
Vol.:(0123456789)

Journal of Civil Structural Health Monitoring (2022) 12:47–70 
https://doi.org/10.1007/s13349-021-00524-6

123

ORIGINAL PAPER

Probabilistic SDDLV method for localizing damage in bridges 
monitored within one cluster under time‑varying environmental 
temperatures

Jianxin Cao1 · Shaoyi Zhang1 · Yang Liu1 

Received: 13 June 2021 / Revised: 24 August 2021 / Accepted: 9 September 2021 / Published online: 5 October 2021 
© Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The stochastic dynamic damage location vector (SDDLV) method has been widely utilized for localizing damage in struc-
tures. However, under changing environmental temperatures, its accuracy is greatly reduced, and the method may even 
lose efficacy. Furthermore, there has been no investigation of how SDDLV could localize damage in all bridges that are 
simultaneously monitored within one cluster, i.e., several medium- and small-span bridges with the same structural design 
on a continuous elevated corridor. To address these issues, a probabilistic SDDLV method is proposed in this study. First, 
unlike the conventional SDDLV method, the damage location vectors (DLVs) are generated using acceleration monitoring 
data acquired in the same period that are obtained from each pair of identical bridges among all the monitored bridges in 
one cluster. Second, considering variations in the finite element model (FEM) of bridges with respect to the environmental 
temperature, the probabilistic FEM is applied to replace the regular definite FEM, which is utilized to calculate the stresses 
of all the elements of the structures. Third, a method based on the probability characteristics of the damage localization 
index is presented to determine the thresholds of damage localization. Then, by incorporating hypothesis testing and a 
cross-validation strategy, the structural damage of all monitored bridges within one cluster is localized. Finally, a numerical 
simulation example is utilized to verify the effectiveness of the proposed method, and the effect of structural deviations in 
construction on the damage localization results is analyzed through the monitoring data of actual bridges.

Keywords Bridges monitored within one cluster · Damage localization of structures · Time-varying environmental 
temperature · Probabilistic finite element model · Cross-validation strategy

1 Introduction

Damage diagnosis methods for bridges have been widely 
studied as the core content of structural health monitoring 
in recent decades. Vibration-based damage diagnosis meth-
ods have the advantages of nondestructive detection and a 
high damage detection efficiency, and they have become the 
focus of attention [1–4]. However, damage localization for 
bridges is a challenging issue in the field of structural dam-
age diagnosis. At present, damage localization methods are 
mainly classified into model-based methods and data-driven 

methods. Model-based methods mainly update the physi-
cal parameters of the FEMs of bridges to minimize the dis-
crepancy between the measured response and the analytical 
response, and the damage is localized to the elements in 
which the parameters are updated [5, 6]. For data-driven 
methods, the damaged regions of bridges are localized using 
changes to the damage features, such as the mode shapes 
and modal curvature [7], modal strain energy [8], frequency 
response function [9] and flexibility matrix [10]. Addition-
ally, many data processing methods, which mainly include 
time-domain vibration signal processing [11], wavelet analy-
sis [12], artificial neural networks [13], deep learning [14] 
and Bayesian theory [15], have also been applied in damage 
localization for bridges.

Among these methods, the DLV method is proposed to 
generate a vector by solving the null space of the flexibility 
matrix residual between the damaged and healthy structures 
[16]. When this vector is treated as a set of loads in the FEM 
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of the undamaged structure, the elements with zero stress 
are candidates for damage. Subsequently, the DLV method 
was extended, including the stochastic damage location 
vector (SDLV) method [17], the dynamic damage location 
vector (DDLV) method [18] and the SDDLV method [19]. 
Gao et al. used a laboratory-scale truss model to verify the 
effectiveness of the DLV method based on experimental data 
[20]. Additionally, the SDLV method has been applied to a 
full-scale historic truss bridge [21, 22]. The SDDLV method 
uses only the output responses of sparse sensors to localize 
the damage, and the transfer function matrix is utilized in 
this method to obtain more information about the structural 
damage.

The SDDLV method assumes that the environmental 
conditions are constant; however, a bridge is in a constantly 
changing environment throughout its life cycle. Variations 
in the environmental temperature will lead to changes in the 
material properties, joint stiffness and boundary conditions 
of the bridge, which usually obscure the actual damage to 
the bridge [23, 25]. The 1-year monitoring data on the Z24 
Bridge revealed a 10% increase in the first two frequencies 
when the temperature decreased from 0 to − 7 °C [26]. Liu 
and DeWolf performed regression analysis on the 1-year 
modal data of a curved concrete box bridge, and the first 
three frequencies decreased by 0.5%, 0.7% and 0.3% per 
degree Celsius [27]. Farrar and Jauregui simulated beam 
damage by cutting the I-40 bridge from the web center to the 
bottom flange, resulting in decreases of 7.7%, 4.1% and 0.3% 
in the first three frequencies [28]. Therefore, the frequency 
variations in a bridge caused by such major damage are at 
the same level as those caused by variations in the environ-
mental temperature.

Jang et al. used the SDLV method to localize the perma-
nent tilt of a curved box girder bridge in Connecticut, USA 
[29]. However, this study used only acceleration data under 
several similar temperatures before and after damage to ver-
ify the SDLV method. Döhler et al. derived the uncertain 
boundary of damage localization results through the SDDLV 
method [30–32]. On this basis, the sensitivity of structural 
stiffness to temperature was used to update the modal param-
eters of the structure in the damaged state, and the damage 
region was determined by hypothesis testing [33]. However, 
it is difficult to choose the optimal installation location of 
temperature sensors for bridges [34, 35], and a large number 
of temperature sensors are usually required [36]. Further-
more, the accuracy of the sensitivity of the structural stiff-
ness with respect to temperature cannot be guaranteed. To 
date, the SDDLV method has not been effectively applied 
to real-time damage localization for bridge structures under 
time-varying environmental temperatures.

In addition, some methods have been proposed to elimi-
nate the effect of the environmental temperature in other 
studies on damage detection in bridges [25, 37–41]. Wang 

et al. localized cable damage by establishing a correlation 
model between the displacement of the main girder, the 
cable force and the environmental temperature [42]. Falla-
hian et al. proposed a damage detection method combining 
sparse coupled coding and a deep neural network, which 
effectively localized the damage of the I-40 bridge under 
time-varying temperature conditions [43]. Wang et al. pro-
posed a damage detection method based on the covariance 
matrix of the acceleration response. The effect of the tem-
perature variations on the diagonal elements of the matrix 
was reduced using a support vector machine, and then 
simulated damage to a suspension bridge was successfully 
detected [44]. Zhang et al. extracted damage features based 
on a time series analysis under time-varying temperatures, 
and the damage features were applied to an auto-associated 
neural network to eliminate the effect of the environmental 
temperature on damage localization for bridges [45]. How-
ever, these methods mainly focused on damage detection for 
a single bridge with environmental temperature variation, 
and little research has concentrated on damage localization 
for several bridges that are monitored in a cluster by utiliz-
ing the characteristics of similar environmental conditions.

The bridges monitored within one cluster are a set of sev-
eral bridges with the same structural design on a continuous 
elevated corridor, and the mileage of such bridges is usually 
several kilometers. They are subject to similar traffic and 
environmental loads. In China, bridges monitored within 
one cluster are common, e.g., continuous urban viaducts, 
continuous highway bridges and high-speed railway bridges, 
as shown in Fig. 1. The similarity of the traffic loads implies 
that all the bridges monitored within one cluster have a simi-
lar level of traffic or even the same traffic in a certain region; 
hence, an annual increase in traffic volume will have a simi-
lar or identical impact on all bridges monitored in one clus-
ter. The similarity of the environmental load implies that the 
environmental temperature around the bridges, the sunshine 
time and the wind load are similar. The authors previously 
proposed two damage diagnosis methods for bridges moni-
tored within one cluster under time-varying temperatures 
[46, 47]. These methods can mitigate the effect of the envi-
ronmental temperature; however, they cannot localize the 
damage. In this study, a probabilistic SDDLV method is pro-
posed for damage localization in bridges monitored within 
one cluster under time-varying environmental temperatures. 
For the proposed method, the following aspects are different 
from those of the SDDLV method. First, with the probabil-
istic SDDLV method, the DLVs are generated using accel-
eration monitoring data acquired in the same period that are 
obtained from two identical bridges among all the bridges 
monitored within one cluster. Second, the regular definite 
FEM, utilized to calculate the stresses of all the elements of 
the structures, is replaced by the probabilistic FEM, which 
represents the variations in the FEM of the bridge under 
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different environmental temperatures. Third, the thresh-
olds of damage localization are determined by considering 
the probability characteristics of the damage localization 
index, and then a cross-validation strategy combined with 
a hypothesis test is presented to localize the damage of all 
monitored bridges. With the abovementioned characteristics 
of probabilistic SDDLV, the effect of temperature variations 
is effectively reduced, and the structural damage of all the 
bridges monitored within one cluster is localized.

2  The limitations of the SDDLV method 
under time‑varying environmental 
temperatures

The SDDLV method is a damage localization method that 
uses the output-only vibration response and structural FEM 
[19]. In this method, the DLV is obtained by solving the 
null space of the residual of the transfer function matrix 
between the damaged and healthy structures. Then, the DLV 
is treated as a set of loads in the FEM for the computation 
of a stress field over the structure. The damage is localized 
at the points where the computed stress is zero or close to 
zero in practice [19, 32].

For a bridge structure, the equations of motion are shown 
in Eqs. (1) and (2) under healthy and damaged states, 
respectively.

where �, �, � ∈ ℝ
n×n denote the mass, damping and 

stiffness matrix of the bridge, respectively; the subscripts h 
and d denote the healthy and damaged states, respectively; 
n denotes the total number of degrees of freedom (DOFs) 
of the bridge; � ∈ ℝ

n×1 collects the displacements of the n 
DOFs; and � ∈ ℝ

n×1 is the external load. As Eq. (2) shows, 
the structural damage is caused by the attenuation of stiff-
ness. If requirements are imposed such that the external 

(1)𝐌�̈�h(t) + 𝐂�̇�h(t) +𝐊𝛈h(t) = 𝐅h(t),

(2)𝐌�̈�d(t) + 𝐂�̇�d(t) + (𝐊 + Δ𝐊)𝛈d(t) = 𝐅d(t),

loads �h(t) and �d(t) are the same and the displacement vec-
tors �h(t) and �d(t) are equal under the healthy and damaged 
states, the following equation can be obtained by subtracting 
Eq. (2) from Eq. (1).

where �̂�(t) denotes the displacement vectors under the 
healthy and damaged states. Equation (3) shows that loads 
that lead to identical responses in both states exist when the 
change in the stiffness matrix is rank deficient.

When the DLV is treated as a set of loads in the FEM, the 
structural strain energy under the healthy state and damaged 
state can be expressed as

where �̂�a and �̂�b denote the node displacement vectors of 
elements a and b, which are portions of vector �̂� ; �h and �d 
denote the healthy and damaged element stiffness matrices, 
respectively; and ΩU and ΩD refer to the healthy and dam-
aged parts of the domain. When damage occurs, assuming 
that the mass matrix � and damping matrix � are unchanged 
by the damage, the kinetic energy dissipated by damping and 
the work of the applied loading have identical histories in 
the healthy and damaged states. Therefore, according to the 
energy balance, the strain energy histories �h and �d must 
also be the same, and the following equation can be obtained 
by subtracting Eq. (5) from Eq. (4).

Since Eq. (6) has a quadratic form, Δ�b is negative sem-
idefinite, and �̂�b is the rigid body motion. It can be con-
cluded that Eq. (6) is satisfied only if each term of it is zero. 
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(4)𝐔h =
1

2
�̂�T𝐊�̂� =

1

2

(∑
ΩU

�̂�T
a
𝐤h,a�̂�a +

∑
ΩD

�̂�T
b
𝐤h,b�̂�b

)
,

(5)

𝐔d =
1

2
�̂�T(𝐊 + Δ𝐊)�̂� =

1

2

(∑
ΩU

�̂�T
a
𝐤h,a�̂�a +

∑
ΩD

�̂�T
b

(
𝐤h,b + Δ𝐤b

)
�̂�b

)
,

(6)
∑
ΩD

�̂�T
b
Δ𝐤b�̂�b = 0.

irbyawliardeeps-hgiH)c(segdirbyawhgiH)b(stcudaivnabrU)a( dges

Fig. 1  The bridges monitored within one cluster
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Therefore, when the DLV is treated as a set of loads in the 
FEM of the healthy structure, an element with zero stress is 
a candidate for damage.

The proof procedure of the SDDLV method shows that 
this method does not consider the effect of the environmental 
temperature on the damage localization results. Therefore, in 
Eqs. (4) and (5), the strain energy of the undamaged region 
before and after the occurrence of damage will no longer be 
equal; namely,

where �
h,a

(
T1
)
 and �

h,a

(
T2
)
 denote the structural element 

stiffness matrices at temperatures T1 and T2 , respectively. 
If there is a large difference in the environmental condi-
tions in the healthy and damaged states, the precision of the 
DLV will be greatly reduced, even if the DLV is no longer 
applicable. Therefore, when the SDDLV method is used to 
localize the structural damage of bridges, it is necessary to 
consider the effect of environmental temperature variations.

3  Generation of the DLV based 
on the structural characteristics of bridges 
monitored within one cluster

In China, among bridges that are monitored within one clus-
ter, there are often multiple bridges with the same structural 
design and construction time, such as urban viaducts, high-
way bridges and high-speed railway bridges, on a continuous 
elevated corridor. These bridges are subject to similar traf-
fic and environmental loads in the same monitoring period. 
A schematic diagram of bridges monitored in a cluster is 
shown in Fig. 2, but it is not limited to continuous bridges.

To overcome the limitations of the SDDLV method under 
time-varying environmental temperatures, a method is pro-
posed to generate DLVs using the structural acceleration 
response acquired in the same period from any two identi-
cal bridges, based on the idea that the structural designs are 
identical and the environmental temperatures are similar for 
the bridges monitored within one cluster. Utilizing the accel-
eration data, the transfer function matrix of each bridge is 

(7)
∑
ΩU

�̂�T
a
𝐤
h,a

(
T1
)
�̂�a ≠

∑
ΩU

�̂�T
a
𝐤
h,a

(
T2
)
�̂�a,

determined, and the residual between the transfer function 
matrices of any two bridges in the same monitoring period is 
established, as shown in Eq. (8).

where Δ� is the residual between the transfer function 
matrices of any two bridges; � is the transfer function matrix 
of the bridge in any monitoring period; the subscripts i and j 
denote the number of bridges; and s is the Laplace variable.

Equation (8) shows that the stiffness matrix �(T) of bridges 
is a function of the temperature T. When bridges i and j are 
healthy, the values of �i(T) and �j(T) are equal in the same 
monitoring period. Therefore, the residual between the trans-
fer function matrix of any two bridges does not change with 
temperature variations. Assuming that damage only causes 
attenuation of the structural stiffness, when damage occurs in 
one of the bridges, �i(T) and �j(T) will no longer be equal. At 
this time, the residual of the transfer function matrix is affected 
not only by measurement noise and identification errors in the 
modal parameters but also by the variation in the environmen-
tal temperature, as shown in Eq. (9).

where � denotes the calculated errors due to measurement 
noise and modal truncation; Δ�d(T) denotes the residual of 
the transfer function matrix when one of the bridges is dam-
aged, which is affected by temperature variations.

Since the external load of the bridge is unknown, the trans-
fer function matrix of the bridges cannot be generated directly 
using the monitoring acceleration data. The null space of Δ� 
under each monitoring period can be obtained by solving the 
null space of Δ�T based on singular value decomposition, as 
derived in detail in [19],

(8)
Δ� = �i(T) −�j(T) =

[
�is

2 + �is +�i(T)
]−1

−
[
�js

2 + �js +�j(T)
]−1

(9)

⎧
⎪⎨⎪⎩
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,

(10)
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[
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][
�1 �2

]H
,

Fig. 2  Schematic diagram of 
bridges monitored in a cluster
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where E2 is a singular value matrix, the diagonal terms of 
which are approximately equal to 0, E2 ∈ ℝ

z0×z0 , and z0 is the 
number of zero singular values. The superscript H denotes 
the conjugate transpose. �2 is the eigenvector corresponding 
to E2 . The damage localization vector � is a linear combina-
tion of any basis vectors in the null space �2 , and generally, 
the last column of �2 , corresponding to the smallest singular 
value, is selected. � in Eq. (10) is expressed as [19]:

where I denotes the identity matrix; �c is the system matrix; 
and �c is the output matrix, both of which can be obtained 
from the output-only vibration acceleration response. The 
superscript † denotes the Moore–Penrose pseudoinverse.

When the bridge structure is in the healthy state, the theo-
retical value of each element in the matrix Δ�T is 0. Therefore, 
the damage localization vector � in each monitoring period 
does not change with temperature variations. All the vectors 
� generated in each monitoring period are combined into the 
sample set shown in Eq. (12).

where �e is the damage localization vector at the eth sam-
pling time, e ∈

(
1, 2,⋯ , eh

)
 , and eh denotes the total number 

of samples of the damage localization vector in the healthy 
state. To localize the damage in all regions of the bridge with 
sparse sensors, the damage localization vector �e needs to 
be expanded to a load vector on all DOFs of the FEM. The 
entries of the load vector corresponding to the sensor posi-
tions are those of � , with zeros elsewhere. The expanded 
damage localization vector �e ∈ ℝ

1×n is expressed as:

where n denotes the dimension of the damage localization 
vector after expansion, which is equal to the total number 
of DOFs of the FEM. On this basis, the sample mean and 
variance of any entry �n0e  are defined as shown in Eqs. (14) 
and (15).

Where D(⋅) denotes the variance of the variable and E(⋅) 
represents the mean of the variable. In the healthy state, 
since the damage localization vector does not change with 
temperature variations, when the total number eh of samples 

(11)

�(T) = − �c

[
�c(T)

]−2[
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]−1
{
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]−1
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�

�

]
,

(12)� =
[
�1, �2,⋯ , �e,⋯ , �eh

]T
,

(13)�e =
{
�1
e
, �2

e
,⋯ , �

n0
e ,⋯ , �n

e

}
,

(14)E
(
�
n0
e

)
=

1

eh

eh∑
e=1

�
n0
e ,

(15)D
(
�
n0
e

)
=

1

eh − 1

eh∑
e=1

[
�
n0
e − E

(
�
n0
e

)]2

is large enough, both the estimated values of the mean and 
variance calculated in the above equation can be regarded as 
the mean and variance of the population �n0e .

As discussed in the above analysis, if a bridge is damaged, 
the damage localization vector � will still be affected by the 
temperature variations for the state inquiring damage, so it 
should be treated as a set of loads acting on the bridge under 
different environmental temperatures. However, in practical 
applications, it is difficult to generate the FEM with respect to 
different environmental temperatures due to the large number 
of calculations required. Therefore, the probabilistic FEM, 
namely, the probability distribution of all the FEM samples 
under different environmental temperatures, is applied to 
replace the usual definite FEM, and it is utilized to calculate 
the stresses of all the elements of the structures for SDDLV 
in this study. To further reduce the effect of the temperature, 
the monitoring data of the temperature and natural frequency 
are classified into several clusters, and the frequencies that are 
relatively constant under the effect of temperature are sorted 
into a cluster. Then, the damage localization vectors under all 
monitoring periods are also classified based on the clustering 
results of the environmental temperature. The flowchart of 
damage localization for any two identical bridges monitored 
in one cluster is shown in Fig. 3.

4  The probabilistic SDDLV method 
of damage localization for bridges 
monitored within one cluster

4.1  Classification of DLVs and establishment 
of probabilistic FEMs

Assuming that m modes of natural frequencies are observed 
for a bridge, a matrix of natural frequency monitoring data is 
generated as

where k is the number of natural frequency samples. Fur-
thermore, the environmental temperature monitoring data 
are denoted as � , and � ∈ ℝ

k×1 is defined as

After obtaining �  and � , the data sample matrix 
� ∈ ℝ

k×(m+1) is defined as:

Using the Gaussian mixture model (GMM) cluster anal-
ysis method [48], the natural frequency and temperature 

(16)� =

⎡⎢⎢⎢⎣

f1,1 f1,2 ⋯ f1,m
f2,1 f2,2 ⋯ f2,m
⋮ ⋮ ⋱ ⋮

fk,1 fk,2 ⋯ fk,m

⎤⎥⎥⎥⎦
,

(17)� =
{
T1, T2, … , Tk

}T
.

(18)� = [�, � ].
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monitoring data of bridges under each monitoring period 
are classified into several clusters, and for each cluster, the 
sample of natural frequencies satisfies a Gaussian probabil-
ity distribution, reflecting a similar environmental effect on 
the structural stiffness. The details of cluster analysis are 
described in the Appendix I. Using the temperature data 
after clustering as a pointer, the damage localization vectors 
obtained by Eq. (10) in each monitoring period are classi-
fied. The classification of the DLVs in any cluster � is as 
follows:

where the mean and variance of all terms in the damage 
localization vector �� is calculated according to Eqs. (14) 
and (15).

During the operation of an actual bridge, the global struc-
tural stiffness of the bridge changes with the variation in the 
environmental temperature. In this study, the probabilistic 
FEM under each cluster is established using the probabil-
istic FEM updating method [6]. In each cluster, the natural 

(19)Γ� =
[
��, ��

]
,

frequency sample set is used as the updating target, and the 
temperature-related structural parameters, i.e., the structural 
material properties, node connection stiffness, boundary 
conditions, etc., are updated as random variables satisfying 
a certain probability distribution.

The set of sample estimation matrices �̃� of the update 
parameters are expressed as:

where � and r are the numbers of update parameters and total 
samples, respectively. Each term of this set is denoted as �̃�k , 
where the superscript tilde represents its random character-
istics. �̃�k is generated randomly by the Monte Carlo method, 
and it is defined as:

On this basis, using the mean �
(
��
)
 and covariance 

���
(
��
)
 of the measured natural frequency data �� under each 

cluster, the mean and covariance of the update parameters 

(20)�̃� =
[
�̃�1, �̃�2,… , �̃�k,⋯ , �̃�r

]T
r×�

,

(21)�̃�k =
{
𝜃k,1, 𝜃k,2,… , 𝜃k,𝜐

}
.

Fig. 3  Flowchart of damage localization for any two identical bridges monitored in a cluster
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are undated based on the probability FEM updating method 
for bridges proposed in [6]. Then, the mean 𝐄

(
�̃��
)
 and 

covariance 𝐂𝐨𝐯
(
�̃��
)
 of the update parameters in any clus-

ter � are obtained. The mean and variance of each element 
in the transfer function matrix 𝐆m

(
�̃�
)
 and element stiffness 

matrix 𝐤m
(
�̃�
)
 of the FEM can be calculated as shown in the 

Appendix II. Thus, the probabilistic FEM of a bridge in any 
cluster is obtained and used to replace the regular definite 
FEMs under different temperatures.

4.2  Damage localization of two identical bridges 
monitored within one cluster

4.2.1  Calculation of the probability characteristics 
of the damage localization index in the healthy state

As discussed in the above section, the DLV is treated as a 
set of loads acting at the bridge to calculate the stress field, 
and a region with zero stress is a damage location. To obtain 
the structural stress field of the bridge in each monitoring 
period, first, any one of the bridges monitored within one 
cluster is selected as the reference bridge; this is different 
from the conventional method. On this basis, in the healthy 
state, the DLV generated using the monitoring data from 
the reference bridge and any other bridge is applied to the 
probabilistic FEM of the reference bridge. Then, the dis-
placements at all DOFs are calculated as shown in Eq. (22).

where �h is the DLV of any cluster, and the subscript h 
denotes the healthy state; 𝐆

m

(
�̃�
)
∈ ℝ

n×n is the transfer func-
tion matrix of the probabilistic FEMs of any cluster; �̃�h is the 
nodal displacement vector of the bridge in a healthy state, 
and each term is also a random variable satisfying a certain 
probability distribution. Finally, the stress field �̃�w,h of any 
element w in the healthy state is obtained as follows:

(22)�̃�h = 𝐆
m

(
�̃�
)
𝛎h,

where �̃�w,h is the nodal displacement vector of element w in 
the healthy state and 𝐤

m,w

(
�̃�
)
 is the element stiffness matrix 

of any element w of the probabilistic FEM of any cluster. 
Assuming that any element of the FEM contains � DOFs, 
�̃�w,h is expressed as follows:

where 𝜁𝜑0

w,h
 is the stress value corresponding to the �0th DOF 

of any element w, �0 ∈ (1, 2,⋯ ,�) . The damage localiza-
tion index of any element w in the healthy state is defined 
as follows:

In the above calculation procedure, since the DLV con-
tains errors of both modal parameter identification and 
measured noise and the probabilistic FEM of the bridge 
is random, it is necessary to calculate the variance of the 
damage localization index.

In Sect. 4.1, the mean and variance of each term in the 
DLV are calculated during all monitoring periods in the 
healthy state. Additionally, the mean and variance of each 
term in the transfer function matrix �̃�

m
 of the probabilistic 

FEM is calculated in Sect. 4.2. On this basis, the variance 
of any node displacement ỹn1

h
 is derived as follows:

where the superscript n1 represents any row n1 of the transfer 
function matrix �̃�

m
 ; the superscript n0 represents any col-

umn n0 of the transfer function matrix �̃�
m

 and any row n0 of 
the damage localization vector ��,h ; and D

(
ỹ
n1
h

)
 is the vari-

ance of the displacement of any DOF n1 . Similarly, accord-
ing to the derivation method of Eq. (26), the variance of the 
stress value corresponding to the �0th DOF of any element 
w in the healthy state is calculated as shown in the follow-
ing equation:

(23)�̃�w,h = 𝐤
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�̃�
)
�̃�w,h,
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On this basis, the variance of the damage location index 
�̃�w,h in the healthy state is obtained as

The variance estimation of the damage localization 
index of any element in the healthy state is obtained by the 
above variance calculation. When the sample size of the 
update parameter vector and the health monitoring period 
are large enough, the variance estimate is considered the 
overall variance of the damage localization index. The 
variance includes not only the errors of measured noise 
and modal parameter identification but also the tempera-
ture error of the probabilistic FEM of the bridge under this 
cluster. The probability distribution of the damage locali-
zation index �̃�w,h in the healthy state is shown as follows:

where Υ[⋅] denotes a probability distribution that obeys a 
certain mean and variance. When the bridge structure is 
undamaged, E

(
�̃�w,h

)
 is usually not equal to 0.

4.2.2  Calculation of the damage localization index 
in the state inquiring damage

As noted earlier, DLVs are only affected by measured noise 
and modal truncation in the healthy state, and when they 
are treated as loads acting on the probabilistic FEM of the 
bridge, the damage localization index will include the error 
caused by temperature variations in this cluster. However, if 
the bridge structure is damaged in the state inquiring dam-
age, the DLV itself is affected by temperature variations. 
Thus, the DLV under each monitoring period needs to be 
treated as a set of loads acting on the mean FEM of the 
bridge in the corresponding cluster, as shown in the equation 
below. It should be noted that when the mean of the updated 
parameters is brought into the FEM, the corresponding FEM 
is defined as the mean FEM.

(27)
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(30)�̃�d = 𝐄
[
𝐆

m

(
�̃�
)]
𝛎d,

(31)�̃�w,d = 𝐄
[
𝐤
m,w

(
�̃�
)]
�̃�w,d,

where 𝐄
[
𝐆

m

(
�̃�
)]

 and 𝐄
[
𝐤
m,w

(
�̃�
)]

 represent the transfer func-
tion mean matrix and element stiffness mean matrix, respec-
tively, of the probabilistic FEM of any cluster. �d is the dam-
age localization vector generated in a certain monitoring 
period, and the subscript d denotes the state inquiring dam-
age. �̃�w,d denotes the stress field of any element w in the state 
inquiring damage.

In the state inquiring damage, if the bridge structure is 
damaged, the DLV is affected by the temperature variations 
of this cluster, which is different from the healthy state. 
Then, when the DLV is treated as a set of loads in the mean 
FEM, the damage localization index includes not only the 
errors of measured noise and modal truncation, but also the 
errors caused by temperature variations in this cluster, which 
is consistent with the healthy state. Therefore, if the bridge 
structure is damaged, according to the SDDLV theory, the 
mean of the damage localization index of the damaged ele-
ments is 0, and the variance of the damage localization index 
is approximately identical in both the healthy and damaged 
states, as shown in Eq. (32). The loading procedure of the 
DLV in both of these states is shown in Fig. 4.

where �̃�w,d is the damage localization index in the state 
inquiring damage.

4.2.3  Damage localization for any two identical bridges 
based on hypothesis testing

In practical engineering applications, considering the effect 
of uncertain factors, i.e., temperature variations, measured 
noise and modal truncation, the value of �̃�w,d is generally not 
0 but close to 0. Since the variance of �̃�w,d was obtained in 
the previous section, the thresholds of damage localization 
can be determined based on the PauTa criterion. On this 

(32)�̃�w,d ∼ Υ

[
0,

𝜑∑
𝜑0=1

D
(
𝜁
𝜑0

w,h

)]
,

Fig. 4  Schematic diagram of the calculation procedure of the damage 
localization index in two states
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basis, the hypothesis test below is performed to localize the 
damage.

According to Eq. (33), it is determined whether any ele-
ment of any two identical bridges is in the healthy state.

Although the damage condition can be distinguished when 
�1 is established, �̃�w,d does not necessarily conform to a nor-
mal distribution, and there may be type I errors in this hypoth-
esis test. Therefore, the data of multiple monitoring periods 
under the state inquiring damage are further used to verify 
the damage condition. The damage discriminant index z� is 
defined here. When �1 is true in this monitoring period, z� 
is set to 1; otherwise, z� is set to 0, where � denotes a certain 
monitoring period in the state inquiring damage. On this basis, 
the cumulative value Ξ

d
 of the damage discrimination index of 

any element is calculated.

where ed is the total number of monitoring periods in the 
state inquiring damage. The cumulative value Ξ

d
 follows 

a binomial distribution. Therefore, the inverse cumulative 
distribution function of the binomial distribution is used to 
calculate the cumulative threshold for localizing the damage 
of any element, as shown in the following equation:

where P is the probability that there are Q successes in ed 
trials based on the given success rate (1 − �) . � is the prob-
ability of occurrence of a type I error, which is determined 
according to the actual situation of bridges. The value Q is 
the cumulative threshold for damage localization for any ele-
ment. If Ξd,w > Qw , then element w is damaged; otherwise, 
element w is healthy.

4.3  Damage decision for all bridges based 
on a cross‑validation strategy

The method proposed in the previous section can only deter-
mine whether the two bridges involved in the calculation 
are damaged. Thus, the idea of a cross-validation strategy is 
implemented to determine all damaged regions of all bridges. 
The damage determination procedure comprises the follow-
ing steps: first, one of the bridges monitored in the cluster is 
randomly selected as the reference bridge; second, utilizing 

(33)
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𝓁(1 − 𝓁)ed−� ,

the method proposed above, the condition of two bridges is 
diagnosed using the monitoring data obtained from the ref-
erence bridge and any other bridge, and this procedure is 
repeated until all the structural conditions of the other bridges 
are diagnosed completely; third, the reference bridge is cycli-
cally exchanged until all the bridges have been selected as the 
reference bridge once. Through this procedure, the response 
information of all bridges is integrated so that all damaged 
bridges and regions can ultimately be determined.

Assuming that there are N bridges with the same struc-
tural design monitored within one cluster, the cross-localiza-
tion result matrix �w of any element w is defined as:

where Ri,j
w  represents the damage localization result of any 

element w of bridge i when bridge j is selected as the refer-
ence bridge. If the two bridges are healthy, then Ri,j

w = 1 ; 
if element w of a bridge is damaged, then Ri,j

w = 0 . On this 
basis, the damage decision value of any element w of bridge 
j is defined as follows:

where Θ represents the set of all bridges monitored in one 
cluster. If μ�jw = 0 , element w of bridge j is damaged, and 
if μ𝜆jw > 0 , element w of bridge j is healthy. Based on the 
cross-validation strategy, the damage of all bridges is local-
ized; meanwhile, the misjudgment of the structural damage 
is avoided, and the accuracy of the algorithm is improved. 
According to the proposed algorithm, at least three identical 
bridges monitored within one cluster are needed to complete 
the damage localization for all bridges.

5  Numerical example

5.1  Description of the numerical model 
and damage cases

To verify the validity and dependability of the proposed 
method, four three-span continuous beam models with the 
same structural design are established to simulate actual 
bridges monitored within one cluster. As shown in Fig. 5, 
each bridge has 3 spans and is discretized with 30 equal-
sized beam elements. Vertical supports (Z direction) and 
horizontal supports (Y direction) are simulated using spring 
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elements. The Young modulus of the FEM material and 
the stiffness of the support are related to the environmen-
tal temperature, as shown in Fig. 6 [43, 49], and the other 
detailed parameters are shown in Table 1. To add the effect 
of environmental temperature to the FEM, a total of 2190 
temperature samples are generated to simulate the envi-
ronmental temperature variations in one year, as shown 
in Fig. 7. In the simulation process for the environmental 
temperature, the annual air temperature variations and the 
daily air temperature fluctuation are considered simultane-
ously so that the simulated variation in the air temperature 

is close to the real conditions [50]. When each temperature 
sample is treated as a load in the FEM, 40,000 acceleration 
data samples are extracted from each monitoring position 
under white noise excitation. The monitoring positions of 
the sensors are shown in Fig. 5. Thus, in the healthy state, 

Elements 1-10 Elements 11-20 Elements 21-30

Damage region:
Element 5

Damage region:
Element 5

Damage region:
Element 21

Damage region:
Element 21

Accelerometer in Y and Z directions
Bridge A

Bridge B

Bridge C

Bridge D

Damage region:
Element 11

Damage region:
Element 11

30m 30m 30m

Fig. 5  Beam bridge structures monitored in one cluster

Fig. 6  Relationship between 
the Young modulus of the main 
beam material, the support stiff-
ness and the temperature

Table 1  Parameters of the FEM of the bridge structures

Parameter Value

Poisson's ratio of the main beam material 0.2
Unit weight of the main beam material (N/m3) 25,000
Area of the cross-section  (m2) 0.56
Moment of inertia  Iz  (m4) 0.0971
Moment of inertia  Iy  (m4) 0.0691
Moment of inertia  Ix  (m4) 0.1195

0 500 1000 1500 2000-20

0

20

40

60

Monitoring samples

)
℃(erutarep

meT

Fig. 7  Simulated temperature variations
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acceleration samples of 2190 monitoring periods at different 
temperatures are obtained.   

In the state inquiring damage, a total of six damage 
cases are set according to the different damaged bridges, 
damage locations, damage degrees and environmental tem-
peratures, as shown in Table 2. A decrease in the bending 
stiffness (Young modulus of the material) in a local region 
is implemented to simulate damage phenomena, such as 
concrete strength reduction, the concrete spalling of super-
structure of bridge, the crack of concrete, the exposure and 
corrosion of reinforced, the wet joint damage, etc. The 
damage location is shown in Fig. 5. The acceleration data 
under the different cases are obtained, and the extraction 
method of the acceleration data is identical to that in the 
healthy state.

5.2  Classification results of the DLV based 
on a GMM clustering analysis

In the healthy state, using the simulated acceleration moni-
toring data of bridge A, a total of 2190 sets of natural fre-
quency samples can be identified based on the Next-ERA 
algorithm [51]. On this basis, 2190 environmental tempera-
ture samples and natural frequency sample sets are combined 
into a data sample matrix based on the Gaussian mixture dis-
tribution model, and clustering analysis is performed on the 
sample matrix. The sample matrix is classified into 2, 3, and 
4 clusters. The clustering results show that when the sample 
matrix is classified into 2 clusters, the probability distribu-
tion with respect to the temperature and natural frequency 
is close to the combination of two Gaussian distributions, 
and the clustering result is considered to be more reasonable. 

Table 2  Damage cases Damage case Damaged bridge Damaged element Damage extent Environmen-
tal tempera-
ture

1 A # 5 5% 30℃
2 A # 5 10% 30℃
3 A # 5 15% 30℃
4 A # 5 10% 10℃
5 A # 5 and # 21 10% 10℃
6 A & B A: # 5 C: # 11 10% 10℃

Fig. 8  Results of the clustering 
analysis

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4
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The clustering results are shown in Fig. 8. The statistical 
characteristics of the natural frequencies and temperature 
of the two clusters are listed in Table 3.

Based on the statistical characteristics of the natural 
frequencies and temperatures of the two clusters, it is 
concluded that the covariance of the natural frequencies 
of each cluster decreases significantly after clustering, 
indicating that the establishment of a probabilistic FEM 
based on the natural frequency after clustering will greatly 
reduce the effect of the temperature.

According to the clustering results for the temperature, 
the DLVs obtained during the 2190 monitoring periods 
based on the monitoring data of bridges A and B are also 
classified into two clusters in the healthy state. The DLVs 
generated below 7.0451℃ are classified into one cluster, 
and the DLVs generated above 7.0451℃ are classified into 
the other cluster. The classification results of the DLVs 
are divided into two categories, winter and summer, and 
the natural frequency values of both clusters conform to 
approximately the same probability distribution.

5.3  Establishment of the probabilistic FEMs 
of a bridge

According to the clustering results of the natural frequen-
cies, the probabilistic FEM of each cluster is established. The 
structural size of the original FEM before updating is consist-
ent with the FEM of the simulated bridges in the previous 
section. The difference is that the initial Young modulus of 
the main beam material is set to 3.35 ×  104 MPa; the initial 
support stiffness in the Z direction and Y direction are set to 
5 ×  109 N/m and 5 ×  1010 N/m, respectively. The update param-
eters are defined as �1 , �2 , and �3 , which are the coefficients 
of the Young modulus of the material of the main beam, the 
support stiffness in the Z direction, and the support stiffness in 
the Y direction, respectively. Therefore, the update parameters 
are affected by temperature variations. The initial values of the 
update parameters are set to 1, as shown in Table 4.

The probabilistic FEM updating method proposed in [6] is 
adopted to update the mean �(�) and covariance ���(�) of the 
update parameters in this study. Under each cluster, a genetic 
algorithm (GA) [52] is used for optimization. According to 
the mean and covariance of the updated parameters after each 
iteration, the Monte Carlo simulation method is used to gener-
ate 1000 updated samples, which are then used in the FEM to 
calculate the analytical value of the natural frequency for each 
sample. Finally, the update procedure of the model is com-
pleted by minimizing the optimization parameters constructed 
according to the simulated natural frequency and the analytical 
value of the natural frequency, which is described in detail in 
[6]. The statistical values of the update parameters before and 
after the FEM updating are shown in Table 5. Based on the 
updated mean and covariance of the update parameters, the 
mean and variance of each element in the transfer function 
matrix 𝐆m

(
�̃�
)
 and element stiffness matrix 𝐤m,w

(
�̃�
)
 are calcu-

lated by Eqs. (31)–(35).
To reflect the accuracy of the probabilistic FEM, the dis-

tribution diagram of the first and fourth natural frequencies 
before and after the FEM updating in two clusters is shown 
in Fig. 9. With FEM updating, the difference between the 
distributions of the analytical and simulated natural frequen-
cies is greatly reduced, which reflects the accuracy of the 
probabilistic FEM. 

Table 3  Statistical characteristics of the frequencies and temperature 
of the two clusters

Parameters Initial values Values after the clustering analysis

Cluster �
1

(824 samples)
Cluster �

2

(1366 samples)

E(T) 15.0000 − 7.4868 ×  10–1 24.4999
E
(
f1
)

6.4907 6.5547 6.4521

E
(
f2
)

7.6976 7.7786 7.6487

E
(
f3
)

8.2029 8.2610 8.1678

E
(
f4
)

9.8450 9.9463 9.7839

Var
(
f1
)

4.3005 ×  10–3 4.5014 ×  10–4 2.6575 ×  10–3

Var
(
f2
)

6.7066 ×  10–3 6.2504 ×  10–3 4.0184 ×  10–3

Var
(
f3
)

4.2950 ×  10–3 7.0610 ×  10–4 3.1960 ×  10–3

Var
(
f4
)

1.0391 ×  10–2 8.4321 ×  10–4 6.2242 ×  10–3

Cov
(
f1, f2

)
4.8375 ×  10–3 − 2.1447 ×  10–5 2.7473 ×  10–3

Cov
(
f1, f3

)
3.7436 ×  10–3 1.8902 ×  10–5 2.3923 ×  10–3

Cov
(
f1, f4

)
6.1140 ×  10–3 5.2021 ×  10–5 3.4963 ×  10–3

Cov
(
f2, f3

)
4.6896 ×  10–3 − 2.3166 ×  10–6 2.9644 ×  10–3

Cov
(
f2, f4

)
7.6761 ×  10–3 3.9325 ×  10–5 4.3389 ×  10–3

Cov
(
f3, f4

)
5.9352 ×  10–3 8.4256 ×  10–5 3.7723 ×  10–3

Table 4  Initial values of the update parameters

Parameters Elastic modulus of the main beam material 
(MPa)

Support stiffness in the Z direction (N/m) Support stiffness in the Y direction (N/m)

Values �1 × 3.35 ×  104 (Initial value of �1 is 1) �2 × 5 ×  109 (Initial value of �2 is 1) �3 × 5 ×  1010 (Initial value of �3 is 1)
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5.4  Comparison of the performance 
of the proposed method and the conventional 
SDDLV method

5.4.1  Comparison of the damage localization results 
without noise effects

To verify the effectiveness of the proposed method under 
the effect of environmental temperature, numerical simula-
tion data without noise effects are used in this section to 
compare the proposed method and the conventional SDDLV 
method. In the conventional SDDLV method, when the DLV 
is treated as a set of loads acting on the undamaged FEM, 
the weighted stress index (WSI) value of all elements needs 
to be calculated [16]. When the WSI value of any element 

is less than 1, this indicates that the element is a candidate 
for damage.

Bridge C is selected as the reference bridge. In the dam-
age localization results without considering environmental 
temperature variations, the undamaged FEM before updat-
ing is used to calculate the stress on all the elements of the 
bridges, and the healthy state of the bridge is the state cor-
responding to 0 °C. The comparison results of the damage 
localization of the bridge in cases 1–5 are shown in Fig. 10.

Figure 10a–c show that when the temperature is 30 °C 
in the damaged state, the proposed method can effec-
tively localize the structural damage of element 5 in cases 
1–3 after considering the environmental temperature 
variations. However, the SDDLV method, which does 
not consider the temperature variations, cannot localize 

Table 5  The statistical values of 
the updating parameters before 
and after FEM updating

Statistical value Cluster �
1

Cluster �
2

Initial value After updating Initial value After updating

E
(
�1
)

1.0000 1.0571 1.0000 1.0221

E
(
�2
)

1.0000 1.1678 1.0000 1.6601

E
(
�3
)

1.0000 1.1130 1.0000 1.6680

Var
(
�1
)

3.0107 ×  10–5 4.7311 ×  10–5 2.6600 ×  10–4 1.8308 ×  10–4

Var
(
�2
)

4.7521 ×  10–2 6.8527 ×  10–2 4.6813 ×  10–2 4.6743 ×  10–2

Var
(
�3
)

2.0592 2.6857 2.0454 3.0708

Cov
(
�1, �2

)
− 7.9959 ×  10–4 − 1.1129 ×  10–3 − 1.5915 ×  10–3 − 1.6088 ×  10–3

Cov
(
�1, �3

)
− 5.3675 ×  10–3 − 6.9946 ×  10–3 − 5.5856 ×  10–3 − 8.4466 ×  10–3

Cov
(
�3, �4

)
1.6235 ×  10–1 2.1122 ×  10–1 1.5401 ×  10–1 2.33039 ×  10–1

Fig. 9  Comparison of the distri-
butions of the natural frequency 
before and after FEM updating

(a) Cluster 1λ (b) Cluster 2λ

Table 6  Damage cases Damage 
cases

Damage element Damage location Damage 
extent (%)

Noise level (%)

1 #14- #16 The mid-span of the second span side beam 5 5
2 #14- #16 The mid-span of the second span side beam 10 5
3 #14- #16 The mid-span of the second span side beam 15 Ffig

5
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(a)Case 1

(b)Case 2

(c)Case 3

(d)Case 4

(e)Case 5
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the structural damage of element 5 and misjudges other 
undamaged elements. Thus, when the difference in tem-
perature between the healthy state and the damaged state 
is large, structural damage at the level of 15% cannot 
be effectively localized. Figure 10d shows that when the 
temperature is 10℃ in the damaged state and the damage 
degree of the element is 10%, the SDDLV method that 
does not consider the temperature variations can localize 
the structural damage of element 5, but the WSI value of 
the damaged element is close to the empirical threshold, 
and other elements still show misjudgment phenomena. 
Therefore, if the damage degree is small, the effective-
ness of damage localization will be greatly reduced, 
which further verifies that the environmental temperature 
has a great impact on the damage localization results. 
Figure 10e shows that when damage occurs simultane-
ously in elements 5 and 11, the proposed method still 
shows accurate structural damage localization, and the 
effectiveness of the damage localization is poor if the 
influence of temperature is not considered.

5.4.2  Comparison of the damage localization results 
considering noise effects

For the damage localization results in case 4, it is obvious 
that when the environmental temperature and noise are 
not considered in the conventional SDDLV method, the 
WSI value of element 5 is close to the empirical threshold. 
Therefore, in this section, the damage localization results 
of case 4 based on both the proposed method and the con-
ventional SDDLV method are compared under different 
levels of noise.

For case 4 (the temperature is 10 °C, and the damage 
degree of element 5 is 10%), a total of 300 sets of accel-
eration data are simulated under the influence of 5% and 
10% noise. The FEM of the bridge is the same as in the 
previous section. Damage localization for the bridge is 
performed using each set of acceleration data, and the 
cumulative damage discrimination index is calculated. The 
comparison results of the noise resistance performance 
are shown in Fig. 11. Figure 11b shows that the structural 
damage of element 5 of bridge A is effectively localized 
under the effect of 10% noise using the proposed method. 
Figure 11a shows that the damage of element 5 cannot be 
localized after adding 5% noise using the conventional 
SDDLV method, which does not consider the effect of 
temperature variations.

5.5  Results of damage cross‑localization 
between bridges

In this section, a cross-validation strategy is applied to 
localize the damage of all bridges monitored within one 
cluster. Bridges A, B, C and D are selected as reference 
bridges. Through the damage localization method proposed 
in this study, the damage condition of any element of the 
reference bridge and any other bridge can be identified. On 
this basis, the reference bridge is cyclically exchanged until 
all bridges have been used as reference bridges.

For case 6 (element 5 of bridge A and element 11 of 
bridge B are damaged), the damage cross localization results 
of all bridges are shown in Fig. 12. Figure 12a–d show the 
R values of all elements when bridges A, B, C and D are 
selected as the reference bridge. Then, the damage decision 
value of each bridge is obtained as follows: (1) Bridge A: 
−�A

5
= 0 , μ𝜆A

others
> 0 ; (2) Bridge B: −�B

11
= 0 , μ𝜆B

others
> 0 ; (3) 

Bridge C: −�C

all
> 0 ; (4) Bridge D: −�D

all
> 0 . The results show 

that element 5 of bridge A and element 11 of bridge B are 
candidates for damage, and bridges C and D are healthy. The 
decision results of the damage are consistent with the dam-
age setting, and through the cross-validation of all bridges 
monitored within one cluster, accidental misjudgments are 
effectively avoided.

6  Analysis of the effect of structural 
deviations in construction

In this section, acceleration monitoring data obtained from 
a structural health monitoring (SHM) system for actual 
bridges are applied to verify the performance of the pro-
posed method under the effect of structural deviations in 
construction. Figure 13 shows the overall diagram of all 
bridges monitored within one cluster, which is the Shunhe 
Bridge located in Jinan, China. Since the operating time 
of the bridge is relatively short and there is no substantial 
damage, this section will focus on the analysis of the effect 
of structural deviations in construction between the same 
bridges on the damage localization results.

6.1  Description of the SHM systems of bridges 
monitored within one cluster

The acceleration monitoring data from bridges A and B 
were selected for analysis and verification. Both bridges 
are 3 × 30 m continuous beam bridges with a single box 
and five chambers. Figure 14 shows the layout of the accel-
eration sensors of the two bridges, in which monitoring 

Fig. 10  Comparison of the damage localization results for bridge 
structure. (The left side is the result of the proposed method, and the 
right side is the result of the conventional SDDLV method.)

◂
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sections are set at the mid-span and 1/4 section of the 
first and second spans, and a total of six monitoring sec-
tions are set in each bridge, as shown in Fig. 14a. Three 

acceleration sensors are installed in the first, third and 
fifth chambers of each monitoring section, as shown in 
Fig. 14b. Figure 15 shows the field installation of the 

Fig. 11  The comparison results of the noise resistance performance. (The left side is the proposed method, and the right side is the conventional 
SDDLV method.)

Fig. 12  Damage cross-localization results of all bridges
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acceleration monitoring system for the bridges monitored 
in the cluster. The sampling frequency of the acceleration 
sensors is 200 Hz.

All bridges are located in the same traffic route, and 
there is no traffic confluence or diversion. Therefore, 
the traffic loads of all the bridges are basically equal. 

Furthermore, the effect of light on each bridge is similar, 
and the environmental temperature load is also similar. 
The SHM systems began to collect strain monitoring data 
in June 2016. There was no vehicle load on the bridge 
from June 2016 to April 2017, and the bridges were offi-
cially opened to traffic in May 2017.

6.2  An analytical method combining the simulated 
and measured data

The difference in the transfer function matrix between two 
identical bridges can be obtained for the same period, and 
then the DLV is generated for each monitoring period. 
However, bridges with the same structural design often 
have certain structural deviations in construction. To ana-
lyze the effect of the structural deviations in construction, 
an analysis method combining the simulated and measured 
data is proposed in this section. The analysis steps are as 
follows:

Step 1: According to the design size of two actual identi-
cal bridges monitored within one cluster, the definite FEM 
of the bridges is established.

Step 2: The actual natural frequency monitoring data and 
temperature monitoring data are clustered, and the prob-
ability FEM of each cluster is established according to the 
clustering results.

Step 3: A sample of the updated parameters is brought 
into the FEM. According to the actual positions of the moni-
toring sensors of the two bridges, the acceleration data in 
the healthy and damaged states are obtained under noise 
excitation.

Step 4: When Δ� is constructed using each set of accel-
eration simulation data, the statistical mean of Δ�a under all 
monitoring periods is added to Δ� . In this case, the struc-
tural deviations in construction between the actual bridges 
are added to the simulation data, as shown in the following 
equation:

Fig. 13  Photograph of the actual bridges

3×30 m

7.5 m 7.5 m 7.5 m7.5 m 7.5 m 7.5 m7.5 m 7.5 m

 
(a)  Vertical section layout 

28.3 m
6.4 m 7.75 m 7.75 m 6.4 m

 
(b) Cross-section layout 

Fig. 14  Placement of the acceleration sensors

Fig. 15  Field installation of the SHM systems
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where Δ�s is the simulated data and Δ�a is the actual moni-
toring data of the two bridges.

Step 5: Using the method proposed in this study, the dam-
age localization results before and after adding the structural 
deviations in construction are compared and analyzed.

6.3  Comparison results before and after adding 
the structural deviations in construction

In this section, the acceleration monitoring data of bridges 
A and B monitored within one cluster from May 2017 to 
April 2018 are selected for analysis. The clustering results 
of the measured natural frequency and temperature data are 
shown in Fig. 16. The clustering results show that when 
the sample matrix is classified into three clusters, the prob-
ability distribution with respect to the temperature and natu-
ral frequency is close to a combination of three Gaussian 
distributions, and the clustering result is considered to be 
more reasonable. Based on the design drawings of the two 
identical bridges A and B, the FEM of bridges is established 

(38)Δ� = Δ�s + �
(
Δ�a

)
,

using the beam elements, as shown in Fig. 17. On this basis, 
the Young modulus of the bridge and the support stiffness 
in the Z direction are selected as the update parameters, and 
the probabilistic FEMs of different clusters are established 
according to the clustering results.

A sample (where the Young modulus is 3.523 ×  104 MPa 
and the support stiffness in the Z  direction is 
9.839 ×  108 N/m) of the updated parameters under clus-
ter �1 is brought into the FEM of bridges A and B. In the 
healthy state, a total of 500 sets of acceleration data are 
generated under the excitation of environmental noise by 
the FEM of bridges A and B, which are used to establish 

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Fig. 16  Clustering results of the measured natural frequency data

30 m

Number of main beam elements: 180
Number of virtual beam elements: 155

30 m30 m

Damage region

30 m

Number of main beam elements: 180
Number of virtual beam elements: 155

30 m30 m

Damage region

Fig. 17  FEM of the actual bridge
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the damage localization threshold. The damage cases are 
shown in Table 6. On this basis, the structural deviations 
in construction between the two actual bridges are added 
to the simulated data, and the algorithm proposed in this 
study is used to localize the damage of the two bridges. 
The damage localization results before and after adding the 
structural deviations in construction are shown in Fig. 18. 
Since sensors are only placed on the first two spans of the 
bridge structure, Fig. 18 shows only the damage localiza-
tion results of the first two spans of the bridge. Figure 18 
shows that (1) for the three-span continuous bridge structure, 
when the actual monitoring locations are relatively sparse, 
the localization range of the damage is accurate regarding 

the vicinity of the damage location but not the specific ele-
ment; (2) after adding the structural deviations in construc-
tion between the actual bridges, the damage is effectively 
localized for the cases with damage degrees of 10% and 
15%, while the localization result for the cases with a dam-
age degree of 5% is poor.

According to the above analysis results, when the damage 
degree is larger than the structural deviations in construction 
between the bridges in a broad sense, the proposed method 
can effectively localize the structural damage. Meanwhile, as 
construction technology progresses, the effect of structural 
deviations in construction between identical bridges on the 
proposed method will be reduced.
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Fig. 18  Damage localization results. (The left side is the result without considering the structural deviations in construction, and the right side is 
the result considering the structural deviations in construction.)
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7  Conclusions

In this study, a probabilistic SDDLV method is proposed for 
damage localization for bridges monitored within one cluster 
under time-varying environmental temperatures. The main 
conclusions drawn are as follows:

 (i) In the proposed method, the DLVs are generated 
using acceleration monitoring data acquired in the 
same period that are obtained from any pair of identi-
cal bridges among all the bridges monitored within 
one cluster. Additionally, considering the effect of 
temperature variations, the probabilistic FEM is 
established to replace the usual definite FEM. These 
methods can effectively mitigate the effect of tem-
perature variations on the damage localization of all 
bridges.

 (ii) Numerical examples show that when the tempera-
ture changes by 10℃ and the noise level is 5%, the 
conventional SDDLV method will lose efficacy, and 
it will be easy to misjudge a healthy unit. The pro-
posed method maintains a high accuracy of damage 
localization under the effect of temperature variations 
and noise.

 (iii) Using the cross-validation strategy, the structural 
monitoring information of all bridges is merged to 
determine the damage locations of all bridges moni-
tored within one cluster and effectively avoid mis-
judgment.

 (iv) After adding the structural deviations in construction 
between identical bridges into the simulation data, 
the localization results of different damage degrees 
show that structural deviations in construction reduce 
the accuracy of the proposed method to a certain 
extent. Therefore, the application condition of the 
proposed method is that the damage degree is larger 
than the structural deviations in construction between 
the bridges in a broad sense.

Appendix I. GMM cluster analysis process 
of the natural frequency and temperature 
monitoring data

According to Eqs. (16) and (17), � is sampled from an 
(m + 1)-dimensional continuous random distribution with 
unknown density �(�) . After mixing the multivariate normal 
component densities, an estimate of this unknown density is 
obtained for a given sample.

(39)�(�) =

℧∑
�=1

��p
[
�
|||�
(
��

)
,���

(
��

)]
,

where ℧ is the mixed component of the Gaussian mixture 
distribution, namely, the total number of clusters, and �� 
denotes the mixing proportion of the �th cluster. Addition-
ally, p

[
�
|||�
(
��

)
,���

(
��

)]
 is the multivariable Gaussian 

density of the �th cluster with mean �
(
��

)
 and covariance 

���
(
��

)
 ; this distribution is defined as follows:

Assuming that all the data column vectors of the sample 
matrix are independent of each other, the parametric model {[
��,�

(
��

)
,���

(
��

)]|1 ≤ � ≤ ℧
}
 is estimated by maxi-

mizing the following log-likelihood estimation from the 
measured data:

The above optimization problem is solved using the 
expectation maximization (EM) method [53]. If the para-
metric model 

{[
��,�

(
��

)
,���

(
��

)]|1 ≤ � ≤ ℧
}

 can 
maximize Eq. (41), then according to the assumption that 
the partial derivative of �(�) with respect to �

(
��

)
 is 0, 

the following equation is obtained:

Solving Eq. (42), one obtains

where �g,� denotes the posterior probability of sample �g , 
which is generated through the � th Gaussian mixture distri-
bution, as shown in Eq. (44).

Similarly, according to the assumption that the partial 
derivative of �(�) with respect to ���

(
��

)
 is 0, one obtains
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Regarding the mixing proportion �� , in addition to max-

imizing �(�) , the conditions �� ≥ 0 and 
k∑

� = 1

�� = 1 should 

also be satisfied. �� is calculated by the equation below; 
namely, the mixing proportion of each Gaussian compo-
nent is determined by the average posterior probability of 
the monitored sample belonging to that component.

With the cluster analysis method based on the GMM, 
both the temperature and natural frequency data in each 
monitoring period are classified into different clusters. 
For each cluster, the natural frequencies satisfy the same 
probability distribution, reflecting a similar environmental 
effect on the structural stiffness.

Appendix II. Calculation of statistical 
parameters of probabilistic FEM

The global stiffness matrix 𝐊m

(
�̃�
)
 and transfer function 

matrix 𝐆m

(
�̃�
)
 of the FEM of a bridge can be regarded as 

functions of the random variable �̃� ; therefore, each of their 
terms is also a random variable. The global stiffness matrix 
of the FEM of a bridge is transformed into a vector, as 
shown below

where 𝐊m

(
�̃�k
)
 is the global stiffness matrix of the FEM of 

the bridge corresponding to the kth sample of the updated 
parameters and ���(⋅) is the vectorization operator that 
stacks the columns of a matrix into a vector.

Using the first-order Taylor series, 𝐊m

(
�̃�k
)
 is approxi-

mately expressed as follows:

where 𝐄
(
�̃�
)
 is the mean vector of the updated parameters, 

𝐄
(
�̃�
)
∈ ℝ

1×� ; for the sake of simplicity, the random variable 
�̃� omits the expressions of all clusters � ; and 𝐍𝛉

[
𝐄
(
�̃�
)]

 is the 
sensitivity matrix of 𝐊

∼
m

(
�̃�k
)
 with respect to 𝐄

(
�̃�
)
 , 

𝐍𝛉

[
𝐄
(
�̃�
)]

∈ ℝ
�×n2 , which is obtained using the sensitivity 

calculation method based on complex perturbation [54]. The 
calculation procedure is described in the Appendix III.

According to Eq. (48), the mean vector of 𝐊
∼
m

(
�̃�
)
 is cal-

culated as follows:
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The covariance matrix of 𝐊
∼
m

(
�̃�
)
 is calculated as 

follows:

Based on the calculation method of Eqs. (49) and (50), 

the mean 𝐄
[
𝐤
∼
m,w

(
�̃�
)]

 and covariance 𝐂𝐨𝐯
[
𝐤
∼
m,w

(
�̃�
)]

 of the 

stacked vector of the stiffness matrix of any element w is 
obtained. Using the relationship between the transfer func-
tion matrix and the global stiffness matrix shown in Eq. (8), 
the mean of the transfer function matrix is obtained as 
follows:

The covariance matrix of the stacked vector 𝐆
∼
m

(
�̃�
)
 of the 

transfer function matrix is expressed as:
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[
𝐊
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∈ ℝ
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derivative formula of the inverse matrix, the following equa-
tion is obtained:

Then, the expression of 𝐍𝐊

[
𝐊
∼
m

(
�̃�
)]

 is obtained as 
follows:

where ⊗ denotes the Kronecker product. According to Eqs. 
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The mean and variance of each element in the transfer 
function matrix 𝐆m

(
�̃�
)
 and element stiffness matrix 𝐤m,w

(
�̃�
)
 

are extracted from the calculation results of Eqs. (48)–(52).

Appendix III. Sensitivity calculation method 
with complex perturbation

The sensitivity calculation method based on complex per-
turbations only needs numerical calculations to solve the 
sensitivity problem, which can avoid complicated derivation 
operations. According to Eq. (47), the definition of 𝐊

∼
m

(
�̃�k
)
 

is as follows:

The mean vector 𝐄
(
�̃�
)
 of the updating parameters is 

added to a small imaginary part, which is denoted by the 
complex vector 𝐄
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)
+ Δ𝛉�0 𝐣 . The Taylor series expansion 

of the complex function Kb
m

[
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]
 is defined as:

where j represents a complex index; � represents a set of 
complex indexes; and Δ��0 is the complex perturbation 
added to 𝐄
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The imaginary part of Kb
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 is extracted as:
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where J{⋅} denotes the imaginary parts of Kb
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and O(⋅) denotes the higher-order infinitesimal. Then, the 
sensitivity is obtained by the following equation:

On this basis, the sensitivity matrix 𝐍𝛉

[
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∼
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(
�̃�k
)
 

corresponding to 𝐄
(
�̃�
)
 is obtained as follows:
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