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Abstract
The load rating of a steel truss bridge is experimentally identified in this study using an improved Bayesian model updat-
ing algorithm. The initial element model is sequentially updated to match the static and dynamic characteristics of the 
bridge. For this purpose, a modified version of the Hamiltonian Monte Carlo (HMC) simulation is adopted for closed-form 
candidate generation that helps in faster convergence compared to the Markov Chain Monte Carlo simulation. The updated 
model works as a digital twin of the original structure to predict its load-carrying capacity and performance under proof or 
design load. The proposed approach incorporates in-situ conditions in its formulation and helps to reduce the risk involved 
in bridge load testing at its full capacity. The rating factor for each member is estimated from the updated model, which 
also indicates the weak links and possible failure mechanism. The efficiency of the improved HMC-based algorithm is 
demonstrated using limited sensor data, which can be easily adopted for other existing bridges.

Keywords  Bayesian Inference · Markov Chain Monte Carlo Simulation · Hamiltonian Monte Carlo Simulation · Finite 
element model updating · Bridge rating

1  Introduction

Condition assessment and bridge load rating have remained 
an active area of research in the last few decades as new 
methodologies (both analytical and experimental) are 
developed to meet the ever-increasing complexities. In this 
context, rating factor analysis establishes the safe load-
carrying capacity of a bridge. It is evaluated for every 
structural member due to the force generated for a given 
live load. Ultimately the minimum rating factor among the 
members governs the load-carrying capacity of a bridge, 
which in turn dictates its load limit (i.e. posting), repairing, 
or closure. Thus, rating analysis is essential to ensure the 
safety and well functioning of any bridge. It is particularly 

important for bridges, which are close to their design life. 
Also, it is necessary for the bridges, which are expected to 
carry loads higher than their design class.

Visual inspection of a bridge is the first step to assessing 
its health and assigning a qualitative rating factor based 
on specific guidelines [1]. It can only provide a limited 
understanding of bridge health based on some preliminary 
analysis or any noticeable physical deterioration. However, 
it is not sufficient for capacity estimation and often provides 
subjective assessment based on the judgement of the inspec-
tor. Phares et al. [2] highlighted this aspect of visual inspec-
tion for condition assessment of a bridge. Visual inspection 
supplemented by detailed testing provides more evidence 
to ascertain the health and load-carrying capacity of any 
bridge. Thus, designers and engineers have actively pursued 
vibration-based rating analysis in the recent past [3–8]. In 
this context, field tests are performed on a bridge to study 
its response under controlled loading. Bridge load tests are 
classified as Proof Load Test (PLT) and Diagnostic Test 
(DT) based on the magnitude of load used for testing. A 
factored design load is used in the proof load test to inves-
tigate bridge behaviour. The test load is gradually increased 
to its design value (i.e. factor is one) unless any distress is 
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observed. Generally, this test is performed before opening 
a newly constructed bridge to ascertain its capacity or for 
an existing bridge to establish the available strength in the 
light of ageing and subsequent deterioration. Thus, proof 
load test serves as a benchmark to identify the actual load-
carrying capacity [5, 9, 10]. Since the test load is gradually 
increased, proof load test faces a potential risk of perma-
nently damaging a bridge. Thus, it also involves significant 
cost to ensure the safety of the structure and its surrounding 
during the experiment [11]. However, attempts have been 
made to make this test more feasible as it gives an accu-
rate estimation of the capacity [4, 12, 13]. Faber et al. [12] 
developed a reliability-based formulation to calibrate the 
intensity of proof load to ensure target reliability consider-
ing deterioration, failure modes, and uncertainty in bridge 
resistance. Contrary to the proof load test, diagnostic test 
limits the magnitude of live load to a level that is known to 
be safe for a bridge. The recorded responses (e.g. accelera-
tion, strain, displacement, tilt) in this test are further ana-
lyzed to assess the bridge health. This test aims to document 
the structural response under various loading and ambient 
conditions, which can be used for model calibration. It is 
frequently conducted for rating analysis [14] due to its cost-
effectiveness and minimal impact on the bridge operations. 
Previous studies [15–17] firmly established the potential of 
diagnostic tests for the health monitoring and subsequent 
rating analysis of a bridge.

Since a lower load than the designed capacity of any 
bridge is used in the Diagnostic Test, it largely depends 
on the calibrated model to assess the ultimate capacity. In 
this context, model calibration for condition assessment and 
load rating offers several challenges, where inconsisten-
cies between the actual and the model predicted behaviour 
is well known in the literature [18, 19]. Common causes 
behind this difference are material deterioration[12], bear-
ing restraint [19], unintended composite action [20, 21], 
load distribution effects [22] and secondary effects [18]. 
Thus, a finite element model serves as an approximate rep-
resentation of an actual bridge due to different assumptions 
and uncertainties involved in modelling. These models need 
to be calibrated using measurements so that they can rep-
licate the actual behaviour. In this process, specific model 
parameters are selected based on the physical condition, 
which are tuned so that the model predicted behaviour is 
consistent with the actual response [3, 23]. These param-
eters are adjusted until the required level of consistency 
is achieved. Catbas et al. [24] and Dong et al. [25] used 
this approach to obtain a more practical distribution factor 
for the existing bridges. They highlighted the conservative 
nature of these factors given in the guidelines [26]. Since 
the calibrated model can closely replicate the actual behav-
iour, rating factor analysis performed on such models are 
expected to offer identical results obtained from the bridge 

load test [21, 27–29]. In this context, deterministic optimi-
zation is commonly adopted for model calibration before 
load rating. Although the model is calibrated to match the 
observation, it fails to incorporate the measurement error. 
Also, modelling error plays a vital role in its calibration. 
Thus, the model calibrated using deterministic optimiza-
tion is not very accurate when exposed to different loading 
conditions. Also, the deterministic model calibration gives 
a single best output of the design parameters and rules out 
the possibility of multiple solutions. Thus, it is often cali-
brated in the stochastic framework using Bayesian infer-
ence to overcome these limitations [30, 31]. This method 
includes measurement noise and modelling assumptions in 
the updating process to obtain the best possible solution. 
The acceptance or rejection of candidates in this method 
depends on the error, conditioned by the measurement noise 
and the modelling class.

The stochastic model updating does not offer a single 
best output; instead, it forms a probability distribution over 
the possible values of the uncertain parameter. This poste-
rior distribution specifies the relative plausibility of each 
uncertain model parameter achieving a particular value. The 
high probability region of the posterior distribution is often 
concentrated in a narrow band of the parameter space. The 
updating algorithms use an adaptive approach to converge 
to the final solution [32, 33], avoiding a higher-rejection 
rate and the non-ergodicity in the Markov chain caused by 
the high probability zone. In this context, random-walk-
based candidate generation schemes are popular among the 
researchers, where the Metropolis–Hastings algorithm or 
its modified versions are used to formulate the posterior 
distribution [32, 33]. This approach requires a large number 
of iteration and is computationally exhaustive when updat-
ing a complex structure. Cheung and Beck [34] developed 
an efficient algorithm based on Hamiltonian dynamics to 
expedite the convergence. In this formulation, the parameter 
space is mapped with a Hamiltonian system such that the 
solution of the governing equation generates the required 
candidate states. Conventionally, the leapfrog algorithm 
[34, 35] is used to solve the governing equations. This 
technique requires numerical integration of the objective 
function with respect to the uncertain parameters. Due to 
this reason, the computational cost increases directly with 
the rise in unknown parameter and complexity of the model. 
In this context, a closed-form candidate generation scheme 
was developed in the literature [36, 37], which performed 
better than the leapfrog algorithm.

Besides the Bayesian approach, recent advancement in 
bridge rating has witnessed Artificial Neural Network [38], 
Machine learning [39], Multi-regression-based framework 
[40], Big data analytic [41] and Weigh-In-Motion studies 
[42]. Some of these studies use global system-based reli-
ability analysis to assess the health and safety [43–45]. A 
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complete review of different bridge rating methodologies 
with the benefit of load testing based on a cost–benefit anal-
ysis is presented by Alampalli et al. [46]. These authors 
also present the scientific background for bridge load test-
ing [47], which contains new proposals for interpreting the 
results of diagnostic load tests, loading protocols, and load 
ratings based on the results of proof load tests.

2 � Problem formulation

The literature review presented above highlights the current 
status of the bridge rating. It also discusses various load-
testing approaches and the importance of model calibration 
for rating analysis and capacity estimation. In this context, 
measurement and modelling uncertainties play a vital role 
in the quality of results. Although different deterministic 
and stochastic algorithms are available in the literature, 
there is further scope for their improvements. Besides theo-
retical developments, filed implementation of these models 
for actual bridge rating has equal, if not greater, importance. 
With this in view, the present study aims to investigate the 
performance of an efficient HMC-based stochastic model 
calibration, which can address the difficulties faced by exist-
ing bridge rating practices. This approach uses a calibrated 
model to predict the load-carrying capacity, which is vali-
dated experimentally. Thus, the following objectives are set 
for this work 

1.	 Develop a modified Hamiltonian Monte Carlo algorithm 
for stochastic model updating using an efficient closed-
form candidate generation technique and perform a 
comparative analysis with the conventional Markov 
Chain Monte Carlo approach.

2.	 Experimentally validate the proposed model updating 
strategy using diagnostic test of a steel truss bridge. Use 
the calibrated model to predict the rating factor under 
different loading scenario.

3.	 The steel truss bridge used in this study has experienced 
misalignment at some of its joints during fabrication. 
Thus, the present work also aims to investigate the 
impact of the joint misalignment on the dynamics of 
steel truss bridge and its ultimate load-carrying capac-
ity.

3 � Overview of bridge rating

The bridge load rating is a process of quantifying its load-
carrying capacity in its as-built or in-situ condition. The 
design of a bridge considers all possible loads (e.g. live 
load, earthquake load, wind load) and their combinations. 

Among them, the capacity of a bridge in terms of the live 
load is most important. Thus, the rating of a bridge is for-
mulated by the following equation

In the above equation, C is capacity, D is dead load effect 
and (L + I) represents the combined effect of live load and 
impact. The factors �D and �L in Eq. (1) correspond to dead 
and live load, respectively. Rearranging this equation leads 
to the rating factor in the following compact form

This non-dimensional number is expressed as the reserve 
strength ratio after removing the effect of the permanent 
load to the live load effect. It is a unique number correspond-
ing to a pre-selected class of live load. The rating factor is 
evaluated at the component level, and the minimum rating 
factor governs the load-carrying capacity of a bridge. Here, 
it may be noted that a rating factor less than one does not 
necessarily imply the collapse of a structure due to the high 
level of indeterminacy that is usually present in the design. 
However, this factor indicates the under-performance of a 
particular member, highlighting the possibility of failure due 
to a chain of events that might originate from this element.

The bridge rating can be carried out at two levels: inven-
tory level rating and operating level rating, depending upon 
the type of load used for testing. The inventory level rating 
uses a nominal live load that can traverse over the bridge 
indefinitely. In contrast, the operating level rating considers 
the maximum live load that a bridge might be exposed to 
during its entire lifetime. The factors �D and �L are chosen 
depending upon the type of rating. So, the rating formula-
tion in Eq. (2) can be modified to suit the codal guidelines 
and the traffic characteristics of a particular region. In the 
context of Indian standard specifications and traffic charac-
teristics, the expression for rating factor can be formulated 
as

In this equation, OF and IF are the overload factor and 
impact factor, respectively. The detailed description of Over-
load Factor (OF) is specified in IRC:SP:37-2010 [48], which 
is the guideline released by the Indian Road Congress (IRC) 
to establish a standard procedure to access the strength, eval-
uate the safe load carrying capacity and provide information 
regarding the rating of a bridge. This guideline also presents 
a systematic approach for structural assessment and practical 
features of traffic characteristic in India. The OF is recom-
mended in this guideline to address the general tendency of 
the transport operators to increase freight beyond the limits 

(1)𝛾DD + 𝛾L(L + I) < C

(2)RF =
C − �DD

�L(L + I)

(3)RF =
C − �DD

�L(OF)L(1 + IF)
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specified by the legal bodies. This factor is based on the 
actual survey of the gross weight of vehicles traversing over 
a bridge, but in any case, it should not be less than the aver-
age overload factor mentioned in the same guideline. On the 
other hand, the Impact Factor (IF) is a provision made to 
express the dynamic effect of moving vehicles on the bridge. 
This factor depends on the live load characteristics, span, 
and type of the bridge. The OF for standard load classes 
and bridge span are mentioned in IRC:6-2016 [49], which 
outlines the design and construction of road bridges in India.

The expression for load rating in Eq. (3) offers a compact 
framework for quantifying the load-carrying capacity of any 
bridge. It involves a detailed structural analysis for the dead 
load effect while the live load effects are observed from the 
actual testing. In this context, engineers often face difficul-
ties with existing bridges that have undergone deteriora-
tion over time. The in-situ condition needs to be assessed 
before dead load analysis and testing using an appropriate 
live load. Thus, condition assessment is a key step for any 
meaningful rating analysis. Different options for condition 
assessment exist in the literature [27, 38, 40, 41]. Among 
them, Bayesian inference is a popular tool, which is adopted 
in this study.

4 � Hybrid Monte Carlo simulation‑based 
Bayesian model updating

The inconsistency between a model-predicted response and 
the actual behaviour obtained from testing has been widely 
reported in the literature [2, 18, 23]. In this context, the 
uncertainties in modelling can be categorized as parametric 
uncertainty and modelling uncertainty. The first category 
indicates the uncertainty caused by a particular value of a 
parameter in modelling whose exact value may vary. It is 
commonly encountered due to inherent variability of some 
parameters due to workmanship, quality control or ageing, 
e.g. the compressive strength of concrete whose exact spa-
tial variation in a structure is difficult to predict. The model-
ling uncertainty is generally caused due to the simplification 
involved in modelling structural components and bound-
ary conditions. In bridges, modelling uncertainty is mainly 
attributed to bearings and other joints. For example, the 
bearings, which are modelled as simply supported bound-
ary conditions, often offer restraint, leading to a significant 
reduction of span moments. These differences should be 
logically eliminated from a finite element model that acts 
as a digital twin of the actual structure.

The stochastic model updating in the Bayesian frame-
work uses an optimization technique, which is formulated 
so that the observations and the modelling assumptions are 
given due importance while arriving at the final updated 

model. In this approach, the uncertain parameters � are first 
identified, which are then updated by conditioning them 
using measurements D and the mathematical model class 
C. The model updating in this approach is presented by the 
following form

where p(�|�,�) , i.e. posterior pdf, describes the probability 
of uncertain parameter � given the actual structural response 
� and the model class � . The term p(�|�,�) is the like-
lihood function, which quantifies the error, i.e. difference 
between the measurement and the model predicted response. 
Thus, the likelihood of obtaining the structural response � 
for a specified set of model parameter values � can be quan-
tified. The term p(�|�) , i.e. prior pdf, represents the initial 
perception of the uncertain parameter �i . This updating for-
mulation modifies the initial understanding of the uncertain 
parameters [i.e. p(�|�) ] by incorporating observations [i.e. 
p(�|�,�) ] and proposes a more accurate understanding of 
the parameters [i.e. p(�|�,�) ]. In this process, a number of 
samples are generated using a suitable simulation technique, 
and the posterior probability for each set of � is evaluated 
using Eq. (4). Blending these three terms offers a holistic 
model updating framework while precisely replicating the 
field condition.

The stochastic model updating in the Bayesian frame-
work involves Markov Chain Monte Carlo (MCMC) simu-
lation [32, 33] to generate a candidate state. The random 
walk nature of this candidate generation technique using 
the Metropolis–Hastings algorithm or its advanced versions 
leads to frequent diversion from the probable solution and 
subsequently slowing down the convergence. Due to this 
reason, these algorithms require a large number of itera-
tions to arrive at the final updated model, and hence they are 
computationally exhaustive for large structures like bridges. 
This paper presents an alternative approach to expedite the 
simulation process using principles of Hamiltonian dynam-
ics. In this method, the candidates are simulated by mim-
icking the time evolution of a Hamiltonian system. The 
governing equation is generally solved using the leapfrog 
algorithm [36], a popular mathematical tool to explore the 
region of high probability within the parameter space using 
the gradient of the posterior pdf. In this process, the gra-
dient is used to generate the next candidate based on the 
current state of the system, which is also a time-consuming 
process. The computational effort increases exponentially 
with the increase of dimension, i.e. number of unknown 
parameters. Thus, an efficient closed-form candidate gen-
eration scheme is adopted in this work, which is explained 
below.

An overview of the Hamiltonian dynamics for efficient 
candidate generation is presented here, along with the 

(4)p(�|�,�) = �0p(�|�,�)p(�|�)
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proposed sample generation scheme to bypass the leapfrog 
algorithm. Readers may refer to Baisthakur and Chakraborty 
[37] for further details on this topic. The parameter vector 
� is considered analogous to the position vector, say � , of 
a Hamiltonian system. Further, an auxiliary variable, say 
� , is generated to complete the position–momentum-phase 
space. The potential energy (V) and kinetic energy (K) are 
defined in terms of position and momentum as 

 The Hamiltonian for this system is defined as

The canonical ensemble for this system is defined by the 
summation of potential energy (V) and kinetic energy (K), 
i.e.

where Z is a normalizing constant such that the area under 
the pdf is equal to unity. From this equation, it is clear that 
the time evolution of this system can generate the posi-
tion–momentum-phase space such that the position param-
eter follows the target probability distribution, while the aux-
iliary momentum variable follows the Gaussian distribution 
with zero mean and covariance matrix M. The governing 
Hamiltonian equations for this system are given by 

 These equations can be solved numerically by assuming an 
initial guess [ �(0),�(0)]. The position and momentum of the 
particle after some finite time � t are obtained as 

 This scheme requires numerical evaluation of the gradi-
ent �V  . For a particular case, where the target pdf follows 
Standard Gaussian distribution and M becomes an identity 
matrix, the Hamiltonian takes the following form

(5a)V(�) = − log(p(�|D,C))

(5b)K(�) =
�TM−1�

2

(6)
H(�, �) =V(�) + K(�)

= − log(p(�|D,C)) + �TM−1�

2

(7)f (x) =
1

Z
e−H(�,�) =

1

Z
p(�|D,C)e

�TM−1�

2

(8a)
d�

dt
=
�H

��

(8b)
d�

dt
= −

�H

��

(9a)�(t + �t) =�(t) + �tM−1{�(t) −
�t

2
�V[�(t)]}

(9b)�(t + �t) =�(t) −
�t

2
{�V[(�(t)] + �V[(�(t + �t)]}

The analytical solution of the time evolution for the above 
system can be expressed as 

 where �in and �in are the initial position and momentum, 
respectively. The time parameter t for candidate generation 
using the above formulation is arbitrarily assigned such that 
t ∈ [−�∕2,�∕2].

In general, the high-probability region of the target pos-
terior density function is concentrated within a narrow band 
of the parameter space. The posterior pdf within this narrow 
margin leads to frequent rejection of the candidate states. 
Thus, the Markov chain in the Metropolis–Hastings algo-
rithm or its modified version is often trapped leading to a 
non-ergodic state. Various researchers have addressed this 
issue using a sequence of intermediate pdfs [32, 33] that 
gradually converge to the target pdf, which is given by

This study uses an adaptive scheme proposed by Baisthakur 
and Chakraborty [37] for generating the intermediate pdfs, 
where the parameter �2 is evaluated as follows 

 In Eq. (13a), the term Jg(�i) is the goodness-of-fit func-
tion quantifying the error between the measurement and the 
model response for a set of uncertain parameters evaluated 
at their respective mean values. The terms r and k are tuned 
to achieve the desired rate of acceptance for the candidate 
states.

Any updating scheme, in general, uses maximum compu-
tational cost for solving the finite element model. Thus, the 
primary approach for developing a computationally efficient 
model updating algorithm is to reduce the number of model 
evaluations. The candidate generation using the leapfrog 
algorithm requires numerical evaluation of gradient of the 
potential energy (V) (i.e. as in Eqs. 9a and b). Since the 
potential energy function is the logarithm of the target pdf, 
their gradient evaluation involves the complete finite ele-
ment model. Moreover, the number of gradient evaluations 
is directly proportional to the dimension of the parameter 

(10)H(�, �) =
�T�

2
+

�T�

2

(11a)�(t) =�in sin t + �in cos t

(11b)�(t) =�in cos t − �in sin t

(12)pi = ciexp

[
−
Jg(�)

2�2
i

]

(13a)�2
i
=
−Jg(�i)

2 ln r
×
k

i

(13b)r =
p(�|D,C)
p(�|C)
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space. Additionally, the Leapfrog algorithm being a time-
stepping algorithm, uses a finite number of time steps L to 
generate a new state �(t + �t) based on the current state �(t) . 
Therefore, the number of finite element model evaluation 
in this approach to generate a candidate state is nc = 2NL , 
where N is the dimension of the parameter space. Due to 
this reason, the computational cost for model updating 
increases directly with the increase of dimension of �(t) . 
Hence, it becomes increasingly prohibitive for higher-order 
parameter space and complex finite element models.

The proposed HMC algorithm uses a closed-form solu-
tion presented in Eq.   (11) for generating the candidate 
states. The computational time required for candidate gener-
ation is independent of the complexity of the finite element 
model and the dimension of the parameter space since this 
scheme does not require the evaluation of a finite element 
model for candidate generation. Therefore, it is computa-
tionally more efficient for finite element model updating 
of large structures. In this context, candidate generation in 
conventional MCMC also does not require finite element 
model evaluation. However, it requires a large number of 
candidates for convergence due to the random-walk nature 
of candidate generation that has lower acceptance rate. The 
Hamiltonian approach using closed-form candidate genera-
tion is more efficient than the random walk-based MCMC 
method in exploring the high-probability region of target 
pdf. This feature of the proposed algorithm will be demon-
strated further in the numerical analysis.

5 � The Pasakha steel bridge

In this study, a steel truss bridge is used to demonstrate the 
efficiency of the modified Hamiltonian Monte Carlo simu-
lation-based finite element model updating for bridge rat-
ing. This bridge (also known as Pasakha bridge) is located 

on Pasakha-Monitor road in Bhutan, where it crosses over 
the Singi-Chu river in mountainous terrain. The bridge has 
a span of 55 m and width of 12 m. The super-structure is 
made of steel truss on bearings at both ends on top of 2 m 
high abutments made of M35 grade concrete. The bridge 
deck is 185 mm thick and is made of the same grade of con-
crete. The deck slab is supported by 23 steel floor beams, 
spaced at 2.5 m intervals over the entire span. The dimen-
sions of the bridge super-structure (i.e. Fig. 1a) are pro-
vided in the Appendix. It is designed following the Indian 
standard specifications [49–52] to carry the IRC-70R class 
live load. This live load corresponds to a tracked vehicle 
with a gross weight of 700 kN or a wheeled vehicle with a 
gross weight of 1000 kN. The tracked vehicle has a contact 
length of 4.57 m, and the nose to tail length of the vehicle 
is 7.92 m. The wheeled vehicle has a total of seven axles 
with a total length of 15.22 m. The schematic diagram of 
the wheeled loading pattern in this class is presented later 
in this article.

The bridge was fabricated on-site using form-work in 
the recent past. During its fabrication, a sudden flash flood 
in the river led to the distortion of the scaffolding, which 
ultimately reflected in the misalignment of some joints as 
shown in Fig. 1b. A detailed survey was carried out to iden-
tify the positions, and the maximum dislocation of the top 
joints was found to be 0.49% of the span. The survey also 
revealed that the bottom joints were least affected by the 
flash flood due to the rigidity provided by the deck slab. 
During the initial test after its construction with a load far 
below its designated class, the bridge experienced severe 
vibration. Due to this reason, an experimental load rating 
was planned to assess the impact of joint misalignment on 
the performance of this bridge and to determine its safe 
load-carrying capacity.

Fig. 1   Details of bridge; a Pasakha Bridge and b survey data for joint misalignment
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6 � Bridge testing and data acquisition

As stated above, the Pasakha bridge is considered for exper-
imental verification in this study to determine the effects of 
joint misalignment on its load rating. This, in turn, demands 
in-situ condition assessment followed by rating factor esti-
mation. Thus, a static load test is conducted first to inves-
tigate the load vs. deflection behaviour of the bridge. It is 
followed by a diagnostic load test for condition assessment 
and Bayesian model updating using the proposed HMC 
algorithm for capacity estimation.

6.1 � Static load test

The static load test is adopted to study the overall perfor-
mance of the bridges. The Indian Road Congress guideline 
[48] recommends this test for rating analysis of a newly 
constructed or an operating/existing bridge. The load can 
be applied using a vehicle or by assembling static loads in 
the form of a wheel or track imprints to match the loading 
pattern of a particular class of vehicle. For this test, the 
loading pattern is created to resemble a class 70R tracked 
vehicle occupying the middle of the deck, which has a total 
load of 128 MT. The additional weight over the gross ton-
nage of 70R class for a tracked vehicle (i.e. 100 MT) is 
to account for the dynamic amplification. The spacings of 
loading imprints as per the codal provisions are maintained, 
and the equal distribution of load is ensured by placing 
the rolled steel sections across the imprints. The platform 

supported on the steel sections is loaded using the pre-
weighed sandbags. The incremental loading of the platform 
is done to avoid any untoward distress in the bridge. It is 
particularly recommended where the load-carrying capac-
ity of the bridge is to be identified. In addition to the load 
placed at the mid-span (BRLL), a permanent pavement live 
load (FPLL) of 2.23 kN/m2 is also placed throughout the 
footpath as considered in the design.

The load is increased incrementally at 30, 50, 70, 90, 
and 100% of its absolute magnitude. The incremental load 
is added when the deformations due to the previous load 
are stabilized, and the necessary observations (such as the 
deflection at critical sections, appearance of cracks, and 
bearing deflections) are recorded. During this process, set-
tlement of the bearings are also recorded to eliminate their 
effects on the mid-span deflection. The deflection of the 
abutments on either side is measured using a dial gauge 
during each load increment. The average observed bearing 
settlement ( �b ) is subtracted from the measured mid-span 
deflection ( �ms ). Further, the ambient temperature during 
testing (T) is recorded at regular intervals to address the 
deflections caused due to thermal deformations. The tem-
perature correction is then applied to the bearing settle-
ment, and the value of the mid-span deflection is obtained 
as the final deflection caused due to loading alone ( �f ). For 
temperature correction, the thermal response is studied in 
consecutive days at a one-hour interval over the period for 
which the load test is performed. This deflection value is 
checked against the permissible deflection ( �p ) prescribed 
by the IRC guidelines [53] to compare the actual behav-
iour of the structure against its expected behaviour. The 

Table 1   Static load test data

FPLL refers to the footpath live Load while BRLL refers to bridge live load. Loading stopped at FPLL + 
70% BRLL due to an abnormal rise in deflection

Sr no. Loading stage Time (BST) �ms �b �p �f Gross load T ( ◦C)
Loading

 1 Before start of loading 1000 – – – – – 21
 2 FPLL@227 kG per Sqm 1135 1.78 0.025 3.1 1.755 18.727 23
 3 FPLL + 30% BRLL 1305 5.40 0.030 9.8 5.370 57.127 24
 4 FPLL + 50% BRLL 1545 17.29 0.175 14.3 17.115 82.727 24
 5 FPLL + 70% BRLL 1755 23.46 0.265 18.8 23.195 107.000 21
 6 FPLL + 70% BRLL 1800 23.46 18.8 23.460 107.000 21
 7 FPLL + 70% BRLL 1830 23.84 18.8 23.840 107.000 21
 8 FPLL + 70% BRLL 1920 24.15 18.8 24.150 107.000 21
 9 FPLL + 70% BRLL 1940 24.25 18.8 24.250 107.000 21

Unloading (10% reduction in weight)
 1 FPLL + 60% BRLL 2035 22.61 22.610 95.527 20.5

Further unloading
 2 FPLL + 30% BRLL 1820 15.76 0.115 15.645 57.127 19
 3 FPLL 1930 11.88 0.080 11.800 18.727 19
 4 NIL 2110 11.51 0.045 11.465 0.000 18
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deflections observed during testing and other relevant infor-
mation are presented in Table 1. From this test, it can be 
observed that the recorded bridge deflection exceeds the 
allowable deflection value at 50% LL value. Subsequently, 
a 20% increase in LL causes an abnormal rise in the bridge 
deflection. Due to this excessive deformation and corre-
sponding over-stress, the loading is stopped to avoid per-
manent damage. Up to this stage, the deformation kept on 
increasing with the live load. The unloading is carried out in 
a sequence of 60, 30, and 0%. After the complete removal of 
LL, the bridge is found to have an accumulated deformation 
of 9.71 mm. These observations from the static load test 
provide an overview of the in-situ condition, and the defor-
mation pattern to compare them with the model predicted 
bridge behaviour. Although these observations are used for 
the initial tuning, it does not give a holistic understanding 
of the bridge and its performance under dynamic condition. 
Therefore, a diagnostic load test is carried out to establish 
the global dynamic behaviour under a given loading class.

6.2 � Diagnostic load test for condition assessment

The diagnostic load test is conducted for better understand-
ing the actual behaviour under controlled loading, which is 
known to be safe. This test is performed by passing a vehicle 
on the bridge at a constant speed. The finite element model 
of the bridge is calibrated using the recorded response to 
replicate its on-site characteristics. This updated model is 
used to evaluate the structural capacity in its as-built condi-
tion and perform other allied analysis for load rating. Thus, 
a 22T vehicle is selected for the diagnostic test, which 
passes over the bridge at a speed of 20 kmph, as shown in 
Fig.2a. The bridge responses are recorded using wireless 
accelerometers, which are analyzed to identify its modal 
characteristic. Three sets of wireless G-Link® LXRS® 
accelerometer nodes from Lord Corporation are used for 
this purpose. These nodes feature two integrated high-
speed micro-electro-mechanical system (MEMS)-based 

accelerometers, producing triaxial acceleration as output. 
This accelerometer node offers a measurement range of ±10 
g and a user-programmable sampling rate up to 4096 Hz. 
These sensors can be used for long-range wireless sensing 
up to 2 km with node-to-node synchronization of ±32 μs. 
The data are recorded at a sampling rate of 128 Hz and 
transmitted to a WSDA® base station made by the same 
manufacturer (refer to Fig. 2b).

Since the bridge is in remote mountainous terrain, the 
topography and the in-situ condition offered great difficul-
ties to install a large number of sensors of different types. 
It is a practical problem for remote locations, which leaves 
no choice but to carry out tests with fewer instruments. Due 
to these limitations, the experiment is performed with a low 
density of instrumentation. The deterministic model cali-
bration in this scenario may lead to misleading results and 
inaccurate prediction of the load-carrying capacity. Under 
this condition, model calibration is performed in the Bayes-
ian framework, which addresses the uncertainty involved in 
test data by conditioning the probability of acceptance or 
rejection of model parameters. The instrumentation plan is 
prepared based on the preliminary modal analysis to uti-
lize the maximum benefits of the limited sensors. Thus, 
the locations corresponding to maximum modal deforma-
tion are selected for the placement of accelerometer nodes. 
The sensors along the grid-line 6–6 shown in Fig. 1b cor-
responds to the maximum deformation in the first mode, 
while those at 4–4 and 8–8 correspond to the same in the 
second mode.

6.3 � System identification

The acceleration responses obtained from the sensors (refer 
to Fig. 3a and b) are analyzed to identify the in-situ domi-
nant modal frequencies of the Pasakha bridge using wave-
let-based time–frequency analysis. For this purpose, a Mor-
let wavelet with a central frequency of 5 rad/s is adopted 
in this study. The scalogram of the vertical acceleration 

Fig. 2   a Diagnostic test of 
Pasakha bridge and b wireless 
accelerometer and base station
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response is shown in Fig. 3c. It indicates the presence of 
dominant frequencies as marked in the figure, which are 
identified from the energy spectrum clusters as 2.733, 4.122 
and 5.061 Hz. During the diagnostic test, significant roll-
ing vibration is also reported, which does not comply with 
the bending behaviour. Thus, the horizontal response is 
also analyzed using the same signal processing technique 
to investigate this unwanted vibration. The scalogram of 
this data is presented in Fig. 3c, which indicates a mode at 
4.05 Hz. The test is repeated, and each information is pro-
cessed using the same time–frequency analysis to identify 
the dominant modal frequencies. The modal frequencies 
are estimated using k-means clustering from these energy 
spectra, reported in Table 2. The detailed discussion of this 
signal-processing technique is omitted here as it is not the 
theme of the present study. However, readers may refer to 
Mahato and Chakraborty [54] for the complete descrip-
tion of this operational modal analysis using wavelet-based 
k-means clustering.

In general, the 2D truss on either side of the bridge 
vibrates in the vertical plane (i.e. due to bending), where 
the truss members transfer loads through axial tension and 
compression. However, as the joints are dislocated, the 
member forces at a particular joint are not co-planer and 
generate end moments leading to significant vibration in 
the out-of-the-plane direction. As the joints on the right half 
of the bridge suffered misalignment, these joints are identi-
fied as the weak links in the model updating to match the 

modal frequencies obtained from the field tests as reported 
in Table 2. These are discussed in the following sub-section.

6.4 � Finite element model updating

At first, a preliminary finite element model of the bridge 
is created in SAP2000®, following the as-built drawing 
(refer to Appendix for the details of geometric and material 
properties of the Pasakha bridge). In this model, the truss 
members are idealized as bar elements, and thin-shell ele-
ments form the bridge deck. This model is used as a refer-
ence to investigate the differences with the actual structural 
behaviour. It indicates the first few natural frequencies of 
the bridge, which, as per design, are 2.396 Hz, 4.349 Hz, 
and 4.940 Hz. These values are less than the frequencies 
observed from the operational modal analysis. These phe-
nomena (i.e. model predicted modal frequencies are less 
than the identified modal frequencies) are widely encoun-
tered in bridge testing [55–57], which are generally attrib-
uted to the higher stiffness manifested at the site than the 
predicted values as per design. However, the static load test 
shows the actual deflection are more than the model pre-
dicted values, suggesting that the member stiffness offered 
by the as-built truss is less than its designed values. This 
phenomena of simultaneous higher modal frequencies and 
higher static deflection for Pasakha bridge are attributed 
to the misalignment joints. A misaligned member pro-
duces end moments at the gussets in addition to the axial 
force. Therefore, the joints offer partial fixity instead of 
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Fig. 3   Bridge acceleration response and wavelet based operational modal analysis
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moment-free pin connection as per design. Thus, the addi-
tional moments affect the modal frequencies while the truss 
members (which are no longer co-planar) are less effective 
in force transfer. Hence, the bridge shows more deflection 
under static load. The member stiffness values need to be 
updated to replicate this behaviour in the finite element 
model so that the identified modal frequencies match with 
the model predicted frequencies. For this purpose, the joint 
stiffness is factored by an unknown parameter ( � ), which is 
updated using the proposed HMC-based Bayesian inference. 
Since the members experience partial fixity at the ends due 
to distortion, they are modelled as beam elements instead of 
bar elements as in the initial model. Young’s modulus (E) 
of the affected members are multiplied by the factor �i to 
update their stiffness. As the stiffness of a beam element is 
expressed in terms of ( EI

L3
 ), updating Young’s modulus leads 

to the proportionate change in member stiffness.
The structure has 40 joints (i.e. 18 top and 22 bottom), 

among which the joints on the right half of the bridge are 
affected most (as marked in Fig. 1b). Thus, a sensitivity 
analysis is performed using a tornado chart to identify the 
most critical joints. In this analysis, the change of the objec-
tive function corresponding to a 10% change (i.e. increase 
or decrease) of the stiffness is studied. The percentage 
change of the objective function value corresponding to 
10% change in the joint stiffness is plotted on the either 
side of the vertical axis in Fig. 1. The joint locations lead-
ing to maximum change in the objective function value are 
then selected as the most sensitive joints. This analysis is 
performed using 18 top joints as the bottom joints are found 
to be insensitive due to the presence of the thick deck slab 
at that level. The tornado chart in Fig. 4 reveals that joints 
1–14 and 18 have a significant impact on the objective func-
tion. However, the survey data presented in Fig. 1 reveal 
that only four joints in the right half (i.e. 4, 5, 6, and 7 
which fall over the grid line 9–9 and 10–10 in Fig. 1) have 
suffered maximum misalignment. Thus, two different cases 
are considered in this study to cover all possible options. In 

the first case, 15 joints identified from the tornado diagram 
(i.e. Case I) are used to update the model. In the second 
option, 4 joints identified from the site survey are used, 
which are also identified in the tornado chart (i.e. Case 
II). In this context, the rolling vibration (observed during 
the field experiment and the wavelet analysis of horizontal 
response) suggests that the 4 joints in Case II are critical, 
which are envisaged to excite the torsional mode of vibra-
tion (i.e. second mode as shown in Fig. 10b).

As stated earlier, affected joints are factored by �i to 
modify the stiffness of the associated members. These 
parameters are then modified through the proposed iterative 
model updating algorithm, ultimately resulting in joint stiff-
ness calibration. Since the natural frequency of the structure 
is used as a performance measure to quantify the agreement 
between the as-built bridge and FE model, the likelihood 
function is formed using the following expressions 

 Here, fnact represents the identified or actual in-situ modal 
frequency and fnmod

(�) is the model predicted frequency for 
a particular value of �i . The first three fundamental frequen-
cies are used in Eq. (14a) to update the FE model in this 
study. It may be noted that only identified natural frequen-
cies are used to develop the objective function instead of the 
general practice that also involves mode shapes or modal 
strain energies due to the low-density instrumentation used 
in this study, which is not reliable for mode shape estima-
tion. A weighted objective function is constructed using the 
in-situ modal frequencies, where the weights are decided 
based on the mass participation factors. Thus, 60% weight 
is assigned to the first natural frequency, while 30% and 10% 
weights are assigned to the second and third natural frequen-
cies, respectively. The prior pdf for this algorithm is assumed 
to follow independent Gaussian distribution centered at the 
original value of �i = 1;i = 1,… , 4 . The COV is assumed to 
be unity to avoid any bias in accepting or rejecting a candi-
date, and an adaptive scheme is constructed using r = 1√

3
 

and k = 1 . A detailed discussion on selecting relevant param-
eters of this bridge is provided by Baisthakur and 
Chakraborty [37].
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7 � Numerical results and discussions

This section presents the results obtained from the experi-
mental verification of the proposed Hamiltonian Monte 
Carlo-based finite element model updating, followed by 
the load rating. First, the performance of the proposed 
improved Bayesian inference for digital model calibration is 
discussed. The updated model is finally used for the capac-
ity estimation, i.e. rating.

7.1 � Diagnostic test for load rating of Truss bridge

The model is updated to match the identified modal fre-
quencies obtained from the wavelet-based clustering of the 
acceleration responses. The first three identified frequen-
cies are shown in Table 2 where fn represents the modal 

frequencies in Hz. The secondary subscripts in, id and upd 
in this table correspond to the initial, identified and updated 
values, respectively. Two different model classes are used 
where Case I and Case II have 15 and 4 unknown param-
eters (i.e. �i ). The comparisons of natural frequencies before 
and after the model updating are also presented in the same 
table, where the results from Test 1 are shown for brevity. 
The nature of compliance between the observed values and 

Table 2   Comparison of identified and updated modal frequencies in 
Test 1

Values within parenthesis represent % error

Mode 
number

f
nin

 (Hz)  f
nid

 (Hz)  f
nupd

 (Hz)

Case I Case II

1 2.396 2.733 [14.06] 2.569 [05.98] 2.612 [04.43]
2 4.349 4.122 [05.22] 4.319 [04.79] 4.293 [04.15]
3 4.940 5.061 [02.45] 5.061 [00.01] 5.033 [00.55]
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Fig. 5   Marginal posterior distribution of �
i
 in Case I

Table 3   Updated values of �
i
 in Case I

Parameter Initial value Updated value Std. deviation Cov (%)

�1 1 2.5049 0.1305 05.24
�2 1 1.7434 0.0222 01.29
�3 1 0.4018 0.0343 07.47
�4 1 1.5978 0.0559 03.70
�5 1 2.8103 0.0980 03.71
�6 1 2.4251 0.1662 06.39
�7 1 1.2464 0.0853 07.13
�8 1 1.3463 0.0175 01.31
�9 1 2.2221 0.0588 02.51
�10 1 0.4468 0.0376 08.25
�11 1 0.6706 0.0074 01.11
�12 1 1.0473 0.0403 04.31
�13 1 2.3329 0.2196 12.22
�14 1 2.3594 0.0455 01.86
�15 1 2.9106 0.0334 01.17
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the two different cases indicates that they replicate the in-
situ modal behaviour with gross error within 10%. There-
fore, these two models can be adopted for further analysis. 
In this updating process, an adaptive search is used where 
the posterior distribution of �i gradually converges to its 
final form as the iteration progresses. The posterior pdf 
sequence obtained from two different cases conditioned 

by measurement � and model class � is shown in Figs. 5 
and  6. Case I converges in ten iterations, while Case II 
needs six iterations before the error falls below the allow-
able limit of 1%. Fig. 5 shows posterior pdfs for 1st, 5th 
and 10th iterations for Case I. The updated values of the 
uncertain parameters in Case I are presented in Table 3, 
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which indicate a significant change in the member stiffness. 
Although these changes in stiffness offer excellent match 
with the modal behaviour, a close review of the values in 
Table 3 reveals unrealistic changes obtained in this case. 
In some members, the stiffness is increased by more than 
2.5 times its original value. These unrealistic changes in 
some members correspond to those joints that have little 
or insignificant impact of misalignment (refer to Fig. 1b 
for joints on the left half of the bridge). These joints are 
selected from the tornado diagram, many of them do not 
comply with the field condition. Further analysis is carried 
out using Case II, where the joints are selected based on the 

sensitivity analysis and actual site survey. Figure 6 shows 
the posterior pdf of the updated parameters �i in the 1st, 3rd 
and 6th iterations. The converged values of the unknown 
parameters are also reported in Table 4. These updated 
parameter values indicate that the members connected to 
the four joints updated in Case II suffer a significant reduc-
tion of their member stiffness due to misalignment, which is 
consistent with the in-situ condition. Moreover, the modal 
frequencies also closely match with the identified values, 
as shown in Table 2. Therefore, the updated model in Case 
II is more realistic to replicate the bridge with misaligned 
joints, which is used for further analysis.

The unknown parameters �i gradually converge to their 
most probable values and the mean and standard devia-
tion of these parameters in Case II for different chains are 
shown in Fig 7. This figure demonstrates the reduction of 
co-variance of �i as the iteration progresses.

These results in Table 4 reveal that the four selected 
truss joints, which was initially designed as pinned con-
nection, experience significant partial fixity. The updated 

Table 4   Updated values of �
i
 in Case II

Parameter Initial value Updated value Std. deviation Cov (%)

�1 1 0.5385 0.0690 10.70
�2 1 0.5400 0.0706 12.35
�3 1 0.6333 0.0682 09.39
�4 1 0.7394 0.0528 07.95
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joints provide the stiffness of the order of 53.85%, 54.00%, 
63.33%, and 73.94% as that of the fully fixed joints, and the 
uncertain parameters are consistent with the actual joint 
conditions. Since these joints (designed for transmitting 
axial loads only in the vertical plane) are subjected to end 
moments, it has induced unanticipated moments in the con-
nected members. The rating-factor analysis is carried out 
using the updated finite element model to study the impact 
of misalignment on the load-carrying capacity of the bridge.

Once the model is updated by the proposed HMC-based 
Bayesian inference, its performance is compared with the 
Markov Chain Monte Carlo (MCMC) simulation using 
the Modified Metropolis–Hastings (MMH) algorithm for 
candidate generation. The MCMC approach needs more 
iterations for convergence, which leads to more number of 
model evaluations. The convergence rate offered by the pro-
posed HMC algorithm and the conventional MCMC algo-
rithm is demonstrated in Fig. 8 for the same number of iter-
ations. From this figure, it is clear that the proposed HMC 
approach can efficiently explore the parameter space and 

rapidly converge to the high probability region of �i with 
less number of iterations and hence, demands less compu-
tational cost. Also, the adaptive scheme presented in this 
study (i.e. Eqs. 13a and  b) is found to be more efficient than 
the conventional MCMC-based approach as it maintains a 
consistent rate of acceptance of the candidate states across 
all chains. In contrast, the acceptance rate in conventional 
MCMC decreases with the increase in the number of chains 
presented in Fig. 9. The closed-form solution for candidate 
generation proposed in this study offers more acceptance 
at a aster rate compared to the random walk-based MMH 
algorithm. It is reflected in every iteration, as demonstrated 
in Fig. 9.

7.1.1 � Rating factor analysis

In this section, the effect of joint distortion on the load rat-
ing is presented using the finite element model obtained 
from Bayesian updating. The updated model in Case II is 
used to conduct a virtual proof load test by exposing the 

Fig. 10   Updated mode shapes of the bridge; a 1st mode, b 2nd mode and c 3rd mode

Fig. 11   Vehicular load models
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bridge model to different classes of live loads in SAP2000. 
The first three modes of the bridge obtained from the 
updated model are shown in Fig. 10. The second mode, in 
particular, is responsible for the torsional vibration, which 
is excited due to misalignment, as noticed in the scalo-
gram (refer to Fig. 3d) and during the experiment. Since 
the updated model replicates the as-built bridge behaviour, 
this model predicted response for the proof load is expected 
to forecast the response realistically. The forces generated 
in different members in this virtual live load analysis are 
recorded for their subsequent use in rating analysis, where 
vehicles of different load classes traverse along the centre 
line of the bridge.

In this process, the vehicle is allowed to pass over the 
bridge at a constant velocity of 20 kmph and the forces 
generated in the members are recorded, which are used 
to compute the rating factor using Eq. (3). In this study, 
the load rating is performed at two levels ( i.e. inventory 
and operating condition). For the inventory rating, the 22T 
vehicle used in the diagnostic test passes over the bridge at 
20 kmph. The equivalent point load model of this vehicle 
is shown in Fig. 11a and the parameters �DL and �LL are 
assumed to be 1.5 and 1.35 [58], respectively. The rating 
factors obtained from this analysis are reported in Table 5, 

where the minimum factor is 2.34. It indicates the availabil-
ity of sufficient member strength for this load class.

For the operating load rating, IRC70R wheeled vehicle is 
used as this is the designed load class. The point load model 
of this vehicle is presented in Fig. 11b, which has a total 
weight of 1000 kN. The factors �DL and �LL , in this case, 
are assumed to be 1.5, and 1.75 [58], respectively, along 
with the appropriate impact factor as per the IRC:6 [49] 
guidelines. The rating factors for this case show that four 
members have values less than 1 (refer to Table 5, which 
are highlighted in Fig 12. Here, it may be noted that the 
bridge experiences severe rolling as the torsional mode is 
excited during the experiment. Since the joints on the right 
half of the bridge are mostly affected by the misalignment 
and subsequent strength degradation, the members on the 
right half experience redistribution of forces (beyond its 
designed values), ultimately affecting their load-carrying 
capacity and the rating factor.

Finally, the load-deflection behaviour of the bridge is 
investigated and compared with the static load test data, as 
shown in Fig. 13. The vertical line in this figure demarcates 
two distinct regions where the linearity is dominant on the 
left-hand side. As the load intensity increases, the lateral-
torsional deflection of the bridge sets in, affecting the geo-
metric stiffness leading to unwanted deformation not envis-
aged in the design. However, the linear behaviour shifts 
from its initial model to the updated model and matches 

Fig. 12   Members with rating factor less than one for operating condi-
tion

Fig. 13   Deflection pattern observed at site and in as-built and updated 
finite element model

Table 5   Inventory rating factor 
comparison of the initial and 
updated model using test data

Op and Inv represent operating and inventory levels, respectively

Sr no. Section name As per design Test-1 Test-2 Test-3

Op Inv Op Inv Op Inv Op Inv

1 Sec15-L6 5.32 1.47 2.34 0.45 2.47 0.48 2.60 0.51
2 Sec15-R6 5.32 1.47 2.60 0.50 2.52 0.49 2.93 0.57
3 Sec11-R6 7.62 1.94 4.75 0.93 4.76 0.96 4.77 0.97
4 Sec11-L6 7.62 1.94 4.82 0.97 4.90 0.97 4.81 1.06
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closely with the test data, which in turn ensures the accu-
racy of the proposed updating methodology. This behav-
iour is projected further (i.e. dotted lines) to demonstrate 
the difference between the modelled behaviour and in-situ 
condition originating from the misalignment of truss joints. 
The process (i.e. rating factor evaluation) is repeated for 
Test-2 and Test-3, and the results are reported in Table 5. 
These factors are compared with their designed value to 
study the impact of joint distortion. It indicates a minor 
misalignment of joints (i.e. < 0.5% of span) can reduce the 
rating factor by more than 100% . This reduction of rating 
factor below 1 highlights a potential weak link in the truss, 
which can act as the initial point of a catastrophic failure. 
Since the inventory level analysis indicates adequate mem-
ber strength, it is referred to as the load-carrying capacity 
of the bridge i.e. 22T.

8 � Conclusion

The present work investigates the load rating of a steel truss 
bridge using modified Hamiltonian Monte Carlo-based 
model updating. The proposed approach has a considerable 
advantage over conventional Markov Chain Monte Carlo 
simulation using modified Metropolis–Hastings algorithm 
in terms of the computational cost. The numerical results 
show the efficiency of the proposed method to replicate 
the field behaviour accurately. The steel bridge used in this 
study is a unique example of misaligned truss joints that 
experience partial fixity. The experimental results dem-
onstrate the impacts of joint misalignment in terms of the 
modal frequencies and load-carrying capacity of the bridge. 
In this context, the proposed HMC algorithm uses the com-
mercial finite element package to develop the digital twin 
of the actual bridge to carry out proof load test numeri-
cally for rating analysis. Hence, the proposed algorithm 
works as a viable alternative to the actual proof load test, 
which involves the potential risk of permanently damaging 
the bridge. Besides these observations, the major lessons 
learned from this study are 

1.	 Full-scale bridge load testing is a challenging task, 
especially for those structures at remote locations and 
in rugged terrain. These issues often lead to low-density 
instrumentation using only wireless sensors, which are 
easy to install and operate. Under these scenarios, time-
frequency based signal processing is a dependable alter-
native to track the in-situ dominant modes.

2.	 These identified modes help to update the finite ele-
ment model that works as a digital twin of the original 

bridge and avoid the physical proof load test for its rat-
ing. Due to this reason, the safety of the bridge is never 
compromised. Hence, the overall cost involved in the 
rating analysis is much less as it does not invoke any 
additional precautionary measures.

3.	 The model calibration using optimization in the Bayes-
ian framework performs better when the initial model 
is realistic and close to the in-situ conditions. It is dem-
onstrated using two different models where Case I uses 
the tornado diagram to select the joints for updating. 
It works as a black-box and does not combine other 
information available from the actual survey of the in-
situ conditions. While Case II utilizes both sensitivity 
analysis and other valuable information, i.e., misaligned 
joints. In both cases, the updated modal frequencies 
match the identified values well, indicating the con-
vergence of the iterative process. The numerical opti-
mization can adjust the stiffness and other parameters 
of different members to match the eigen values, which 
may not be unique always. However, the rating analysis 
shows that the second model offers meaningful results, 
closely matching the field condition.

4.	 The HMC-based Bayesian model updating converges 
faster as the closed-form candidate generation scheme 
is computationally efficient. It is beneficial for large/
complex finite element models due to its higher accept-
ance rate and faster convergence.

Overall, the experimental investigation presented in this 
work shows the performance of the proposed HMC-based 
model updating for capacity estimation of a bridge in light 
of the practical challenges. The numerical studies show the 
potential of the detailed digital simulation in the Bayes-
ian framework and its efficiency for load rating of existing 
bridges. It also indicates the scope for further improvements 
by incorporating other critical phenomena, such as loaded-
length effect, floating axle loads, and braking/acceleration 
effects. These issues need more analytical and experimen-
tal investigations, which open up the avenues of further 
research on this topic.

Appendix

The geometric details and member names are shown in 
Figs. 14 and 15. The structural steel sections are given in 
Table 6 while the member properties used to model this 
bridge are provided in Table 7.
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Table 6   Frame section details 
of Pasakha Bridge

Frame label Section Frame label Section Frame label Section

22 Sec3-R1 82 Sec1-R6 151 Sec2-L7
23 Sec3-R1 83 Sec17 152 Sec1-L4
24 Sec3-R2 84 Sec17 153 Sec1-L4
25 Sec3-R2 85 Sec17 154 Sec1-L5
26 Sec3-R10 86 Sec17 155 Sec1-L6
27 Sec3-R10 87 Sec17 156 Sec12-L1
28 Sec3-R9 88 Sec17 157 Sec12-L9
29 Sec3-R9 89 Sec17 158 Sec13-L2
30 Sec3-L1 90 Sec17 159 Sec13-L8
31 Sec3-L1 91 Sec17 160 Sec14-L3
32 Sec3-L2 92 Sec17 161 Sec14-L7
33 Sec3-L2 93 Sec18 162 Sec15-L4
34 Sec3-L10 94 Sec18 163 Sec15-L6
35 Sec3-L10 96 Sec18 164 Sec16-L5
36 Sec3-L9 98 Sec18 165 Sec8-L2
37 Sec3-L9 100 Sec18 166 Sec8-L2
38 Sec4-R3 105 Sec18-R6 167 Sec8-L9
39 Sec4-R3 107 Sec18-R7 168 Sec8-L9
40 Sec4-R8 109 Sec18-R10 169 Sec9-L3
41 Sec4-R8 110 Sec18-R10 170 Sec9-L3
42 Sec4-L3 111 Sec12-R1 171 Sec9-L8
43 Sec4-L3 112 Sec12-R9 172 Sec9-L8
44 Sec4-L8 113 Sec13-R2 173 Sec10-L4
45 Sec4-L8 114 Sec13-R8 174 Sec10-L4
54 Sec5-R4 115 Sec14-R3 175 Sec10-L7
55 Sec5-R4 116 Sec14-R7 176 Sec10-L7
56 Sec5-R7 117 Sec15-R4 177 Sec11-L5
57 Sec5-R7 118 Sec15-R6 178 Sec11-L5
58 Sec5-L4 119 Sec16-R5 179 Sec11-L6
59 Sec5-L4 128 Sec8-R2 180 Sec11-L6
60 Sec5-L7 129 Sec8-R2 181 Sec17
61 Sec5-L7 130 Sec8-R9 182 Sec17
62 Sec6-R5 131 Sec8-R9 183 Sec17
63 Sec6-R5 132 Sec9-R3 184 Sec17
64 Sec6-R6 133 Sec9-R3 185 Sec17
65 Sec6-R6 134 Sec9-R8 186 Sec17
67 Sec6-L5 135 Sec9-R8 187 Sec17
68 Sec6-L5 136 Sec10-R4 188 Sec17
69 Sec6-L6 137 Sec10-R4 189 Sec17
70 Sec6-L6 138 Sec10-R7 190 Sec17
71 Sec7-R1 139 Sec10-R7 191 Sec18
72 Sec7-R1 140 Sec11-R5 192 Sec18
73 Sec7-R10 141 Sec11-R5 193 Sec18
74 Sec7-R10 142 Sec11-R6 194 Sec18
75 Sec2-R1 143 Sec11-R6 195 Sec18
76 Sec2-R2 144 Sec7-L1 196 Sec18-L5
77 Sec2-R8 145 Sec7-L1 197 Sec18-L6
78 Sec2-R7 146 Sec7-L10 198 Sec18-L7
79 Sec1-R3 147 Sec7-L10 199 Sec18-L10
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Fig. 14   Dimensions of Pasakha 
bridge; a elevation @ Y = 
0/12.45 m b plan view @ Z 
= 0 m c plan view @ Z = 6.4 
m i All the short vertical and 
inclined members in subfig (a) 
are S17 and S18, respectively 
ii All the transverse girders in 
subfig (b) are Cross-beam (DB) 
iii All the transverse bracing 
in subfig (c) are B1 and cross 
beams are BXB1

Fig. 15   Elevation of Pasakha Bridge; a left truss and b right truss

Table 6   (continued) Frame label Section Frame label Section Frame label Section

80 Sec1-R4 148 Sec2-L1 200 Sec18-L10

81 Sec1-R5 149 Sec2-L2

82 Sec1-R6 150 Sec2-L8
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