22  Damage identifica-
tion across varied data size on 
concrete building

Table 3  Comparison of computational cost between BayesFlow and 
DREAM

The bold values just emphasize the computational cost by BayesFlow

Cases BayesFlow DREAM

Training
(h)

Inference
(s)

Inference
(h)

18-story shear frame 23 5 1.2
Concrete building frame 25 7 3.2
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5  Conclusion

In this paper, we have applied a novel adaptation of a new 
likelihood-free Bayesian inference method named Bayes-
Flow to probabilistic damage detection for an SHM appli-
cation. The benefits of exploring BayesFlow in the context 
of structural damage detection are multifold. First, in many 
cases, the likelihood function is analytical intractable and 
not available in close from due to model complexity. Bayes-
Flow is fully likelihood-free, which directly approximates 
the posterior without evaluating the likelihood function. 
Second, BayesFlow introduces a summary network that 
automatically learns the maximal information from data, 
rather than hand-crafted features. The raw data are com-
pressed into a fixed-length vector, which alleviates the com-
putational burden. Third, BayesFlow is computational very 
efficient for online damage detection. It allows for amortized 
inference. Although the required computational cost is high 
for training which can be conducted offline, the trained net-
works can efficiently estimate the posterior online given any 
measurements within just a few seconds. Although Bayes-
Flow was recently developed by Radev et al. [31] in 2020. 
To date, likelihood-free Bayesian inference using cINN has 
not been explored in SHM field, especially for probabilistic 
damage detection and model updating. The main contribu-
tion of this work is that it is the first attempt to investigate 
the capability of BayesFlow (i.e., a summary network and 
a cINN) on structural damage detection. A new likelihood-
free Bayesian inference is introduced to the engineering 
community of SHM, which would provide new insights on 
structural damage detection and deliver a new solution for 
online monitoring.

The developed method is applied to two benchmark 
examples, including an 18-story shear frame and a more 
challenging concrete building frame. Synthetic acceleration 
data are simulated from FE models under ambient vibration 
and then used to train all networks in BayesFlow. The pre-
trained model then efficiently performs parameter estimation 
given new data under damaged condition. Throughout all 
examples, BayesFlow exhibits superior accuracy and reli-
ability in damage detection compared to a sampling-based 
method called DREAM. BayesFlow can directly work on 
time series data even if excitation is unmeasured, but modal 
data extracted from time series data have to be employed in 
DREAM under ambient vibration. In summary, the perfor-
mance of BayesFlow is stable and robust on different amount 
of datasets for damage detection. The uncertainty of dam-
age detection from BayesFlow is overall lower than that 
from DREAM. Furthermore, BayesFlow can perform dam-
age detection with varied data sizes using only one trained 
model, which is a major advantage in practice, particularly 

for long-term SHM. BayesFlow also has a much cheaper 
inference work compared to DREAM for the two examples. 
Although BayesFlow takes a long time in the training phase, 
the training can be carried out offline, then damage detection 
would become real time given new data collected from field.

It is worth noting that BayesFlow is not limited to the 
structures studied in this paper, as it can be extended to 
other types of complex structures exhibiting high nonlin-
earity. The cINN architecture enables for non-linear bijective 
transformation, and there are no assumptions on model types 
and posteriors. The extension of BayesFlow to more com-
plex structures and different purposes of SHM, e.g., damage 
prognosis and reliability analysis, will be further studied in 
our future work.
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