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Abstract
Internal and external factors impacted the safety of large-scale civil engineering structures after their construction. Thus, this 
study used the real-time kinematic global navigation satellite system (RTK-GNSS) technology to monitor a super-high-rise 
building and a long-span bridge in China. First, the effects of positioning errors and noise in the different environments were 
investigated. And this study revealed that the multipath-dominated background noise generated by water is not negligible. 
To suppress noise, the researchers next proposed a hybrid noise reduction algorithm that combined wavelet threshold (WT) 
and complete empirical mode decomposition with adaptive noise (CEEMDAN) based on autocorrelation function and cross-
correlation coefficient. The results proved that the method applied can weaken noise and maintain adequate information. 
The noise reduction is the best compared with ensemble empirical mode decomposition (EEMD), CEEMDAN, and EEMD-
Chebyshev. Finally, the direction of the main motion of the super-high-rise building is calculated. And the error between 
the first-order frequency and finite-element analysis is 0.189%, the maximum relative error for the third-order frequency is 
only 4.379%. The frequencies, damping ratios, and failure probabilities of the Fumin bridge are also obtained under different 
traffic loads. Furthermore, the intrinsic frequency inaccuracy measured by RTK-GNSS is less than that by the accelerometer 
in the same monitoring period.

Keywords  RTK-GNSS · Dynamic monitoring · Large-scale civil engineering structures · Noise reduction · Hybrid 
filtering · Characteristic analysis

1  Introduction

Strong wind, temperature, and traffic stress significantly 
influence large-scale civil infrastructures as time passes, 
resulting in their deformation or collapse. For instance, the 
Humen bridge in Guangzhou experienced severe shaking 
in May 2020. On May 18, 2021, the Shenzhen SEG Plaza 

building, with a height of 355.8 m, shook violently, endan-
gering the lives of residents. It is essential to implement 
regular dynamic deformation monitoring to assess the struc-
tural properties.

As engineering sophistication advances, a variety of 
measurement techniques have become ubiquitous in defor-
mation monitoring, such as accelerometers [1, 2], 3D laser 
scanners [3–5], radar interference systems [6, 7], camera 
techniques [8, 9], and global navigation satellite systems 
(GNSS) [10, 11]. Accelerometers, however, suffer from drift 
during subsequent data integration. Three-dimensional laser 
scanners can capture the image information of the object, 
whereas they have relatively high requirements for the oper-
ating environment. Radar interference monitoring has high 
efficiency, yet atmospheric conditions limit the measure-
ment precision, and it only gains one-dimensional projection 
information. Photogrammetry obtains dynamic responses by 
taking pictures and video recording. But the hardware level 
and light intensity affect the imaging quality.
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GNSS can get the three-dimensional coordinates of struc-
tures by receiving and transmitting specific satellite signals. 
It has high efficiency, operates easily, and performs con-
tinuous real-time monitoring [12–14]. Beshr et al. adopted 
artificial neural networks (ANNs) and adaptive neuro-fuzzy 
inference systems (ANFIS) to provide the deformation char-
acteristics of a suspension bridge under GNSS monitoring 
and to predict the displacement [15]. Zhang et al. used 
GNSS with an accelerometer to acquire real-time dynamic 
information about the Jiangyin bridge span. They analyzed 
the spectral characteristics of the bridge based on a data 
fusion method [16]. Li et al. monitored the deformation of 
the super-high-rise building and used an improved fuzzy 
function method to increase the accuracy of the GPS/BDS 
[17]. GNSS is sensitive to low-frequency responses and 
popular in deformation monitoring of large civil projects 
[18–20].

The instrument itself and the environment introduce 
several flaws into the GNSS results, including troposphere 
delay, ionosphere delay, troposphere error, satellite clock 
difference, and multipath effects. Differential techniques can 
eliminate the first four errors but not the background noise 
dominated by multipath [21–23]. At the current stage, filter-
ing is a known active technique to weaken the noise, mainly 
comprising Chebyshev filtering [24], wavelet transforms 
[25], and empirical mode decomposition (EMD) [26, 27]. 
However, Chebyshev filtering requires more covariates, and 
different input parameters affect noise reduction. In the case 
of complex signals, a single wavelet transform is not signifi-
cant for the denoise effect. EMD has adaptivity but generates 
modal aliasing during decomposition. For the shortcomings 
of EMD, Wu and Huang proposed EEMD [28], whereas it 
produced large-signal recombination errors. Yeh improved 
EEMD by adding positive and negative paired white noise 
[29], namely, complete ensemble empirical mode decom-
position (CEEMD). Nonetheless, its essence is similar to 
EEMD, where different modes are reserved owing to posi-
tive and negative noise. Also, some studies usually choose 
one screening criterion without solving the problem of cor-
rect selection for the intrinsic mode function (IMF) decom-
posed by EMD or EEMD, or CEEMD [24].

For solving these limitations yet retaining valid informa-
tion, this paper puts forward CEEMDAN [30–32] based on 
an autocorrelation function and cross-correlation coefficient. 
Meanwhile, considering that the single filter method is not 
apparent in denoising, CEEMDAN is combined with wavelet 
threshold (WT) to enhance the noise reduction effect.

The modal parameter is a fundamental index for analyz-
ing dynamic properties and is one of the criteria for evaluat-
ing structural health, where frequencies and damping play 
crucial roles [33, 34]. Reasonable discrimination of param-
eter values naturally excites the interest of engineers. The 
effectiveness of numerous methods has been verified in 

experiments such as the peak picking method (PP) [35], sto-
chastic subspace identification (SSI) [36], natural excitation 
technique (NExT) [37], eigensystem realization algorithm 
(ERA) [37], random decrement technology (RDT) [38], 
and Ibrahim time-domain (ITD) [39]. For intricate struc-
tural systems, integration of approaches is needed to improve 
the quality of the parameter identification. This study will 
exhaustively provide the dynamic characteristics of a long-
span bridge based on RDT-ITD.

This paper develops a CEEMDAN-WT filter to reduce 
the noise in the data of two large-scale civil engineering 
structures monitored by real-time kinematic-GNSS (RTK-
GNSS). And a technique combining the autocorrelation 
normalization function and cross-correlation coefficient 
screens the useful IMFs. In the second section, the noise 
error impact brought by different environments is analyzed. 
The third section is the methodology and the experimental 
processing flow. In the fourth section, the RTK-GNSS tech-
nology is adopted to monitor the super-high-rise building; 
then, the noise is reduced by the hybrid filter and modal 
frequencies are identified. And the RTK-GNSS and acceler-
ometers are simultaneously used to monitor the deformation 
of a large-span bridge to get parameter information and com-
pare the variations of modal parameters caused by different 
traffic loads. To the end, a finite-element model (FEM) is 
established to judge the magnitude of the frequency errors 
obtained by two sensors, and the safety capability of the 
bridge is measured. The findings are summarized in the final 
section.

2 � RTK‑GNSS positioning errors and noise 
analysis

In the following parts, both targets were monitored in an 
environment with a large water-covered area; even though 
measurement points were at a specified distance from the 
water, they still could not avoid adverse effects to the results. 
Simultaneously, it is known from multipath principles that 
the error size is related to the reflection coefficient of the 
environment around the receiver antenna. The reflection 
coefficient varied because of the difference in reflection 
source media. For those reasons, this paper elected the 
water area for a test, while the cement floor was compared 
to explore noise effects.

The test lasted for 8 h was conducted on November 6, 
2019, and the radius of the two environments (open cement 
floor and water) was about 100 m, 50 m. The equipment 
consisted of three RTK-GNSS receivers, two of which as 
mobile stations with a sampling frequency of 10 Hz, and 
the remaining one was the reference station (Fig. 1). The 
reference station was 600 m and 760 m from the two sites. 
Because the mobile station location was fixed on the static 
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ground and the measurement baseline was short, the coor-
dinates of the positioning points should all be the same in 
theory. Although there are some errors (such as satellite and 
ephemeris errors), they can be effectively eliminated by the 
internal differential of the RTK. However, the coordinates 
in Fig. 2 change with time; it is known from RTK-GNSS 
principles and error sources that error is mainly background 
noise dominated by multipath. It can be seen from Fig. 2 
that the two site amplitudes fluctuate within 15 mm in the 
xy direction. In the z-direction, the amplitude variation is 
slightly higher, approximately 20 mm.

The root mean square (RMS) values of amplitude varia-
tion for the two environments are calculated separately: the 
smaller the RMS, the smaller the error. In Table 1, the RMS 

values of the cement floor are lower than that of water, indi-
cating that the multipath-dominated noise generated by the 
reflection from the water surface is more serious. In addition, 
the RMS values in the z-direction are greater than those in 
the x and y direction for both environments. On one hand, it 
verifies that the planar positioning precision of RTK-GNSS 
is better than elevation. On the other hand, it also proves 
that the accuracy remains around 20 mm under the strong 
interference of smooth water surface on the RTK received 
signal, which means the instrument has acceptable stability.

A point cloud map (Fig. 3), drawn from horizontal moni-
toring data, presents a comprehensive view of the position-
ing errors in the two environments. After RTK differential 
processing and error analysis, the difference of the mul-
tipath-dominated noise leads to the variation of two points 
cloud maps. The amplitude variations in the x-direction of 
the two sites are remarkably similar. In contrast, the y ampli-
tude fluctuation of the water is slightly larger than that of the 
cement floor. The data dispersion in Fig. 3b is also greater, 
implying that it may generate bigger errors and should not 
be ignored. In addition, the shapes of the two-point cloud 
maps are different: the geometry of the water error cloud is 
nearly circular, and that of the cement floor is elliptical. This 

Fig. 1   Instrument arrangement: 
a on the cement floor; b on the 
water surface; c the reference 
station

Fig. 2   Monitor results of two environments: a amplitude for the cement floor; b amplitude for the water-covered area

Table 1   Root mean square (RMS) values of amplitude variation (unit: 
mm)

Directions Cement floor Water

x 4.351 4.598
y 3.572 4.446
z 4.791 7.097
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reveals differences in the positions and directions of the two 
reflection points.

The analysis above helps to understand the background 
noise distinctions from multiple perspectives. Since the 
experimental subjects are in a water environment, weaken-
ing the monitoring noise errors are necessary.

3 � Methodology

3.1 � CEEMDAN

CEEMDAN [40] is an improved algorithm based on EMD 
[41] and EEMD [42]. Its core adds white noise to the origi-
nal signal at a specific stage in EMD performing. The added 
white noise can be offset during EMD operation so that the 
IMFs are decomposed more thoroughly. The steps are as 
follows:

1.	
where x(t) is the original signal, �i(t) (i = 1, 2, ... , N) 
is white noise, and X(t) is the signal after adding white 
noise.

2.	 EMD is performed on the signal X(t) to gain f i
1
(t) , then 

the average value is summed and calculated as the first 
IMF component:

3.	 The first residual is:

4.	 Through the obtained r1(t) , the second IMF is derived 
from decomposing r1(t) + �1E1�

i(t) again:

(1)X(t) = x(t) + �0�
i(t),

(2)f1(t) =
1

N

N∑
i=1

f i
1
(t).

(3)r1(t) = x(t) − f 1(t).

where Ej(⋅) is the j = 2, 3...J-th IMF component.
5.	 Calculated from j = 2, 3, ... , J , the j-th residual com-

ponent is also available:

6.	 Calculated sequentially, the j + 1-th IMF component is 
as follows:

Repeat steps 5 and 6, if the residual component is a mono-
tonic function, the decomposition is stopped:

After the above steps, the signal after CEEMDAN can 
be expressed as

3.2 � Wavelet threshold

Wavelet coefficients gained from the decomposition of the 
soft threshold function have good continuity and do not 
oscillate. The resulting signal is also smooth, so the soft 
threshold is used in this paper. It can be expressed as:

(4)f2(t) =
1

N

N∑
i=1

E1

[
r1(t) + �1E1

(
�
i(t)

)]
.

(5)rj(t) = rj−1(t) − f j(t).

(6)f j+1(t) =
1

N

N∑
i=1

E1

[
rj(t) + �jEj

(
�
i(t)

)]
.

(7)r(t) = x(t) −

J∑
j=1

f j(t).

(8)x(t) =

J∑
j=1

f j(t) + r(t).

Fig. 3   Error point cloud dia-
gram for two environments: a 
cement floor; b water
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where � is the threshold, �j,k is the wavelet coefficient, 
sgn(⋅) is the sign function and � is the transformed wavelet 
coefficient.

3.3 � Autocorrelation normalization function

Figure 4 shows the features of the autocorrelation normaliza-
tion function for the ordinary and noise signals. Both signals 
reach a peak at zero points, but the value of the noise signal 
tends to zero independently of time, while the value for nor-
mal signal fluctuates with time at other locations.

(9)𝜔=

{
sgn(𝜔j,k)(

|||𝜔j,k
||| − 𝜆)

|||𝜔j,k
||| ≥ 𝜆

0
|||𝜔j,k

||| < 𝜆
.

3.4 � Cross‑correlation coefficient

where f i(t) is each IMF, and R ( |R| ≤ 1 ) is the cross-cor-
relation coefficient; the larger the value of R, the better the 
correlation of each IMF with the original signal. Here, R is 
one of the indicators and combines with the autocorrelation 
function to choose key IMFs.

3.5 � Experiment processes

The experimental procedure in Fig. 5 involves two parts. 
In the first part, (a) the dynamic monitoring results of the 
super-high-rise building and the long-span bridge are used 
as the original signals. (b) CEEMDAN is performed to get 
a series of IMFs, and two methods of R and the autocorrela-
tion function are combined to screen IMFs. Valid IMFs are 

(10)R =

∑∞

t=0
x(t)f i(t)�∑∞

t=0
x2(t)

∑∞

t=0
f
2

i
(t)

,

Fig. 4   Autocorrelation nor-
malization function of different 
signals

Fig. 5   The experimental 
flowchart
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reserved, noisy IMFs with low or no signal are discarded. (c) 
Wavelet soft thresholds are conducted on IMFs that contain 
both useful information and noise. Finally, the IMFs without 
processing are recombined with noise-reduced IMFs and 
corresponding residual components to get a reconstructed 
signal. In the second part, the dynamic characteristics of 
the two structures are extracted based on the reconstituted 
signal. It is worth noting that the accelerometer and RTK-
GNSS monitor the main span together during the test on 
the bridge.

4 � Engineering monitoring by RTK‑GNSS

4.1 � Performance evaluation of CEEMDAN

Before the actual experiment, a simulation test for CEEM-
DAN was done to verify its reliability and identify the 
advantage in reconfiguration:

Taking Eq. (11) as an example, where A1 = 7 , A1 = 9 , 
A1 = 11 , X(t) is composed of three sine signals and a random 
noise signal n(t) , where x(t) represents the pure signal, as 
shown in Fig. 6.

In Fig. 6, because of noise, the actual value of the original 
pure signal cannot be accurately identified. Then the signal 
was recombined with EEMD and CEEMDAN, respectively.

In Fig. 7, the maximum absolute value of the recombina-
tion error of EEMD is 0.48, while CEEMDAN has a minor 
error ( 5 × 10−15 ); the RMS results of both are 0.0125 and 
1.837 × 10−15 . From Fig. 8, the signal after noise mitiga-
tion by CEEMDAN matches better with the original pure 
signal than EEMD. More importantly, CEEMDAN can also 
improve computational efficiency and save computing time.

(11)

⎧
⎪⎪⎨⎪⎪⎩

x1(t) = A1 sin(2� × 1.5t)

x2(t) = A2 sin(2� × 3t)

x3(t) = A3 sin(2� × 5t)

x(t) = x1(t) + x2(t) + x3(t)

X(t) = x(t) + n(t)

.
Fig. 6   Analog signal

Fig. 7   Reconstruction errors: a EEMD; b CEEMDAN

Fig. 8   Comparison between the reconstructed signal and the pure signal: a the pure signal and the signal reconstructed by EEMD; b the pure 
signal and the signal reconstructed by CEEMDAN
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4.2 � Dynamic monitoring of the super‑high‑rise 
building

4.2.1 � Introduction for the object

The Tianjin Radio and television tower (Tianta) in Fig. 9 is a 
super-high-rise building. Tianta, which stands at the height 
of 415.2 m, was built in 1991 primarily for tourism, enter-
tainment, and TV broadcasting. It is now the sixth-tallest 
tower in Asia and the third tallest in China. Moreover, it is 
the only tower located in a water environment in the world.

Tianta is a reinforced concrete tube-in-tube structure that 
consists of a tower base, tower body, tower, antenna, and 
other components. The inner tube contains an elevator and 
fire ladder. The outer barrel is cylindrical, with a diameter 
gradually decreasing from 36.5 m at the bottom to 12.5 m 

at the top. The incline changes every 10 m, and the wall 
thickness slowly decreases from 1.8 to 0.7 m. Tianta was 
built 30 years ago and exposed to long-term wind loads, 
lake water, and other factors that may lead to the aging and 
deformation of the structural elements.

4.2.2 � Experimental implementation

The experiment was on January 13, 2021, in Tianjin of 
China. The humidity was 18%, the temperature was 9 °C, 
and the wind speed was 1.2–6.6 m/s. The main instruments 
were four RTK receivers that simultaneously received GPS, 
GLONASS, and BDS satellite signals. The receiving sta-
tions were 242–278 m of the Tianta tower, considering struc-
ture, instrument installation location, and local environment. 
Three RTK receivers were regarded as mobile stations (D1, 
D2, D3) in the east, west, and south at the height of 274 m. 
The north direction is obscured, so there was no monitoring 
point. The other receiver acted as a reference station on the 
open ground 100 m from the mobile station, as shown in 
Fig. 10. The sampling frequency was enhanced from 1 to 
10 Hz with a height cut-off angle of 15°. The experiment 
continued for 10 h.

4.2.3 � Hybrid filter noise reduction and results analysis

Table 2 gives the horizontal displacement changes of the 
above three monitoring points. The drift ratio (the ratio 
of the horizontal displacement to the measured height) is 
from 0.007 to 0.03%. The displacement change of D3 in 
the north–south direction is larger than that in the east–west 
direction, while D1 and D2 are opposite. The maximum 
displacement of D1 in the east–west reaches 97.1847 mm, 
primarily because of the wind direction and speed.

Fig. 9   The super-high-rise building

Fig. 10   The mobile stations and 
reference station: a in the south; 
b in the east; c in the west d; the 
reference station

Table 2   Horizontal 
displacements of three 
monitoring points

D1 D2 D3

North–South (mm)  − 30.6244 to 28.8285  − 20.5179 to 29.5902  − 38.1344 to 37.4552
East–West (mm)  − 53.1727 to 97.1847  − 47.3092 to 38.4979  − 29.0875 to 35.6217
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Partial data of D3 were selected for analysis. The dis-
placement in Fig. 11 changed within ± 40 mm, and the val-
ues in the north–south direction (F) were overall larger than 
those in the east–west direction (V), consisting with the 
trend of D3 in Table 2. Since the distance between the refer-
ence station and the mobile station is limited to 100 m, and it 
is known from Sect. 2 that the background noise dominated 
by multipath is the significant error source, it overwhelms 
the monitoring information.

CEEMDAN was conducted on the signals (F, V) and 
the results are shown in Fig. 12a, b. Signals were decom-
posed into 14 IMF with one residual component; each IMF 
reflected its local information characteristic. The high-fre-
quency IMFs contained many noise components but could 
not be accurately identified. Figure 12c, d show the charac-
teristics of the autocorrelation normalization for each IMF, 
and according to the definition in Sect. 3.3, the first eight 
IMFs are primarily noisy. If discarding those IMFs directly, 
the useful information could not be retained to the greatest 
extent. Therefore, the cross-correlation coefficient was used 
to further select IMFs.

In Table  3, the R values of IMF1–IMF6 in F and 
IMF1–IMF5 in V are comparatively small as invalid IMFs, 
while the remaining IMFs complete the first reorganization 
of the signal. Then, the db6 wavelet soft threshold is applied 
to IMF7–IMF8 in F and IMF6–IMF8 in V. The denoised 
IMFs are recombined with the unprocessed IMFs and residu-
als to accomplish the second recombined signal.

Figures 13 and 14 show that the displacement (F1, V1) 
changed within ± 30 mm, and the structure underwent a 
short-period motion without long-term irreversible deforma-
tion. Tianta could be treated as a variable-section cantilever 
structure. Its motion under the horizontal thrust dominated 
by wind load presented a reversible alternating vibration 

response consistent with the structure's planar motion, and 
the real-time displacement could be observed relatively 
clearly. Simultaneously, the other three methods are run to 
illustrate the proposed method's reliability. The evaluation 
criteria were the signal-to-noise ratio (SNR), root mean 
square error (RMSE), and R. The RMSE value decreased 
and the SNR increased, indicating that the better the denoise 
effect, the smaller the fitting error between the noise-reduced 
signal and the original signal.

Table 4 shows that EEMD had the poorest noise reduc-
tion, with the smallest SNR and the largest RMSE values; 
CEEMDAN is better than EEMD, but not significantly. In 
V1, the SNR value of EEMD-Chebyshev is greater than that 
of EEMD, yet the fitness and correlation with the original 
signal are poor due to excessive noise reduction. However, 
CEEMDAN-WT mixed filtering has the highest SNR val-
ues (10.496 dB, 7.482 dB) and the lowest RMSE values 
(3.570 mm, 3.096 mm). Besides, after the proposed noise 
reduction method, the R values of the reconstructed signal 
and the original signal are 0.959 and 0.923, which are also 
higher than the other three methods. The above analysis indi-
cates that the proposed technique achieves adequate noise 
reduction and retains useful information well, proving its 
superiority.

Figure 15 shows the corresponding power spectrum den-
sities (PSDs) of F1 and V1, and the first-order frequency is 
0.1583 Hz. The second and third-order frequencies are in a 
narrow frequency band. Based on the structural frequency 
and sampling frequency (10 Hz), the vibration period cal-
culated is about 6.32 s, so the samples for two vibration 
cycles (120 data points) were selected randomly from the 
signal before and after noise reduction. Then, every 10 data 
points were averaged to get 12 sampling points, the motion 
trajectory (Fig. 16) in the plane direction was fitted based 
on the least squares method. Finally, the primary vibration 
direction of the structure in terms of the trajectory tilt angle 
iteratively calculated is about 35°37' from north to east.

In 2014, our team tested Tianta and established the FEM 
to pick up the modal frequencies (0.1586, 0.2250, 0.2763, 
0.3785, 0.4581 Hz) [43]. In the previous experiment, the 
instrument sampling frequency was 1 Hz, and there was 
some occlusion at the placement, so only the first-order 
frequency (0.1590 Hz) was gained, and the error with the 
FEM was 0.252% [43]. This time, by enhancing the sam-
pling rate and proposing a mixed noise reduction method, 
the first three modal frequencies in dense mode are obtained. 
The error between the first-order frequency and the FEM is 
0.189%, smaller than the prior error. In Table 5, the errors 
of the third-order frequencies with FEM are relatively small, 
4.379% and 2.895%, respectively. This experiment extracted 
the first three modal frequencies of the low-frequency 
structural response perfectly, and Tianta maintains stability 

Fig. 11   Original displacement
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Fig. 12   CEEMDAN decom-
position and autocorrelation 
normalization function: a IMFs 
derived from F; b IMFs derived 
from V; c autocorrelation func-
tion of IMFs for F; d autocorre-
lation function of IMFs for V
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without significant changes in intrinsic frequencies over a 
long period.

4.3 � Dynamic characteristic analysis 
of the suspension bridge

4.3.1 � Description of the Fumin bridge

Fumin bridge is an important traffic hub between the Hedong 
and Hexi Districts of Tianjin in China. It runs north to south 
and officially opened to traffic in 2008. Figure 17 is the over-
all view. Its structural type is a concrete self-anchored sus-
pension bridge with a total span of 340.3 m (Fig. 18). The 
bridge is 38.6 m wide with six two-way lanes; a guardrail 
protects the lanes and sidewalks. The main span is 157 m. 
The bridge tower is a single 58 m tower, and the side span is 
anchored by a set of cables (two side by side, without verti-
cal slings). The principal span is fixed on both sides with 
14 plus vertical slings for cables. According to the traffic 
statistics for the bridge, an average of 25 vehicles per min-
ute pass, primarily small cars, and the bridge vibration is 
noticeable when large trucks pass. The bridge is located in 
a prosperous area of Tianjin and is exposed to a corrosive 
water environment.

4.3.2 � Instrument arrangement

The instrumentation consisted of two triaxial accelerome-
ters, one velocimeter, and seven RTKs, one of which served 
as a reference station, with the remaining six as mobile 
stations. They were placed symmetrically at the side span 
(M1) and the main span (M2 and M3). Accelerometers were 
also symmetrically arranged on M2 (Figs. 18 and 19). The 
east–west, north–south, and vertical directions along the 
bridge are x, y, and z.

Mobile stations were fixed by a support rod instead of 
a tripod to prevent the displacement by bridge deck vibra-
tion. Meanwhile, the horizontal bubble on its surface ensures 
that the support rod is vertical. The reference station was 
installed on open ground, and the distance was 100 m, 
150 m, and 200 m from M1, M2, and M3, respectively. In 
addition, the axis of the accelerometer was aligned with the 
center of the RTK to ensure that they were at the same point.

The experiment lasting 10 h was on September 17th, 
2020. The winding temperature was 21–26.8 °C, the wind 
speed was 2.1–6.2 m/s. During the experiment, there were 
more than ten satellites available, and the horizontal dilu-
tion of precision (HDOP) was 0.8–1.1. The altitude cut-off 
angle was 15°, the RTK and accelerometer sampling rates 
were 10 and 100 Hz.

4.3.3 � Data processing and characteristic analysis

The bridge exhibits a stochastic vibration when subjected 
to random dynamic loads. The vehicle load had a more sig-
nificant impact on the vertical vibration than the wind, so 

Table 3   Cross-correlation coefficients of the analyzed signal and each 
IMF

IMFs Coefficient IMFs Coefficients

F V F V

IMF1 0.175 0.249 IMF9 0.247 0.312
IMF2 0.103 0.145 IMF10 0.221 0.343
IMF3 0.109 0.157 IMF11 0.248 0.391
IMF4 0.119 0.204 IMF12 0.301 0.397
IMF5 0.146 0.263 IMF13 0.534 0.362
IMF6 0.181 0.411 IMF14 0.702 0.390
IMF7 0.216 0.351 Res 0.563 0.323
IMF8 0.238 0.340

Fig. 13   Displacement after noise reduction

Fig. 14   Planar displacement
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recording the traffic load for 3 consecutive days at differ-
ent periods. After multivariate analysis and classification, 
the numbers of vehicles of the same type passing through 

the bridge deck between 13:00 to 14:00 and from 16:30 to 
17:30 were 17 and 56 vehicles per minute; thus, the partial 

Table 4   Noise reduction results 
by different methods

Signals Criterion EEMD CEEMDAN EEMD-Che-
byshev

Proposed method

F1 SNR (dB) 3.869 7.212 7.963 10.496
V1 2.716 4.338 3.061 7.482
F1 RMSE (mm) 5.717 4.991 5.010 3.570
V1 4.439 4.077 5.647 3.096
F1 R 0.911 0.917 0.916 0.959
V1 0.838 0.862 0.752 0.923

Fig. 15   Power spectral density 
functions: a PSD of F1; b PSD 
of V1

Fig. 16   Movement trajectory: a 
before noise reduction; b after 
noise reduction

Table 5   Frequency errors Orders Frequency (Hz) Errors (%)

F1 signal (Ff1) V1 signal (Fv1) FEM (Fa1) �
1
=
|||
Fa−Ff1

Fa

||| × 100 �
2
=
|||
Fa−Fv1

Fa

||| × 100

First 0.1583 0.1583 0.1586 0.189 0.189
Second 0.2233 0.2225 0.2250 0.756 1.111
Third 0.2642 0.2683 0.2763 4.379 2.895
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Fig. 17   Full view of Fumin 
bridge

Fig. 18   Schematic diagram of the bridge structure and sensor placement (unit: cm)

Fig. 19   Equipment layout: a the 
mobile station; b the reference 
station; c accelerometer
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vertical displacement data (Z and H) from two time periods 
were selected.

In Fig. 20a, the displacements of Z and H were − 34.7 
to 30.5 mm, − 47.7 to 43.3 mm, and the vertical deforma-
tion of H was higher, suggesting that more vehicles passed 
through in this period. The distance between the mobile sta-
tion and the reference station was shorter than 300 m. The 
water area was closer to the bridge deck, exacerbating the 
effect of background noise.

The abnormal data were processed by the Pauta ( 3� ) cri-
terion, then they were smoothed by a five-point cubic algo-
rithm to procure Z1 and H1, as shown in Fig. 20b. Although 
noise pollution is slightly less than in Fig. 20a, it is still 
insufficient to identify displacement changes, necessitating 
reliable noise reduction further.

The hybrid filtering method in Sect. 4.2.3 was applied 
to get Z2 and H2. It can be seen from Fig. 21 that the noise 
interference was significantly relieved without altering the 
signal waveform. The corresponding R values of Z2 and Z, 
H2 and H were 0.938 and 0.961, respectively, showing that 
the correlation before and after the signal noise reduction 
was acceptable and retained valuable components. Fig-
ure 22a gives the PSDs of the residuals (G, W) after sub-
tracting signals before and after noise reduction. We see no 
pronounced frequency peaks in the graph, meaning preserv-
ing the inherent frequency of the bridge while attenuating 
the noise. The PSDs of Z2 and H2 are shown in Fig. 22b. 
The first-order frequencies of the two signals are 0.761 Hz 
and 0.702 Hz. The inherent frequency of the bridge changed 
under the excitation of different traffic loads, but the change 
was small.

The RDT [44, 45] allowed obtaining the free decay 
responses of modes involving the intrinsic frequency, and 
the interception time considered was 30 s (Fig. 23) based 
on the actual situation of signals. The intense fluctuations 
for displacements and the limitation of the sampling length 

led to the random decrement signatures were not the most 
entirely ideal state but could be further treated as input 
responses to ITD [46]. After screening and eliminating the 
pseudo-modal values, the damping ratios extracted by ITD 
were 0.93% and 1.68%. The damping ratio rose with the 
increase of vehicles, thereby reflecting the dynamic working 
behavior of the bridge during operation.

4.3.4 � Accelerometer results analysis

The monitoring results of the accelerometer and RTK were 
compared, choosing the part of the acceleration data in the 
same period as the Z for analysis. Figure 24 presents the 
results. Figure 25a showed that the first and second-order 
frequencies of the bridge were 0.774 Hz and 1.472 Hz, 
respectively. Comparing Figs. 22b and 25a, the first-order 
frequencies of Z2, H2, and C2 were different. This indicated 

Fig. 20   Displacement: a original displacement (Z, H); b pre-processed displacement (Z1, H1)

Fig. 21   Displacement after noise reduction (Z2, H2)
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that not only did the magnitude of the vehicle load change its 
frequency, but the frequencies obtained by different monitor-
ing systems varied. Meanwhile, the accelerometer gained the 
second-order frequency. The 40 s data intercepted in signal 
C2 was the response of RDT, and the first two order damping 
ratios identified by ITD were 2.77% and 0.39%.

4.3.5 � Finite element verification

The ANSYS established a FEM (Fig. 26) of the bridge; each 
node had six degrees of freedom, i.e., translation and rota-
tion of x, y, and z. Bridge decks, single towers, and lon-
gitudinal and transverse beams were adapted to BEAM44 
element; the diagonal cables and upright booms applied 
the LINK10 element. The elastic modulus of the steel box 

Fig. 22   The PSDs: a the PSDs of signal residuals (G, W); b the PSDs of Z2 and H2

Fig. 23   Free decay signatures: 
a free decay response of Z2; b 
free decay response of H2

Fig. 24   Acceleration before and 
after noise reduction by hybrid 
filter: a original signal (C); b 
denoised signal (C2)
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girder was 2.0 × 1011 Pa, the Poisson's ratio was 0.3. The 
analysis yielded the first five order frequencies of 0.743, 
1.455, 2.491, 2.727, and 3.805 Hz. The third- and fourth-
order frequency bands were narrower. Generally, the first 
three order frequencies were more meaningful for assessing 
structural performance.

The first-order frequency relative errors between the two 
sensors (Z2 and H2 derived from RTK-GNSS, C2 obtained 

by accelerometer) and the FEM were 2.42%, 5.52%, and 
4.17%; the second-order frequency relative error of C2 with 
finite element was 1.17%. RTK could identify the first-order 
frequency and that the relative error procured by Z2 was 
smaller than that of the accelerometer. The first-order fre-
quency of H2 had the largest relative error, more than 5%. 
However, the accelerometer could identify more frequencies, 
and the relative errors were within reasonable ranges.

Fig. 25   The PSD function and 
free decay signature: a the PSD 
of C2; b the free decay response 
of C2

Fig. 26   The FEM and the first 
five modes: a the Fumin bridge 
model; b the first-order mode; 
c the second-order mode; d the 
third-order mode; e the fourth-
order model; f the fifth-order 
mode
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When the height cut-off angle and sampling rate were 
all the same, RTK could identify the first three order fre-
quencies from the horizontal displacement after noise 
reduction of Tianta, but only the first-order frequency from 
the denoised vertical displacement of the Fumin bridge. 
There are two reasons possibly for this. First, RTK-GNSS 
is more sensitive to low-frequency responses, and the hori-
zontal positioning accuracy of RTK is better than that of 
vertical positioning. Second, the modal frequencies of the 
super-high-rise building will not change under short-time 
low-speed wind loads, while the effect of random vehicles 
results in a reduced contribution for higher order modes of 
the bridge and fails to detect more frequencies. A solution 
would be to continuously increase the sampling rate of RTK-
GNSS to improve the monitoring accuracy and identify 
higher order frequencies of bridges.

4.3.6 � Security assessment

The probability density function (PDF) illustrates the safety 
of a bridge more conveniently. According to the Specifica-
tions for Design of Highway Suspension Bridge of China 
(JTG/T D65-05–2015), the maximum allowable vertical 
displacement of the stiffened girder is 1/250 of its span. 
The maximum deflection calculated was ± 18 mm using the 
design standard section length (4.5 m). In general, bridge 
vibration signals conform to the Gaussian distribution, and 
the function is as follows:

where X is the displacement, a = −18 mm, b = 18 mm. Two 
key parameters need to be determined, namely the mean and 
standard deviation. The mean values for signals in Fig. 21 
were − 1.49 mm and − 0.029 mm; the standard deviations 
were 10.59 mm and 16.39 mm. Figure 27 presents the PDF.

Depending on Eq. (12), the Pf values are 0.105 and 0.257, 
suggesting that the bridge had an increased probability for 
local structural failure in a short time under the impact of 
congested traffic. However, it is still within a safe range. 
Consequently, the PDF can be used to control the magni-
tude of daily bridge traffic volume and contribute a quanti-
tative reference for achieving a regular structural reliability 
assessment.

5 � Conclusions

This article investigated the dynamic deformation of two 
large civil structures via RTK-GNSS technology, demon-
strating the practicality of the GNSS system for providing 

(12)Pf = 1 − P(a ≤ X ≤ b) = 1 −

b

�
a

f (x)dx,

structural modal parameters, real-time behavior character-
istics, and reliability assessment. Here are the conclusions 
summarized.

(1)	 The study analyzed the adverse effects of the water 
environment on the monitoring results and developed a 
CEEMDAN-WT hybrid filtering to attenuate the back-
ground noise. Compared with the other three methods 
(EEMD, CEEMDAN, and EEMD-Chebyshev), the 
practicability of the proposed hybrid filtering in denois-
ing and information retention was confirmed after ana-
lyzing the SNR, RMSE, and correlation of denoised 
signals in the super-high-rise building. The method was 
equally valid for the data noise reduction of the Fumin 
bridge.

(2)	 More modal frequencies of the super-high-rise building 
were captured by evaluating the spectral characteris-
tics of horizontal signals after noise reduction. Fur-
thermore, the inaccuracy for the first-order frequency 
was smaller than in the earlier experiment. The super-
high-rise building still maintained normal status with 
the natural frequency had no significant change after 
long-term use.

(3)	 The intrinsic frequencies and damping ratios of the 
Fumin bridge were picked up under different loads; 
their frequency relative errors with the FEM were 
2.42% and 5.52%, illustrating that traffic burthen could 
cause variation for dynamic characteristics. In compari-
son, the accelerometer identified the first two frequen-
cies and damping ratios perfectly. In addition, with the 
dramatic growth of short-time vehicle loads, the failure 
probability of the bridge increased from 0.105 to 0.257.

Fig. 27   The PDFs of Z2 and H2
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