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Abstract
Damage detection is of great importance in reducing maintenance cost and preventing collapse of structures. Despite exist-
ing damage detection methods, the current literature lacks a comprehensive method, which: (i) is applicable to complex 
structures with large degrees of freedom, (ii) captures even low-level damages, and (iii) gives reasonable accuracy in the 
presence of uncertainty conditions such as noise and temperature. Hence, this study proposes a damage detection algorithm 
based on discrete wavelet transform and an ensemble of pattern recognition models, in which: (1) vibration data is decom-
posed through discrete wavelet transforms, (2) the decomposed data is compressed using principal component analysis, (3) 
individual damage models of the structure are trained through pattern recognition models of deep neural network and couple 
sparse coding, where the compressed decomposed vibration data as well as damage data are inputted, and (4) ultimately, the 
individual damage models are merged into one by majority voting to predict damage location and severity of the structure. 
The proposed algorithm is tested on a numerical model of a one-bay three-story steel frame, and experimental data of a large-
scale bridge structure. It is found that the algorithm can precisely detect low-level damages at multiple locations, even in 
beam–column connections and complex structures, in the presence of uncertainty conditions such as noise and temperature.

Keywords Structural damage detection · Discrete wavelet transform · Principal component analysis · Deep neural 
networks · Couple sparse coding · Ensemble classifiers

1 Introduction

1.1  Background

Structural health monitoring (SHM) has received much 
attention as a rigorous tool in damage detection of engineer-
ing structures, particularly bridges and buildings. Structural 
damages such as cracks, corrosion, fatigue, and excessive 
stresses cause a change in modal parameters of the structure 
that consequently may affect their serviceability or dynamic 
performance [1, 2]. Vibration-based damage detection meth-
ods are extensively used in SHM, due to their efficiency in 
instrument deployment. Acoustic, ultrasonic, and radiogra-
phy inspection methods are not applicable to unreachable 

parts of structures, and visual methods significantly depend 
on technical experience and engineering judgment. How-
ever, vibration-based methods are not error proof. This is 
because extracted modal parameters of the structure are 
affected by uncertainties emanated from limited number of 
installed sensors, uncontrolled excitations, environmental 
conditions, and noisy measured vibration data.

Vibration-based methods [3] track variations in dynamic 
properties of structures within time or frequency domain. 
However, natural frequency and modal damping are not reli-
able for damage detection of complex structures and simple 
structures with low-level damage [4–7]. Modal-based dam-
age detection methods such as mode shape, modal curva-
tures, modal damping, and strain energy are not able to cap-
ture desirable low-level damages. Modal characteristics are 
extracted indirectly from the measured frequency response 
functions (FRFs) data at the excitation frequencies around 
resonances. In modal characteristics-based model updat-
ing, measured data are less than unknown parameters. In 
contrast, FRF-based model updating reduces loss of infor-
mation as it includes vibration data over a broad range of 
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frequency [8, 9]. Hence, FRFs give more reliable damage 
detection results. This is because FRF estimation reduces 
modal analysis errors during modal extraction and curve 
fitting processes [10–13]. Signal processing is an essential 
part of the vibration-based methods. In this regard, the com-
plete ensemble empirical mode decomposition with adaptive 
noise technique and multiple signal classification was used 
to identify the presence, location, and severity of damages 
in a steel truss bridge model [14, 15].

1.2  Fourier transform‑based methods

Fourier transform (FT) analysis method describes a vibration 
data over its frequency content. However, it does not account 
for discontinuities, local changes, and transitory properties 
of time-varying data [16]. Thus, extracted data from FT may 
not completely reflect the characteristics of a vibration data. 
To overcome non-stationary and local discontinuity proper-
ties of FT, short time Fourier transform (STFT) is used in a 
time–frequency domain analysis [17]. However, for a short 
time interval, a stationary signal is needed, and an extended 
time interval requires an increase in frequency resolution. 
Consequently, spectral components of a large interval are 
smeared and result in a decreased resolution within the time 
domain [18]. To address this shortcoming, an autoregres-
sive (AR) model was developed [19]. For the AR model, 
there are two main shortcomings: (1) length of the station-
ary interval controls time and frequency resolution of the 
time–frequency representation, and (2) reduction of the 
time interval gives lower-order models and reduces assess-
ment accuracy [19]. Further, fractal dimension analysis was 
developed to detect cracks in structural elements. In fractal 
dimension analysis, damage index is extracted by a constant 
moving window across the fundamental mode shape of the 
structure. However, inclusion of higher modes may lead to 
a false damage localization [20]. Instead of using traditional 
modal-based techniques such as FT, Mosavi et al. used sev-
eral time-domain statistical features including root mean 
square (RMS), shape factor, kurtosis, and entropy to study 
damage detections of bridges [21].

1.3  Wavelet transform‑based methods

Unlike FTs, wavelet transforms (WTs) represent a vibration 
data in time–frequency domain with localization [22–28]. 
The advantages of utilizing wavelets are to improve the fre-
quency resolution limitations of data associated with the 
previous techniques and efficiently separate the components 
of a signal. The WT is a decomposition algorithm that has an 
ability to analyze non-linear and non-stationary signals. WTs 
are categorized into discrete wavelet transform (DWT) and 
continuous wavelet transform (CWT). Using CWT and sta-
tionary wavelet transform (SWT), Cao and Qiao developed a 

two-step progressive wavelet analysis, and improved abnor-
mality analysis of mode shapes in damage detection [29]. 
In a different work, Wu and Wang conducted experimen-
tal studies adopting SWT and identified crack location and 
depth in a beam subject to a static displacement [30]. Okafor 
and Dutta used a small set of wavelet coefficients with uni-
formly spread white noise to represent a spatially localized 
abnormality in mode shape [31]. Montanari et al. reported 
an optimal number of sampling intervals based on spatial 
CWT damage detection methods in beam structures [32]. It 
was found that the optimal number of sampling intervals is 
correlated with deflection shape and damage location [32]. 
Solis et al. used a CWT to study variations in mode shapes 
for damage localization [23]. It was reported that damage 
location may be found using a small number of sensors and 
mode shapes [23]. Pnevmatikos and Hatzigeorgiou proposed 
a damage detection method using DWTs for a frame struc-
ture subject to ground motion excitations [27]. In this work, 
a high-accuracy damage detection was achieved by increas-
ing the level and order of the DWTs, even in the presence of 
noisy signals [27].

1.4  Artificial intelligence‑based methods

Although several studies on WT-based damage detection 
methods showed their efficiency in capturing even small 
damages, these methods may suffer from poor accuracy 
if used in complex structures or in the presence of multi-
ple damages and uncertainties such as noise, temperature, 
and limited number of sensors. Pattern recognition is an 
artificial intelligence (AI)-based method and has become 
popular in structural damage detection due to its excellent 
self-organization, self-learning, auto-association, and non-
linear modeling capability [33–35]. Artificial neural net-
work (ANN) methods are often used on finite element (FE) 
models of structures or on real measured vibration data to 
identify damages of tested structures [33–36]. Padil et al. 
demonstrated that ANNs give inaccurate damage detection 
results if used with highly noisy data [37]. Application of 
ANNs for damage detection is limited to structures with 
a small number of degrees of freedom (DOFs) as ANNs 
require extensive computational efforts for structures with 
high DOFs [8, 38, 39]. Bakhary et al. developed a progres-
sive method for noise-free and low-level damaged structures 
using ANNs [40]. Substructure technique with a two-stage 
ANN was implemented to identify damage location and 
severity in simple structures [40]. Mehrjoo et al. proposed 
a method for damage severity assessment of joints in truss 
bridge structures using an ANN classifier. However, their 
method was not able to capture very small damages in the 
presence of low-level noises [8].

Deep neural networks (DNNs) were shown to be more 
effective compared to conventional ANNs [41]. DNNs 
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represent deep learned features of original vibration data 
much better, and hence make them more desirable for clas-
sification. In addition to DNNs, couple sparse coding (CSC) 
was also adopted as a second classification method and spec-
tral tool to represent and compress high-dimensional signals 
[42]. The idea of collating several classifier systems or an 
ensemble of classifiers to overcome limitations of a single 
classifier was first proposed by Wolpert [43]. Fallahian et al. 
proposed a new damage detection method in the presence 
of uncertainties such as high-level noise and temperature 
effects using DNNs and CSCs [44].

In recent years, convolutional neural networks (CNNs)-
based models have been significantly utilized to extract spa-
tial features of images, which are usually 2D data. This has 
led to promising results in image classification [45], image 
segmentation, and object detection. Due to two fundamen-
tal properties, including spatially shared weights and spatial 
pooling, CNNs-based models can extract features with high 
precision. Additionally, recurrent neural network (RNNs)-
based methods can generate and address memories of 
arbitrary-length sequences of input patterns [46]. The most 
application of RNNs-based models is in supervised learning 
tasks with sequential input data, such as sentiment classifi-
cation and target outputs [47]. Yang et al. proposed a novel 
hierarchical deep CNN to identify damage in structures [48].

1.5  Contribution

As the above survey demonstrates, although each damage 
detection method has its own advantage/advantages, a gen-
eral method, able to cover all aspects of structural damage 
detection, is yet to remain a research topic of interest. Hence, 
in this work, we overcome the shortcomings of previously 
developed damage detection methods, mainly (1) identifica-
tion of low-level damages in the presence of uncertainties 
like noise and temperature for structures with large DOFs, 
and (2) reduction of false detections. To achieve this aim, 
we combine several methods and use capabilities of each 
method to develop a more general and comprehensive dam-
age detection algorithm. The proposed algorithm is com-
posed of four primary steps: (1) vibration data are decom-
posed by DWT, (2) the decomposed data are then reduced 
by principal component analysis (PCA), (3) DNN and CSC 
are used to train individual damage models of the structure 
using the compressed decomposed vibration data and dam-
age data (including damage locations and severity) as input 
parameters, and (4) the individual damage models are com-
bined by majority voting to predict damage of the structure. 
This proposed four-step algorithm considers vibration data 
such as FRF and structural response signals as input param-
eters for training two DNN and two CSC damage models. 
To account for uncertainty effects, a white Gaussian noise 
pollution with up to 20% noise-to-data ratio is added to the 

vibration data, and a uniformly distributed temperature gra-
dient is introduced to the numerical model of the structure. 
To demonstrate the efficiency and accuracy of the proposed 
algorithm in the detection of low-level damages, simulated 
vibration data of a one-bay three-story frame is considered 
and assessed. Additionally, measured vibration data of a 
large-scale bridge structure with many DOFs is used for 
validation of the proposed algorithm and comparison of the 
proposed method with the methods previously developed.

2  Damage detection algorithm

In this section, the proposed damage detection algorithm 
is described in detail. The proposed algorithm is schemati-
cally illustrated in Fig. 1. The vibration data set is taken 
from a tested structure or a numerical model of the struc-
ture, respectively (Fig. 1a), and is composed of two differ-
ent subsets: (1) training vibration subset, which is used to 
train damage models of the structure (Fig. 1b), and (2) test 
vibration subset, which is used to test the robustness of the 
algorithm (Fig. 1g). The input vibration data set could be a 
set of displacement response signals, acceleration response 
signals, or frequency response functions (FRFs). Both 
vibration subsets are decomposed by DWT (Fig. 1c), and 
subsequently, are reduced and compressed by PCA [49] 
(Fig. 1d). The decomposed and compressed training vibra-
tion subset along with the corresponding training damage 
subset (Fig. 1e) are then used to train four individual damage 
models for the structure: (1) two CSC-based damage models 
for FRFs and displacement signals, and (2) two DNN-based 
damage models for FRFs and displacement signals (Fig. 1f). 
Afterward, a final damage model is created by collating the 
four trained individual damage models (Fig. 1h). To evaluate 
the performance of the algorithm, the test vibration subset is 
inputted to the final damage model of the structure (Fig. 1g), 
and the output is compared with the test damage subset to 
assess the accuracy of the algorithm (Fig. 1i). The detailed 
information on each step of the proposed algorithm is given 
in the following sections. So, for damage detection, any new 
vibration data (Fig. 1g) can be inputted to the trained dam-
age model (Fig. 1h) to predict the location and severity of 
any possible damage (Fig. 1i), as collectively shown by a red 
dashed rectangle in Fig. 1.

2.1  Vibration data decomposition by DWT

As shown in Fig. 1, the first primary step of the proposed 
algorithm is to decompose the training vibration subset by 
wavelet analysis, as a powerful tool in characterization of 
local features (Fig. 1c). Let us consider a training vibration 
subset, X, composed of P vibration vectors of size N, which 
forms a matrix of size N × P:
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where Xj is the jth training vibration vector:

in which T is the transpose of the vector and xij is the ith ele-
ment of the jth vibration vector. The CWT of the jth vibra-
tion vector,  Xj(t), is given by:

where a and b are scale and transition parameters; �(t) is 
the complex conjugate form of the mother wavelet function, 
�(t) ; R is the set of real numbers; and ‖ is the absolute value 
operator. Herein, the Haar wavelet is used in the damage 
detection process. To perform discrete wavelet analysis of 
the jth vibration vector,  Xj(t), the parameters a and b need to 
be discretized. A common choice for discretizing parameters 
a and b are  2n and  2nm, respectively, where n and m are sets 
of positive integers [50]. So, the discretized wavelets, �n,m , 
are given by:

(1)X =
[
X1 X2 … Xj … XP

]
,

(2)Xj =
[
x1j x2j … xij … xNP

]T
,

(3)

Xj(a, b) =
1√�a�

+∞

�
−∞

Xj(t)�
�
t − b

a

�
a ≠ 0 ∈ R, b ∈ R,

where �n,m creates an orthonormal subspace. The DWT 
decomposes a vibration vector to its approximate and detail 
components, as shown in Fig. 2. The vibration vector is 
passed through a series of low-pass filters to analyze low-fre-
quency contents (approximate components), and a series of 
high-pass filters is used to analyze high-frequency contents 
of the data (detail components) [27]. The detail component 
at level n is given by:

where

and the approximate component at level n is given by:

Finally, the jth vibration vector,  Xj(t), at level n is recon-
structed by:

(4)�n,m(t) =
1√
2n

�

�
t

2n
− m

�
,

(5a)Dn =
∑

m
an,m�n,m,

(5b)an,m = ∫
+∞

−∞

Xj(t)�n,m(t) dt,

(6)An =
∑
J>n

DJ ,

Fig. 1  The proposed damage detection algorithm
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It should be noted that the term, 

∑
J≤n

DJ (i.e., the detail com-

ponents) provides useful information on detecting low-level 
damages, which contain high frequencies of vibration.

2.2  Vibration data compression by PCA

The training vibration subset, decomposed by DWT in 
Sect. 2.1, is compressed in this section by PCA [49, 51–53] 
(Fig. 1d) to avoid high computational efforts, particularly in 
structures with large number of DOFs. Throughout PCA, 
the decomposed training vibration subset, X , composed of P 
vibration vectors of size N, Xj(t) (see Eq. 7), is transformed 
into a new subset of P vibration vectors of size Q (Q < N). 
This is an eigenvalue problem, and eigenvalue decomposition 
of the covariance matrix is used in the transformation process. 
Hence, mean vector, �X , and covariance matrix, CX, of the 
decomposed vibration data set are first determined as:

where

(7)Xj(t) ≈ An +
∑
J≤n

DJ ,

(8)�X =
1

P

P∑
j=1

Xj,

(9a)CX =
1

P

P∑
j=1

XjX
T

j
,

Then, the eigenvalue problem is defined as:

Solving this eigenvalue problem, eigenvalues, �i , and 
their corresponding eigenvectors, �i , are determined, and 
the eigenvalues are sorted in descending order:

Hereafter, the decomposed N × P subset is transformed 
to a reduced Q × P subset according to proportion of total 
variance:

Thus, the proportion of total variance shows the quality 
of the reduced Q × P subset. Finally, the vibration vectors 
of the reduced Q × P subset is determined:

in which β is the transformation matrix:

2.3  Training damage models

In this section, the decomposed and compressed training 
vibration subset (Fig. 1d) as well as the corresponding train-
ing damage subset (Fig. 1e) is used to train four individual 
damage models of the structure using deep learning methods 
of DNN and CSC (Fig. 1f).

As shown in Fig. 3, DNN creates a hierarchy structure 
including an input layer, an output layer, and a number 
of hidden layers. The method generally learns features of 
higher layers of the hierarchy structure from features of 
lower layers [54–56]. For developing a damage model, the 
input layers are the training vibration and corresponding 
damage subsets. For the trained damage model, the input 
layer is the test vibration subset, and the output layer is the 
predicted damage subset. This training generates a robust 
pattern recognition model of the structural damage, general-
izes normal conditions of the vibration and damage subsets, 
and characterizes environmental and operational variations 
such as temperature and noise through its low-level features 
[44]. Thus, in this work, DNN is trained on the vibration 

(9b)Xj(i) = Xj(i) − �X(i),

(10)CX� = ��,

(11)

� =
[
�1 �2 … �i … �N

]

� =
[
�1 �2 … �i … �N

]
�1 ≥ �2 ≥ … ≥ �i ≥ … �N ,

(12)
�Q =

Q�
k=1

�k
N∑
i=1

�i

,

(13a)X̃j = 𝛽Xj,

(13b)� =
[
�1 �2 … �i … �Q

]T
,

Fig. 2  A four-level discrete wavelet decomposition
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subset, X̃ , and corresponding damage subset, Y , to learn cor-
relations between vibration data and structural damage, and 
develop a damage model of the structure. Afterward, the test 
vibration subset, X̃′ , is inputted to the DNN-trained damage 
model, and then, the residual matrix, r, as a training quality 
index, is determined:

where Y ′ is the matrix of the predicted damage and is the 
output of the DNN-trained damage model.

In the proposed algorithm, to capture any damage infor-
mation and features ignored by DNN, CSC-trained damage 
models are also developed [49]. Hence, the training vibra-
tion and damage subsets are fed into CSC. Let us consider 
a training damage subset, Y, composed of P vectors of size 
M, which forms a matrix of size M × P:

where Yj is the jth training damage vector:

CSC represents the training vibration vector, X̃j , and the 
training damage vector, Yj , as sparse linear combinations:

in which the vector α is the sparse code of the vibration vec-
tor, X̃j , and has K elements; DX is a transformation matrix of 
size Q × K , and is called dictionary of the vibration vector. 
Similarly, the damage vector is represented by:

(14)r = Y − Y �,

(15)Y =
[
Y1 Y2 … Yj … YP

]
,

(16)Yj =
[
y1j y2j … yij … yMP

]T
,

(17)
X̃j ≈ DX𝛼,

𝛼 =
[
𝛼1 𝛼2 … 𝛼i … 𝛼K

]T
,

(18)Yj ≈ DY�,

where DY is a transformation matrix of size M × K , and is 
called dictionary of the damage vector. Generally, CSC uses 
X̃j and Yj as inputs, and solves the following optimization 
problem to train a damage model for the structure:

where κ1 and κ2 are the regularization parameters; ‖‖1 and 
‖‖2 are the first and second norm operators, respectively. 
From the optimization problem in Eq. (19), all variables are 
determined. The sparse vector, α, reconstructs the input 
vibration vector, X̃j , from both the dictionary, DX , with mini-
mum error, ‖‖‖X̃j − DX𝛼

‖‖‖
2

2
 , and the dictionary, Dy , with mini-

mum distance from Yj , 
‖‖‖Yj − DY�

‖‖‖
2

2
.

The test vibration vector, X̃′
j
 , is then used in the CSC-

trained model (see Eq. 19), to predict the damage, Y ′
j
 , by 

solving this minimization problem:

To solve the optimization problems in Eqs. (19) and (20), 
the feature-sign search algorithm is used [57]. It should be 
noted that in the proposed algorithm, both FRFs and dis-
placement signals are separately used in DNN and CSC as 
input vibration data, and thus four individual damage mod-
els, including two DNN-trained and two CSC-trained dam-
age models, are created. Collating these four damage mod-
els, a more general and thorough trained damage model of 
the structure, which considers various features of the struc-
ture, is developed.

(19)min
𝛼∈RK

∶
���X̃j − DX𝛼

���
2

2
+ 𝜅1‖𝛼‖1 + 𝜅2

���Yj − DY𝛼
���
2

2
,

(20)min
Y
�

j
∈RM×P

∶
���X̃

�
j
− DX𝛼

���
2

2
+ 𝜅1‖𝛼‖1 + 𝜅2

���Y
�
j
− DY𝛼

���
2

2
,

Fig. 3  An example of the DNN 
layout used for training the 
structural damage model
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2.4  Final damage model of structure

The four individual damage models, two DNN- and two 
CSC-trained damage models, developed in Sect. 2.3, are 
combined together in this section to reach a final damage 
model (Fig. 1h). This is because the ensemble learning 
increases damage detection accuracy, and reduces selec-
tion probability of a poor single classifier [58]. Each of the 
damage models is trained on a re-weighted version of the 
original output to generate a sequence of new models [59]. 
The weights are then modified to address any pattern mis-
classification. Afterward, an ensemble classifier is created by 
forward iteration. In each iteration, the first decision stump, 
is trained with a random subset of the weighted output. For 
the second decision stump, half of the weighted output, 
classified correctly by first decision stump, is selected as 
the training subset. The third decision stump is then trained 
with a higher weight of misclassified observations on the 
first and second decision stumps. Finally, the three decision 
stumps are combined through a majority voting, where the 
final decision is the one that correctly classifies more than 
half of the output [60].

3  Validation of damage detection algorithm

In this section, the accuracy of the damage detection algo-
rithm proposed in Sect. 2 is evaluated using two case studies: 
(1) numerical model of a one-bay three-story frame, which 
is modeled in SAP2000 program, and (2) experimental data 
of a large-scale bridge, which is modeled in MATLAB. For 
both case studies, during the training phase of the algorithm, 
70% of the input data is used to train DNN and CSC damage 
models. For the test phase of the algorithm, the remaining 
30% of the input data is used to evaluate the accuracy of the 
algorithm. In this study, for DNN, the number of layers is 
taken 5, where the number of neurons is 100, 350, 150, and 
50, respectively, for the 1st–4th layers. The neurons number 
for the last layer is based on the number of the elements of 
the structure.

3.1  Numerical model case

Supports and connections play an important role in the 
stability of structures, particularly during seismic events. 
Hence, in this section, the performance of the proposed 
algorithm in capturing low-level damages, localized near 
a support or a point of geometric discontinuity such as a 
corner connection, is evaluated in a frame structure. The 
numerical model is a 2D one-bay three-story frame shown 
in Fig. 4. The story height and the bay length are 3 m and 
2.5 m, respectively. Table 1 summarizes material properties 
of the frame elements. The 2D FE model of the frame is 

composed of 32 nodes. Each node has three DOFs including 
two translational and one rotational DOFs. Given fixed sup-
ports at nodes 31 and 32, the numerical model has 90 DOFs. 
The beam–column connections (elements 28–33) are consid-
ered semi-rigid, and thus are modeled with very short beam 
elements of very high relative rigidity. The frame is excited 
by a dynamic half-sine impulse load or a concentrated static 
load at vertical DOFs of nodes 21, 25, 28 and horizontal 
DOFs of nodes 2, 14, 8 and 5. The acceleration and displace-
ment responses are measured at vertical DOFs of nodes 20, 
24, 29, and horizontal DOFs of nodes 1, 4, 7, 13, and 16. 
To consider measurement errors and uncertainties, a white 

Fig. 4  Numerical case study: a 2D one-bay three-story frame struc-
ture; a geometry of the frame and element numbers, and b node num-
bers

Table 1  Geometry and material properties of the three-story frame 
structure

Parameter Value

Modulus of elasticity (E) 200 GPa
Mass density 7850 kg/m3

Poisson’s ratio 0.3
Cross-sectional area of I shape section 23.28  cm2

Moment of inertia of I-shape section 1461  cm4
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Gaussian noise pollution with up to 20% noise-to-signal 
ratio is added to the response signals.

For this numerical case study, stiffness reduction of an 
element or elements of the frame is taken as the damage 
indicator, and accordingly, five damage cases are introduced, 
as shown in Fig. 5. Case 1 (Fig. 5a) considers a single dam-
age case, where the middle element of the left column (ele-
ment no. 2) is the only damaged member with 30% stiffness 
reduction. In this damage case, since the excitation location 
(node 2) and the response measurement location (node 1) 
are very close, high levels of noise may pollute the measured 
response signal, and hence the test data is polluted with up 
to 20% noise. Case 2 (Fig. 5b) also includes a single dam-
age, in which the damage is adjacent to the beam–column 
connection element no. 28. This damage case investigates 
the efficiency of the proposed algorithm in damage detec-
tion of connections with low-level damages. The damage 
considered is 6% for this scenario. Case 3 (Fig. 5c) is a dou-
ble-damage scenario. Elements no. 8 and 23 suffer from 15 
and 40% stiffness reduction, respectively. This damage case 

verifies the proposed algorithm for simultaneous damage 
detection in beams and columns. Case 4 (Fig. 5d) comprises 
two beam–column connections, no. 29 and 30, which expe-
rience 10% and 15% stiffness reduction, respectively. Case 
5 (Fig. 5e) is a multi-damage case to validate the proposed 
algorithm for simultaneous damage detection in connections, 
beams, and columns. Connection no. 28 and elements no. 
8 and 24 are damaged by 10%, 20%, and 15%, respectively.

Vibration data and damage data are inputted to the algo-
rithm (see Fig. 1). In this study, the FRF data and displace-
ment response of the frame are used as input vibration data 
in the algorithm. For each damage case, the vibration data 
comprises: (1) FRFs between the excitation DOFs and the 
measurement DOFs, and (2) the displacement response sig-
nals at the DOFs. The input damage data is composed of 
both the damage location (element number) and damage 
severity (stiffness reduction of the corresponding element).

As shown in Figs. 6 and 7, DWT (see Sect. 2.1) decom-
poses the FRF data (excitation at node 4 and response meas-
urement at node 25) into its approximation and detail com-
ponents at level 5 for the undamaged structure. In Fig. 6, 
the FRF data includes no noise, while in Fig. 7 10% noise 
is added to the data. One level of approximate component 
(A5) and four levels of detail component (D2–D5) are used 
to train the data for the damage detection process. As seen 
in Fig. 7, the noise affects the level 1 detail component (D1), 
particularly at very high frequencies, compared to the other 
components. Thus, D1 can be ignored in the damage detec-
tion process. The same decision is made about the displace-
ment response signals.

Table 2 compares the actual damage and the predicted 
damage by the algorithm for the five damage cases. For case 
1, the predicted damage (32%) is very close to the actual 
damage (30%). For case 2, the algorithm detects the low-
level damage (8%) with a slight error. For multiple damage 
cases (damage cases 3, 4, and 5), the severity of the pre-
dicted damages is close to the actual damages.

The coefficient of determination (R2) is also determined 
to evaluate the performance of the algorithm:

where y is the actual value, y′ is the predicted value, and r is 
the number of damage scenarios. The mean R2 for the frame 
structure is 0.96 for 100 damage scenarios.

A robust damage detection method not only mini-
mizes damage detection errors for safety reasons, but also 
reduces the number of false damage predictions for eco-
nomic considerations. Figure 8 shows the distribution of 
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Fig. 5  Damage cases (rectangular hatches) for the frame structure: a 
case 1, b case 2, c case 3, d case 4, e case 5
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the damages between all elements of the frame structure 
for damage cases of 3 and 5. As seen in Fig. 8, the pro-
posed method minimizes false detections for damage cases 
3 and 5, as the value of the predicted damage for most of 
the undamaged elements is close to zero. Figure 9 shows 
the distribution of the damages between all elements of 
the frame structure for damage cases of 3 and 5 using 
the DNN model only. Unlike the proposed method, which 
ensembles DNN and CSC models, the DNN model only 
gives a poor prediction at false detections. It should be 
mentioned that a similar pattern is seen for other damage 
cases 1, 2, and 4 not shown here. 

3.2  Experimental test case

The previously published experimental data for I-40 bridge 
over the Rio Grande in New Mexico is used to validate the 
efficiency of the proposed algorithm in detection of low-
level damages in complex structures. Detailed information 
on I-40 bridge, such as geometric properties, experimen-
tal data, and damage detections can be found in [61–63]. 
The elevation view and cross section of the bridge is shown 
in Figs. 10 and 11, respectively [61]. Forced vibration and 
ambient vibration tests were performed on I-40 bridge. The 
forced vibration excitations were applied by a hydraulic 

Fig. 6  The approximation 
component, A5, and the detail 
components D1–D5 of the FRF 
of the undamaged frame with 
0% noise
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shaker using a uniform random signal between 2 and 12 Hz. 
The response of the bridge was measured using 26 equally 
spaced accelerometers installed on both sides of the bridge 
deck (see Fig. 12). Four levels of damage were introduced 
in the vicinity of N7 using torch cuts in the web and flange 
of the bridge girder. These cuts resulted in approximate stiff-
ness reductions of 5% (damage case 1), 10% (damage case 
2), 32% (damage case 3) and 92% (damage case 4) [63].

The 3D FE model of the bridge consists of 144 elements 
for the concrete deck and 12 elements for each plate of the 
web. The numerical model was updated using experimen-
tal data from the undamaged structure. Table 3 summarizes 
the correlation between the numerical and experimental 

undamaged modes: ωe and ωn are the experimental and 
numerical natural circular frequencies. The modal assurance 
correlation (MAC) values demonstrate the accurate correla-
tion between the dynamic behavior of the undamaged real 
bridge with the updated numerical model.

Details on numerical modeling and modal analysis of 
the bridge can be found in [44]. To account for uncertainty 
effects of temperature, a uniformly distributed temperature 
gradient is introduced to all elements of the FE model. The 
four DNN- and CSC-trained damage models are developed 
using FRFs and displacement signals data generated by the 
FE model. After the training phase, experimental FRFs of 
the bridge are fed to the trained damage model, and the 

Fig. 7  The approximation 
component, A5, and the detail 
components D1–D5 of the FRF 
of the undamaged frame with 
10% noise
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damage in each element of the bridge is determined. The 
results are given for two different cases: (1) when the FRFs 
and displacement signals are decomposed by DWT (DWT 
DNN-CSC, DDC), and (2) when the original FRFs and 
displacement signals are used without any decomposition 
(DNN-CSC, DC).

Table 4 summarizes damage detection results of the 
bridge for the four damage cases. For the case of the 

extremely large damage (damage case 4, 92%), slight 
errors are seen for both approaches. The accuracy of the 
DDC approach increases compared to the DC, as the 
damage severity reduces. In particular, for 5% and 10% 
damages, DDC gives 4.5% and 14% damages for element 
24, respectively. Figure 13 shows the damage detection 
results for the low-level damage case (5%) using both 
DDC and DC approaches. Using DC, the number of false 
detections is high, particularly in elements 2, 10, 26, and 
48 (Fig. 13a). These false detections are due to the tem-
perature variation introduced in the FE model. In con-
trast, DDC precisely detects the location of the damage 
in element 24, and reduces the number of false detections 
(Fig. 13b). Thus, the proposed algorithm detects damage 
location and severity, even for low-level damages, in the 
presence of temperature gradient introduced in the FE 
model.

The false damage detections, particularly at the sup-
ports, could be due to the uniformity of the temperature 
used here, while there may be non-uniform gradients of 
temperature in reality. Thus, having temperature sensors 
placed along the bridge structure, the results are improved. 
Moreover, temperature variations can lead the supports to 

Table 2  Actual and predicted damages for the frame structure and 
different damage cases

Damage case Damaged ele-
ments

Actual damage 
(%)

Predicted 
damage (%)

1 2 30 32
2 28 6 8
3 8 15 18
4 23 40 38

29 5 8
30 10 17

5 8 20 19
24 15 18
28 10 7

Fig. 8  Actual and predicted 
damage values for elements of 
the frame structure for: a dam-
age case 3, and b damage case 5
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Fig. 9  Actual and predicted 
damage values for elements of 
the frame structure using the 
DNN model only for: a damage 
case 3, and b damage case 5
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Fig. 10  Elevation view of I-40 
bridge [61]

Fig. 11  Cross section of I-40 
bridge [61]
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Fig. 12  Sensor arrangement for 
the experimental test on I-40 
bridge [61]

Table 3  Correlation between numerical and experimental modes of 
the undamaged bridge

Mode no. MAC ωe (Hz) ωn (Hz) Δω (%)

1 0.997 2.48 2.48 0.00
2 0.992 2.96 3.02 2.03
3 0.994 3.50 3.58 2.29
4 0.979 4.08 4.18 2.45
5 0.982 4.17 4.14 0.72
6 0.981 4.63 4.70 1.51

Table 4  Actual and predicted damages for the elements of the bridge 
structure

Case Actual damage 
(%)

Predicted damage 
(DDC) (%)

Predicted 
damage (DC) 
(%)

1 5 4 13
2 10 14 17
3 32 30 38
4 92 89 89

Fig. 13  Actual and predicted 
damage values for elements of 
the bridge structure and low-
level damage case (5%): a DC, 
and b DDC
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move or boundary conditions to change, both not consid-
ered in the numerical model of the bridge.

4  Conclusions

In this work, a new damage detection algorithm is devel-
oped based on an ensemble system of deep neural network 
and couple spare coding. The vibration data of the struc-
ture is decomposed by discrete wavelet analysis before 
training the ensemble system. Majority voting is used to 
combine the output of the deep neural network and couple 
spare coding classifiers.

The numerical study of the frame structure, subject to 
single- and multi-damage cases, demonstrates that the 
algorithm detects low-level damages with a very high level 
of accuracy, particularly in beam–column connections in 
the presence of noise. From the study of the large-scale 
bridge structure, it was found that the algorithm: (i) locates 
low-level damages and predicts their severity with high 
precision in the presence of temperature, and (ii) gives 
lower false damage detections. This study generally shows 
that the combination of ensemble pattern recognition mod-
els and wavelet analysis techniques is promising, and gives 
better prediction of damage location and severity.
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