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Abstract
The advent of parallel computing capabilities, further boosted through the exploitation of graphics processing units, has 
resulted in the surge of new, previously infeasible, algorithmic schemes for structural health monitoring (SHM) tasks, such 
as the use of convolutional neural networks (CNNs) for vision-based SHM. This work proposes a novel approach for crack 
recognition in digital images based on coupling of CNNs and suited image processing techniques. The proposed method 
is applied on a dataset comprising images of the welding joints of a long-span steel bridge, collected via high-resolution 
consumer-grade digital cameras. The studied dataset includes photos taken in sub-optimal light and exposure conditions, with 
several noise contamination sources such as handwriting scripts, varying material textures, and, in some cases, under pres-
ence of external objects. The reference pixels representing the cracks, together with the crack width and length, are available 
and used for training and validating the proposed model. Although the proposed framework requires some knowledge of the 
“damaged areas”, it alleviates the need for precise labeling of the cracks in the training dataset. Validation of the model by 
means of application on an unlabeled image set reveals promising results in terms of accuracy and robustness to noise sources.

Keywords  Vision based · Damage identification · Machine learning · Crack detection · Steel bridge · Structural health 
monitoring

1  Introduction

A large number of structures and significant parts of exist-
ing infrastructures built in the last century are now close 
to, or even beyond, the end of their design lifespan. Due to 
inherent defects that relate to fabrication and construction 
processes, as well as owing to the cyclic nature of opera-
tional (e.g., traffic) loads, a common pathology for steel 
infrastructures concerns the formation of fatigue cracks. 

Such cracks accelerate structural deterioration and, in the 
absence of proper inspection and maintenance, may eventu-
ally lead to failure [1].

Structural health monitoring (SHM) techniques have 
been proposed as a complementary practice to on-site vis-
ual inspections, which typically require substantial human 
resources and suffer from bias, as the inspectors’ assessment 
is subjective [2]. SHM techniques offer a means for reduc-
ing such bias, via complementary exploitation of evidence 
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stemming from data. This evidence is built up via extrac-
tion of engineered features that are sensitive to damage and 
subsequent establishment of rigorous metrics which serve 
for damage detection and, possibly, quantification. To this 
end, vibration-based techniques, mostly based on ambient 
recordings, have gained popularity especially for bridges and 
slender structures [3, 4]. However, the parameters obtained 
using such methods generally refer to the global behavior 
of structures; thus, being less sensitive to local damage. In 
addition, information on localization may only be delivered 
underutilization of dense sensor networks [5]. The deploy-
ment of such dense networks on large-scale civil structures, 
however, leads to issues related to data management and 
instrumentation costs. In an attempt to relax constraints 
relating to cost and cabling implications, wireless sensing 
technologies have been adopted, requiring strict data syn-
chronization [6–8].

When wishing to detect local defects, particularly mani-
festation of cracking, vision-based procedures offer a valu-
able enabler [9–12] due to their effectiveness in identifying 
structural anomalies, via use of cameras directly deployed on 
the structure, mounted on drones, or used by expert opera-
tors [13, 14]. Vision-based methods initially relied exclu-
sively on image processing techniques to detect superficial 
defects, such as corrosion and cracks. In this context, Abdel-
Qader et al. [15] offer a comparative study considering the 
Haar wavelet transform, the Fourier transform, and two edge 
detectors (namely, the Sobel and the Canny detectors) for 
crack identification in bridges. Edge detection methods have 
dominated early literature in this domain [16, 17]. However, 
this technique may lead to ill-posed problems, since light-
ing and image noise may considerably affect the analysis 
result, eventually yielding inaccurate crack detection [11]. 
Although denoising techniques may increase accuracy, their 
efficiency is strongly case dependent [11, 18]. A review on 
image processing techniques used for crack detection can be 
found in reference [19].

With the development of high-performance graph-
ics processing units (GPUs) and parallel computing [20], 
an ever-increasing number of applications are employing 
machine learning and, in particular, neural networks for 
vision-based damage detection [21]. Convolutional neural 
networks (CNNs), inspired by the functioning of the visual 
cortex of animals, are commonly used in the vision-based 
field. In general, machine learning tools in vision-based 
applications can identify cracks at the image, block, or pixel 
level, according to the capability of a given algorithm to 
detect either the presence of a crack in an inspection image, 
determine the approximate cracked region, or identify the 
precise pixels where the crack is, respectively [22]. As an 
example of successful applications of machine learning in 
vision-based crack detection, Li and Zhao [23] modified 
the AlexNet convolutional neural network to classify image 

regions as either “cracked” or “non-cracked”; thus, achiev-
ing a block-level validation accuracy of 99.06%. Similarly, 
Zhang et al. [24] employed a CNN able to classify small 
image regions with a precision of 86.96% for road crack 
detection applications. Cha et al. [11] presented a study on 
concrete cracks, obtaining 98% accuracy on the binary clas-
sification of 256 × 256-pixel regions as either “damaged” or 
“undamaged” areas.

Recently, the pixel-level identification class has gained 
increasing interest, since the accurate identification of crack 
pixels can quantify the crack size and, thus, the entity of 
damage. Dung and Anh [25] employed an encoder–decoder 
network (called “U-net”) trained end-to-end using a dataset 
of pixel-level annotated images to identify pixels related to 
reinforced concrete cracks. A similar network was employed 
by Huyan et al. [22] to identify cracks on road pavements 
with 99.01% accuracy. In most of the mentioned studies, the 
material background was relatively uniform and the noise 
sources were limited to changing lighting conditions. Xu 
et al. [26] used a deep fusion CNN exploiting the combina-
tion of multilevel features to achieve an overall accuracy of 
more than 95% in the validation phase. These results were 
obtained in an environment with complex disturbances given 
by crack-like handwriting scripts, different paint, and expo-
sure conditions; a setting which is typically met on actual 
bridge systems. Other techniques [14, 27] employ machine 
learning-based techniques to achieve super resolution and 
improve crack detectability in blurred image conditions.

In further overviewing relevant machine learning-based 
schemes, it is worth noting the work by Dung and Ahn [25], 
who presented a method based on a convolutional autoen-
coder to directly detect cracks in photos of concrete ele-
ments. The authors also underlined the difficulty in estimat-
ing the crack size due to different noise sources present in 
inspection images. Further researchers attempted to char-
acterize the identified cracks in terms of length, width, and 
area over the last few years. For instance, Jin et al. [28] cal-
culated the morphological skeleton of identified crack areas 
and employed a flexible kernel to estimate their size.

Although much effort has been made to improve the iden-
tification accuracy, supervised machine learning approaches 
that provide pixel-level results require a time- and labor-
intensive labeling process to build a training dataset: collect 
photos of damaged elements, perform manual and accurate 
offline labelling of the pixels corresponding to cracks, and 
train the CNN for further in situ identification. Also, the 
optimal training dataset is generally application-specific, i.e., 
different training sets are necessary for each case study since 
materials, lighting conditions, and defect types can be differ-
ent. Moreover, the input of CNN-based techniques typically 
consists of the entire inspection image. Qiao et al. [29] used 
a densely connected CNN with added upsampling layers 
to generate output images with the same size as the input 
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images, which, however, involve considerable computational 
cost, as do the complex U-net and AlexNet architectures, 
largely used for vision-based applications [23, 25].

This study proposes a light crack detection tool that can 
be easily adapted to diverse case studies due to the low effort 
required to build the training set. The proposed method is 
devised to offer an alert of damage, together with useful 
quantitative information, based on photos collected manually 
by operators or in an automated fashion by unmanned aerial 
vehicles (UAVs). A central element of this study lies in mini-
mization of false alarms triggered by different disturbance 
sources, such as varying light conditions and crack-similar 
elements (e.g., handwritten scripts). The proposed method 
aims at achieving a pixel-level identification by means of 
a hybrid algorithm based on a CNN operating at the block 
level and edge detection procedure, which allows identifying 
pixel-level cracks within the identified blocks. Compared 
against state-of-the-art approaches, this procedure reduces 
the labor related to the preparation of the training set, since 
the training images need to be labelled only at block level. 
Also, the input of the CNN is a set of small images (spe-
cific regions of the original inspection photos) that require 
a simpler architecture when compared against schemes in 
existing literature [11, 13, 22, 23, 25, 30]. Moreover, the 
edge detection process is applied to (small) selected regions; 
thus, comprising lower computational complexity than a tra-
ditional application of the same process to the entire inspec-
tion image.

Quantitative characteristics of the identified cracks 
(namely, total length and average width) can be identified 
using the proposed algorithm to provide operators with pre-
liminary indicators of the damage entity. These quantities 
are expressed in pixels and can be converted to physical 

measurements using well-known methods, depending on the 
hardware employed. For instance, if the inspection camera 
is monocular, photogrammetry techniques can be employed 
to retrieve measurements from a sequence of images taken 
from different angles [31, 32]. Also, recent studies have 
demonstrated that the use of binocular cameras (generally, 
a regular high-resolution camera coupled with a depth sen-
sor camera) can be effectively employed to obtain distance 
information from a single photo [33, 34].

The photos of fatigue cracks collected on the steel box 
girders of an in-service long-span bridge in China are used 
to validate the proposed approach. The data employed in this 
paper were provided in the framework of the 1st Interna-
tional Project Competition for Structural Health Monitoring 
(ICP-SHM, 2020) [35].

2 � Proposed method

We propose a two-step approach (Fig. 1) to localize pixels 
corresponding to cracks within an image of a structural ele-
ment/detail. These pixels will henceforth be referred to as 
“crack pixels”, while we refer to the photos of structural 
elements as “inspection images”. The first step involves 
identification of rectangular regions (of a fixed, user-defined 
size)—within the inspection image—that contain the crack. 
Specifically, the inspection images are divided into a grid of 
smaller regions without overlapping (in this study, 32 × 32 
pixels), which are then classified as “damaged” or “undam-
aged” regions using a CNN that admits single regions of the 
inspection images as input. Image processing techniques are 
subsequently applied, in the second step of the procedure, 
only to previously identified “damaged” areas to localize the 
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Fig. 1   Outline of the proposed procedure for crack detection
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crack pixels accurately. In this way, the computational bur-
den of image processing is minimized, and pixel-level crack 
identification can be easily obtained, although the training 
process is carried out at a block level. Depending on the 
nature of application and objective, Step 2 may be omitted. 
Moreover, between the two main steps, a cleaning procedure 
based on morphological operations can be applied to the 
outcome of the CNN to reduce false positives (FPs) and 
false negatives (FNs), maximizing true positives (TPs) and 
true negatives (TNs). Herein, “positives” denote the cracked 
regions, while “negatives” the pristine material, while “true” 
and “false” denote correctly or incorrectly identified sam-
ples, respectively.

In the next few sections, the methodology briefly 
described above and schematized in Fig. 1 is outlined in 
detail. Section 2.1 explains the pre-processing operations 
necessary to train the CNN. Sections 2.2 and 2.3 describe 
the two steps of the identification procedure that ultimately 
yields an estimate of the crack length and width.

2.1 � Pre‑processing of inspection images 
and training of the CNN

In general, for CNN applications, the input image size 
strongly affects the computational runtime both for network 
training and, more importantly, for the classification of new 
datasets. However, in most machine-learning-based pro-
cedures for crack identification, images representing large 
areas are directly used as input [29, 30]. In other applica-
tions, inspection images are processed using moving win-
dows; thus, considering regions of reduced size. In particu-
lar, Cha et al. [11] used 256 × 256 pixel windows to identify 
cracked areas in reinforced concrete structures. However, 
when different noise sources disturb the images, the efficacy 
of crack identification is correspondingly hindered. The con-
sideration of targeted localized image frames may facilitate 

distinguishing between actual cracked areas and crack-like 
noise sources. In particular, when the structural element 
images include handwritten scripts or when the material 
texture is wrinkled (e.g., welding joints), considering image 
regions that are a few times (i.e., 5–10 times) larger than 
the expected crack width can facilitate the identification of 
structural flaws. For this reason, in this study, the inspection 
images are preliminarily divided into 32 × 32-pixel regions 
that are provided as input to the proposed crack identification 
method. The processing of these small regions also involves 
faster computation, since the CNN has a 32 × 32 input layer 
and thus, requires few convolutional layers for classification. 
Figure 2 shows the architecture of the CNN employed in this 
study. Each layer is identified using an identification code 
(ID), which is described in Table 1.

Since Step 1 employs a CNN for region classification, it 
requires a preliminary training phase using labeled images, 
i.e., photos where the crack location is known. However, it 
should be noted that, contrary to existing methods, a rough 
knowledge of cracked areas is sufficient, considering that the 
labels are assigned to the 32 × 32 regions; this implies alle-
viation of the need to precisely highlight the exact crack pix-
els. Therefore, the training dataset consists of a set of regions 
labeled as “damaged” or “undamaged”. This characteristic 
considerably simplifies the labeling process, which can be 
done quickly by operators using, for example, a capacitive 
pen on a tablet.

The inspection images are first pre-processed and divided 
into regions to generate a dataset suitable for training the 
CNN. Specifically, based on the assumption that color infor-
mation in inspection images does not contribute to identify-
ing cracks, since different lighting conditions may distort 
it, the original inspection images are first transformed into 
grayscale figures. This process further simplifies the region 
classification, since the greyscale input data consists of a 
single-color layer instead of the three-color layers of the 
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Fig. 2   Architecture of the neural network for binary classification of regions of the inspection images as “damaged” or “undamaged”
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red–green–blue (RGB) coding; thus, reducing the required 
filters in the convolutional layers. Each grayscale image of 
the training set is then divided into 32 × 32-pixel regions 
forming the training samples for Step 1. It should be noted 
that, to increase the size of the training dataset, overlapping 
may be considered. However, in this study, the inspection 
images are divided using a regular grid without overlapping. 
A CNN with the structure shown in Fig. 2 is, thus, trained 
using the generated dataset.

2.2 � Step 1: selection of the damaged regions

The trained neural network should be able to discern 
between damaged and undamaged 32 × 32 regions of the 
inspection image. To process a new dataset to identify the 
damage regions in unlabeled inspection images, a pre-pro-
cessing procedure, consisting of desaturation and splitting 
(as described in the previous section), must be preliminarily 
performed. Hence, a set of testing 32 × 32 regions com-
patible with the trained CNN is generated. Each unlabeled 

input region can then be classified as either “damaged” or 
“undamaged”.

At this point, a strategy based on morphological opera-
tions can be employed to mitigate FPs and FNs outcomes 
that may result from diverse sources of noise, as shown in 
Fig. 3. To this aim, a map of the classified regions in the 
inspection image is first generated using Boolean variables. 
Specifically, a matrix with dimensions p × q is built, where 
p and q are the number of 32 × 32 regions that form the 
inspection image in the vertical and horizontal direction, 
respectively. Each element of this matrix is set to either 0 or 
1 (binary value), corresponding to a region being classified 
as “undamaged” or “damaged”, respectively. A cleaning pro-
cedure is, thus, performed by converting isolated damaged 
segments (i.e., instances of damage that are surrounded by 
undamaged segments in all directions, including the diago-
nals) into undamaged ones. Moreover, a dilate morphologi-
cal operation is performed to minimize discontinuities in 
damaged areas. In particular, for all the connected regions 
in the Boolean map (considering 8-connected pixels, i.e., 
sets of neighboring pixels that touch each other edges or 

Table 1   Description of the CNN layer architecture

ID Layer type Details

I Input 32 × 32 matrix containing the numeric values that represent the grayscale intensity of the 
pixels in the input region

C
s

Convolutional s filters with 3 × 3 kernel; padding is selected to have an output with the same size as the input
N Batch normalization Reduces the effects of internal covariate shift by normalizing each input across a mini-batch
R ReLU Rectified linear unit layer
M Max pooling Performs downsampling keeping a maximum of 2 × 2 pooling regions, without overlapping
M

g
Global max pooling Retains the maximum for each channel of the previous layer

F Fully connected Fully connected layer of two neurons
S Softmax Normalizes the inputs into probabilities
O Classification Classification layer with two outputs (“damaged” or “undamaged”)
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Fig. 3   Morphological operations performed to reduce incorrect classifications
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corners), an ellipse having the same second-moment as the 
analyzed connected region is evaluated. Then, its orien-
tation (i.e., the angle between the horizontal axis and the 
major axis of the ellipse) is calculated. The dilate operation 
is, thus, performed using line structuring elements with a 
length of 3 pixels and an angle given by the average of the 
orientations calculated throughout the map. An exhaustive 
theoretical explanation on the dilation and, more generally, 
on morphological operations is not reported here for the sake 
of brevity. However, interested readers can find more details 
in [36].

The final mask that identifies the damaged regions is then 
obtained by reconverting the corrected Boolean map into 
a matrix with the same size as the inspection image. The 
regions selected by this mask can then be processed through 
Step 2 of the proposed approach to identify the crack pixels. 
It should be noted that the identified crack regions typically 
form a small portion of the inspection image. As a result, 
the number of pixels processed in the next step of the proce-
dure is considerably reduced, decreasing the computational 
runtime considerably.

2.3 � Step 2: crack detection and characterization

In many practical applications, a rough approximation of 
the crack size is sufficient to prioritize inspections or rais-
ing alarms when limited resources are available. Never-
theless, accurate identification of cracked areas, including 
precise identification and characterization of crack pixels, 
remains the ultimate goal of crack detection approaches. 
In this study, only the damaged regions identified in the 

previous Step 1 are examined to highlight the crack pixels. 
Step 2 includes a crack detection and a crack characteriza-
tion sub-step.

Crack detection The first process is applied to local-
ize the crack pixels in the identified damaged regions 
(Fig. 4a). To this end, the Sobel edge detection method 
is employed [37]. This method involves calculating the 
gradient G of a given identified region A as

where G
x
 and G

y
 are two images describing the row and col-

umn gradient approximations of A , respectively, calculated 
as the following two-dimensional convolutions:

where ∗ is the convolution operator.
To facilitate further processing, a Boolean map is gen-

erated from G by assigning 0 and 1 values to the pixels 
that are below and above a threshold, which can be defined 
based on the signal-to-noise ratio (SNR) of the processed 
image [38] (Fig. 4b). Here, the threshold is automatically 
set to twice the root mean square (RMS) of G . Two further 
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morphological operations are subsequently performed, one 
consisting of filling, which replaces 0 values with 1 values 
in closed regions, and the second involves erosion, which 
removes small objects and smoothens the boundaries of 
identified areas. Such areas contain the identified crack 
pixels (Fig. 4c).

Crack characterization Upon localizing the crack pix-
els, the width and length of cracks are estimated. First, the 
topological skeleton of the Boolean map obtained from G 
is calculated using the medial surface axis thinning algo-
rithm [39] (Fig. 4d). Then, the distance transform [40] of the 
crack pixels is computed, assigning to each pixel a value that 
represents its distance from the closest point of the identi-
fied skeleton, as shown in Fig. 4e. In particular, the Euler 
distance between the centers of the pixels is employed as 
distance metric.

The crack length is then calculated as the number of skel-
eton pixels (i.e., the sum of the pixels in Fig. 4d). On the 
other hand, a global statistical distribution of the crack width 
for a given inspection image is calculated as the probability 
distribution of all the distance values lying on the edge of 
the identified crack (Fig. 4f). Specifically, the edge values 
are multiplied by 2 before obtaining the crack distribution, 
as it is assumed that the crack is locally symmetric with 
respect to its skeleton. In this study, the crack distribution 
is obtained by counting how many times each width value 
is identified in a given figure and representing these results 
on a width-occurrence diagram. Moreover, a representative 
value (e.g., the mode or the median of the width statistical 
distribution) can be calculated to synthetically characterize 
the crack width.

3 � Application

Automatic crack detection is a valuable tool to support and 
complement traditional visual inspection processes. In this 
section, the applicability of the method proposed in Sect. 2 
is evaluated, with crack detection and characterization exam-
ples. The two-step procedure is applied to a real set of photos 
collected in the proximity of welding joints of a cable-stayed 
bridge in China [26, 35]. Due to the initial defects of the 

material and the dynamic load of passing vehicles, fatigue 
cracks have nucleated around the welding joints over the 
years. The data employed in this paper were provided in the 
framework of the 1st International Project Competition for 
Structural Health Monitoring (ICP-SHM, 2020) [35]. Specif-
ically, a set of 100 randomly selected images (within the set 
of 120 labeled available images), with a size of 4928 × 3264 
pixels, collected with different camera parameters and light-
ing conditions, have been used to train the CNN, together 
with the corresponding labels. A high-resolution consumer-
grade camera (Nikon D7000, with a 23.6 × 15.6 mm CMOS 
sensor) was used to capture the photos from a distance var-
ying between about 1–2 m. The labels are Boolean pixel 
maps that have ones and zeros in crack and non-crack areas, 
respectively. The labels were generated by manually select-
ing the pixels corresponding to crack areas.

To prepare the data for the training process, each figure is 
first converted into a single-layer greyscale image and then 
divided into 32 × 32-pixel regions. In Fig. 5, three examples 
of both damaged and undamaged regions are shown for illus-
tration. It can be observed that varying lighting conditions 
result in significant differences between greyscale samples. 
Marker notes within the inspection images (Fig. 6a) pose 
an additional challenge and could affect traditional image 
processing procedures, such as edge detection, leading to the 
identification of FPs. The first step of the presented method 
is intended to mitigate this effect by examining sufficiently 
small regions, where cracks are clearly distinguishable. In 
this application, the training process of the CNN reported 
in Fig. 2 was conducted through 20 epochs using the Adam 
optimization algorithm [41], with a constant learning rate 
equal to 0.005, denominator offset 10–8, decay rate of the 
gradient moving average 0.9, and batch size 128. Training is 
performed using the MATLAB (R2020b version) software 
on an Intel® Core™ i7-8700 6@3.20 GHz-processor CPU 
with 2 GB NVIDIA Quadro P620 GPU, 32 GB RAM, and 
Windows 10 operating system. The number of undamaged 
samples in the training process is high (1,553,803) compared 
to the number of the damaged ones (16,997). However, the 
same weights are used for both the classes in the loss func-
tion to induce robust learning with respect to the wide pal-
ette of noise sources in the undamaged regions.

Fig. 5   Examples of damaged (a) and undamaged (b) regions
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A step-by-step example of the identification procedure 
is shown in Fig. 6. Specifically, Fig. 6b shows the damaged 
areas (highlighted with yellow squares) before applying the 
cleaning process described in Fig. 3. Some FPs and nega-
tives are present due to the uncertainties of the CNN related 
to changing lighting conditions, the roughness of the sur-
face, and the marker handwrites. After applying the cleaning 
process, the FPs are entirely removed, while FNs are also 
reduced, thereby improving the overall quality of the identi-
fied regions (Fig. 6c). The identified regions of this last fig-
ure are subsequently processed through Step 2, described in 
Sect. 2.3, resulting in the red crack pixels shown in Fig. 6(d).

Twenty further inspection images, not included in the 
training set, have been used to test the effectiveness of the 
proposed procedure.

Step 1 is applied dividing the inspection images into 
15,708 samples of size 32 × 32 pixels. The precision 
obtained in this step is p = 98.4%—calculated as TPs/
(TPs + FPs)—while the recall is r = 60.8%—calculated as 
TPs/(TPs + FNs)—resulting in an F1 score of 75.2%—cal-
culated as 2pr∕(p + r).

As a literature comparison, the results obtained by 
Xu et al. [26] are reported. The authors of the mentioned 
paper implemented a fusion convolutional neural network 
which showed excellent performance with the same data-
set employed in this study. Specifically, the authors classi-
fied 64 × 64 images in “crack”, “handwriting”, and “back-
ground”. In the mentioned study, considering cracks as 
“positives” and the other two classes as “negatives”, the 

precision obtained considering 6720 image samples of size 
64 × 64 pixels is 95.5%, while the recall is 93.9%, resulting 
in an F1 score of 94.7%. Although the recall obtained in this 
paper is relatively low compared to the reference study, the 
simplicity of the CNN and the pixel-level crack identifica-
tion obtained with a block-level training process are strength 
points of the presented method. Also, the precision indica-
tor is very high, denoting a correct classification of pristine 
areas as non-cracked regions, despite the presence of several 
disturbances.

It should be noted that a higher true-positive rate could be 
obtained by adjusting the weights of the loss function used 
in the training procedure, giving more importance to the cor-
rect identification of positive samples. However, in this way, 
the false-positive rate would increase, drawing the attention 
of expert operators even when positives are caused by distur-
bance sources. It should be noted that a relatively low value 
of false negatives does not mean that the cracks are not iden-
tified. Indeed, generally, missing positives in Step 1 would 
only affect the estimated crack length, as shown hereafter.

For the considered inspection images, the crack length 
and width have been identified using the characterization 
process presented in Sect. 2.3. The results obtained for each 
image are reported in Fig. 7. In particular, the crack length 
shown in Fig. 7a corresponds to the number of pixels iden-
tified as a topological skeleton in the identified damaged 
regions, while the crack width pertains to the mode value 
of the crack width distribution, which has been identified 
using the distance transform. These results indicate a general 

Fig. 6   Crack detection process: 
a original inspection image, 
b Identified crack regions, c 
clean identified crack regions, d 
identified crack pixels
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underestimation of the crack length, which mainly depends 
on the presence of FNs in the outcome of the CNN. On the 
other hand, crack width is typically accurately estimated. 
Specifically, the average error (in absolute value) on length 
identification in the 20 inspection images is 31%, while the 
average width error is 38% (that, however, represents an 
average error of 2 pixels).

The overall prediction accuracy of Step 1 is illustrated 
in Fig. 8 using the receiver operating characteristic (ROC) 
curve that has an area under the curve (AUC) equal to 0.804. 
For an in-depth analysis of the crack width, the occur-
rence distributions obtained for every inspection image are 
reported in Fig. 9, normalized to have a total occurrence 
value equal to 1. The inspection number is written in the 
upper-right corner of each plot, in the form I#. In general, 
the identification results show higher probability values for 
higher widths when compared against the reference val-
ues. This is attributed to noise sources that are incorrectly 

identified as crack areas during Step 2, as well as to the fact 
that reference crack pixels are user defined and, thus, may 
suffer from subjectivity and imprecision in the definition of 
the crack boundaries. Nevertheless, the mode of the identi-
fied occurrence distributions is generally close to that of the 
reference distributions.

In certain cases, discrepancy is noted in the numerical 
results shown in Figs. 8 and 9 with respect to the reference 
values. However, a visual analysis of the identified crack 
pixels shows that the identification outcome still coincides 
with actual cracked areas. Figure 10 contains the results 
obtained for four cases, namely inspections 10, 13, 16, and 
18. Inspection 10 has an underestimated crack width (see 
Fig. 9), inspection 13 results in an underestimated crack 
length, inspection 16 has a considerably overestimated crack 
width, while inspection 18 has a slightly overestimated crack 
length and underestimated crack width using the proposed 
method.

The original inspection images (left) contain RGB color 
information, which is removed prior to application of the 
proposed method. The yellow areas in the central part of 
Fig. 10 indicate the identified damaged regions after the 
cleaning process. Some FPs remain, especially in Fig. 10b 
and d. In the first case, FPs also lead to an overestimation 
of the crack length. On the other hand, FNs can be found in 
Fig. 10a and c. However, in these examples, it is possible 
to notice that marker handwrites of different thicknesses 
and colors do not affect the efficacy of the crack detection 
algorithm.

The right-hand side of Fig. 10 shows identified crack 
pixels superimposed to the manually selected labels. It is 

Fig. 7   Identified crack length 
(a) and width (b)
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possible to observe that cracked areas are generally well 
identified, while the identification performance seems inde-
pendent from camera distances, angles, exposure, and light-
ing conditions. Indeed, although inspections 16 and 18 have 
a similar camera angle, the performances in crack size iden-
tification differ, as mentioned before. Also, similar results 
in terms of crack length are obtained for inspections 10 and 
13, which are taken under different lighting and exposure 
conditions.

Figure 11 displays a small detail of Fig. 10a, highlighted 
as a yellow rectangle in the figure of the identified crack 
pixels (right). In this figure, it is possible to observe that 
the identified crack pixels are visually in good agreement 
with the real crack. Moreover, several bumps and ramifica-
tions in the original crack image are well identified (see the 
area highlighted with dashed contour in Fig. 11). In contrast, 
the reference label tends to regularize the crack profile and 
smooth its width. It should be reminded that the labels are 
obtained by manually (and roughly) selecting the crack areas 
and, therefore, do not necessarily reflect a real representation 
of the crack. However, manually selected labels are used in 
this study to obtain rough estimates of the crack size. The 
simplification of the reference labels is found to be the main 
source of discrepancy for the results reported in Figs. 8b 
and 9.

Using the Nikon D7000 camera employed in this work 
at a distance of 1–2  m distance and a focal length of 
80–100 mm, the minimum detectable width is approximately 

0.05 mm/pixel [26]. This limitation dictates a lower bound-
ary in the crack identification size. Indeed, cracks thinner 
than 0.05 mm would either be identified as cracks with 
zero-pixel width or not identified. This phenomenon can be 
observed in the detail highlighted with dashed contour in 
Fig. 11. The camera employed in this study is considered a 
consumer-grade camera and is comparable of the cameras 
employed in most inspection drones employed in literature 
studies [31].

As a further comparison, the results obtained using 
only the Sobel edge detection method (applied using the 
same parameters of Step 2 of the proposed procedure, see 
Sect. 2.3) are reported in Fig. 12 for the four selected inspec-
tion images. Although this method may perform well with 
modest noise sources, in this case, shadows, surface textures, 
and handwrite scripts are detected as possible crack areas, 
highlighting the need for the proposed Step 1.

Further unlabeled inspection images with external objects 
have been chosen to test the robustness of the procedure with 
respect to unseen perturbation objects. Figure 13 shows two 
examples from this dataset that include a red ruler, which 
was not present in any photo of the training dataset. The 
identification results are insensitive to this new disturbance 
source, and the identified crack pixels are in good agree-
ment with the actual crack. Although the numbers and the 
measurement marks on the rule have a width comparable 
with that of the cracks and present similar color gradients 
as cracks, no FPs are detected.

Fig. 9   Crack width distributions
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Fig. 10   Crack detection using images from the testing dataset. From the left: original image, identified damaged regions (yellow), and identified 
crack pixels (red) comparison with labels (white): Inspection 10 (a), 13 (b), 16 (c), and 18 (d)

Fig. 11   Detail of the crack pixel 
detection and characterization 
process, compared to a refer-
ence label

2840 2880 2920 2960 3000

1680

1700

1720

1740

1760

1780

1800
2840 2880 2920 2960 3000

1680

1700

1720

1740

1760

1780

1800

Reference
Identified skeleton
Identified width

2 px 10 px



138	 Journal of Civil Structural Health Monitoring (2022) 12:127–140

123

Fig. 12   Results obtained 
using the Sobel edge detection 
method: Inspection 10 (a), 13 
(b), 16 (c), and 18 (d)

Fig. 13   Crack detection using unlabeled images with external objects; from left: original image and identified crack: Inspection 21 (a) and 22 (b)
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4 � Conclusions

In this paper, a method based on convolutional neural net-
works and edge detection is proposed to identify fatigue 
cracks in images acquired from welded connection details 
of steel structures. The method consists of two steps, first, 
the classification of small regions in the inspection figure 
using a convolutional neural network and then subsequent 
identification of crack pixels in the identified damaged areas. 
To increase the performance in terms of accuracy, a cor-
rection procedure based on morphological operations is 
implemented. At the end of Step 1, an AUC equal to 0.804 
is achieved for the testing dataset. The crack characteristics 
(length and width) identified in the second step are generally 
in good agreement with the reference values, identified using 
manually defined crack labels. Although the identified crack 
pixels and labels present some discrepancies, mainly due to 
the subjective labeling in the reference images, the results of 
the proposed identification method are promising and have 
shown to be robust to different noise sources, as well as the 
presence of external objects (i.e., a red measurement ruler) 
that were not part of the training set.

One of the main advantages of the proposed method over 
existing techniques is the simple structure of the neural net-
work. Moreover, the classification based on small regions 
allows considerable simplification of the process to generate 
the training dataset. In the technique presented in this paper, 
it is not strictly necessary to precisely label crack pixels in 
the inspection image; a rough selection of damaged regions 
is sufficient. The proposed two-step procedure is a valuable 
tool that may help operators to limit the subjectivity of their 
evaluations and automatize the crack detection process. In 
addition, the simple structure of the neural net reduces the 
required computation power and thus, may allow for com-
puter-aided in situ inspection schemes.
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