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Abstract
Under the cyclic traffic loads, welded structural components of steel bridges may encounter fatigue, which can cause a shorter 
service life and lead to fracture. A precise fatigue life prediction of structural components requires an accurate collection of 
stress cycles of the respective component. The density of sensors installed for monitoring the component and the distance to 
the concentrated stress areas are the features, which impact the efficacy of the estimated fatigue life. In this study, a platform 
is developed for the data-driven fatigue assessment of welded structural components of steel bridges, using artificial neural 
networks (ANN). The proposed algorithm is implemented for a case study, vertical lift truss bridge, the Memorial Bridge, 
Portsmouth, NH. A 12-month data collection period is utilized for the algorithm, from the long-term SHM program of the 
bridge. The stress cycles are used to estimate fatigue responses of an instrumented structural component of the bridge and 
determine the correlation between the estimated fatigue responses at the instrumentation plan. Additionally, a validated finite 
element model of the bridge is utilized to investigate fatigue responses in the unhealthy condition of the objective component. 
Therefore, multiple physical damage cases are simulated to compute the damage-induced stresses and the resulting fatigue 
life. The healthy and damaged fatigue responses are the ANN inputs, to detect crack-induced variation in the estimated 
fatigue responses at the instrumented locations. It is demonstrated that the proposed damage detection method can effectively 
detect possible fatigue cracks using a detailed database of damaged and healthy fatigue damage indices for training ANNs.

Keywords Crack simulation · Fatigue crack detection · Fatigue damage index · Traffic pattern · Artificial neural network

1 Introduction

Structural health monitoring (SHM) of civil infrastructure 
can play a significant role in mitigating unexpected struc-
tural failure by providing continuous health status reports 
of structures [1, 2]. Estimation of fatigue strength for frac-
ture critical components is one of the significant applica-
tions of SHM data in steel bridges [3]. The accuracy of the 
resulting fatigue damage index is dependent on the cyclic 
stresses that are collected via the SHM system of the bridge. 
Because SHM sensors within a network are typically sparse, 

the sensors measure the strains at discrete locations, which 
can be far from the welded area [4]. Therefore, an emerged 
fatigue crack might not considerably influence the trend of 
collected stresses and the resulting fatigue damage accumu-
lates. Consequently, the estimated fatigue remaining life of a 
structural component via field-collected SHM data may not 
precisely express the remaining service life of the cracked 
components [5].

In addition to the traffic loading impact, the field-col-
lected structural responses include anomalies and outliers 
due to environmental variations [6]. False conclusions could 
be made through the estimated fatigue responses if the sea-
sonal variations of stress responses are not well determined, 
though environmental variations may not significantly 
impact the estimated remaining fatigue life. Moreover, a 
validated finite element (FE) model can partially address 
the sparsity of sensors within a network and supplement 
the required data at the fracture critical locations for fatigue 
assessment [7]. Field-collected SHM data at the restricted 
instrumented locations of structures can be supplemented 
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with numerical crack tip structural responses to study crack 
propagation impact on the fatigue responses of a struc-
tural component. The integrated SHM data with numerical 
responses can provide a rich and efficient database which 
can be applied for fatigue crack detection in the long-term 
service life of bridges.

For autonomous and early detection of fatigue cracks, 
a machine learning approach is required as the changes in 
measured strain time histories prove to be subtle. Artificial 
neural networks (ANNs) are nonlinear mappings which use 
multiple interconnected neurons to predict the correlation 
between a set of input and output parameters [5, 8]. ANN 
methods are extensively applied for damage detection stud-
ies, using field SHM data and/or numerical responses as 
inputs [9–11]. In recent studies, ANNs have been used for 
fatigue damage detection of welded components in different 
structural types [12]. Kang et al. applied an ANN model for 
fatigue damage detection under multi-axial loading, using 
numerical data of an FE model [13]. Fathella, et al. used an 
ANN for fatigue crack detection of bridge decks, consider-
ing multiple crack scenarios [14]. Durdulae developed an 
ANN-based pattern for fatigue damage detection of steel 
components under random loadings in vortex-induced vibra-
tion. The developed pattern considered multiple parameters, 
including moments, ultimate tensile strength and fatigue 
strength coefficient, and exponent [15]. Zhan and Li devel-
oped an ANN-based tool for fatigue damage detection, con-
sidering additive manufacturing parameters for a specific 
printed material (SS 316L), using experimental data [16]. 
Ragheh et al. applied an ANN method for fatigue damage 
detection in steel railway bridges considering modeling 
uncertainties for multiple train loads [17]. Yan et al. utilized 
an ANN for probabilistic fatigue failure of bridges under 
overloaded traffic for a steel girder bridge using numerical 
data of a validated FE model [18]. Leander used an ANN 
model to predict fatigue life, using 1 year of collected SHM 
data for a railway bridge [19]. Xu et al. applied a deep con-
volutional neural network for the detection of fatigue cracks 
in steel bridges, using the images of crack samples of a 
bridge [20]. Wang et al., using a numerical model which 
was verified with experimental results, applied an ANN to 
determine fatigue crack growth directions for mixed-mode 
curved fatigue cracks under variable amplitude load [21].

In this study, an algorithm is proposed to evaluate the 
performance of the instrumented sensors in detecting pos-
sible fatigue cracks of welded structural components of steel 
bridges using long-term SHM data and an ANN. The SHM 
data are used to calculate the remaining fatigue lifespan at 
the instrumented locations of a welded component. The cor-
relation between estimated fatigue responses in the healthy 
and damaged conditions of the instrumented structural com-
ponents is determined using ANN. The proposed method is 
validated using a case-study bridge, the Memorial Bridge in 

Portsmouth, NH, that has a large SHM dataset due to perma-
nently installed sensors. The bridge also includes a complex 
structural component, the gusset-less connection, which is 
selected for the fatigue crack detection goal of this study.

In addition to the SHM data, a validated FE model of 
the bridge is utilized to acquire knowledge about crack 
propagation stress variations and the resulting fatigue 
responses under variable amplitude traffic loads. Multiple 
fatigue cracks, varying in size and location, are simulated 
through the FE model. A stepwise crack propagation is also 
implemented in the FE model under different dynamic traf-
fic loads. The data-driven healthy and numerical damaged 
(cracked) fatigue responses are the inputs to the ANN, which 
is then used to determine the minimum size of the crack that 
can be detected via the installed sensor network. This dam-
age detection work relies on adopting a refined, calibrated 
model of the bridge and generating a rich and realistic set of 
training data for the ANN. In doing so, a novel multiscale FE 
model of the case-study bridge was utilized. The standard 
ANN coupled with field data and realistic damage scenarios 
from a large scale, iconic bridge can provide the researchers 
and practitioners insights into real-world potentials and the 
limitations of machine learning and physics-based models 
for SHM and decision making.

2  Methodology

2.1  Fatigue assessment

Fatigue strength of a structural component can be computed 
through the field collected SHM data, which are obtained 
from the installed sensors at the component. The time-his-
tory strain responses of strain rosettes are post-processed 
for fatigue assessment. As the linear elastic relationship is 
valid, the collected strain responses are converted into stress 
responses. The stress cycles at the structural components 
of bridges have a variable property, given the variable pat-
tern of traffic programs in bridges. The cycles of variable 
amplitude stress ranges are extracted from the time-history 
stress responses. In this study, the Rainflow cycle algorithm 
is used for this purpose [22]. Miner’s rule is then utilized to 
compute the fatigue damage index by superposing the cycles 
of variable amplitude stress ranges, which is expressed in 
Eq. (1) [23]. Fatigue damage index, D, is a ratio, varying 
from 0 to 1 that reflects the fatigue damage level of an inves-
tigating component:

where ni denotes the number of collected stress cycles and 
Ni represents the number of remaining cycles to failure. The 

(1)D =
∑ ni

Ni

,
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Ni is determined in terms of fatigue properties of the mate-
rial and the mean stress, Sai , as expressed in Eqs. (2) and (3)

where c and b, respectively, are the fatigue strength and 
exponents values for the material, based on stress amplitude. 
The mean stress parameter αi in Eq. (2) is Goodman’s cor-
rection factor to consider the effect of the mean stress, Smi, 
and roots in the ultimate strength of the material, SUTS . The 
frequency domain expression, Ni, can be determined through 
the appropriate S–N curves for an investigating component, 
recommended by AASHTO [24].

Additionally, crack tip structural responses are required 
to be determined to estimate the remaining fatigue life of 
the cracked components. If using an FE model, the details 
of a detected crack of the investigating structural component 
shall be considered in the FE model. The detected crack 
must be accurately modeled to obtain the numerical crack tip 
stresses. Fatigue remaining cycles of a cracked component 
can be computed through Paris law, expressed in the follow-
ing equation [25]:

where C and m are material properties. da defines the crack 
length increment and dN refers to the number of cycles to 
failure corresponding to the crack length. da/dN expresses 
the rate of crack growth, which is the instantaneous slope of 
the crack growth curve. ΔK is defined as the stress intensity 
factor (SIF) that changes with crack increment.

2.1.1  Fatigue cycle estimates using SHM data

The fatigue strength for structural components of an in-ser-
vice bridge can be estimated over discrete periods of data 
collection, using the long-term SHM data. An exclusive 
data collection period helps to study the trend of the esti-
mated fatigue damage indices in the long-term service life 
of a bridge. The period is required to include the frequent 
stress ranges experienced by the structural components of 
the bridge. The choice of the optimum data collection inter-
val depends on the traffic pattern and the structure’s perfor-
mance. The fatigue damage index may also have a variable 
trend due to the seasonal impacts, when the traffic pattern 
of the bridge is considerably correlated with the seasonal 
variations [26].

Besides, scattered traffic conditions are another source 
of variability in the recorded responses. Removal of the 
less influential stress cycles can reduce the computation 
time in calculating the fatigue damage indices. Therefore, 

(2)Sai = �icN
b
i
,

(3)�i =
(

1 − Smi∕SUTS
)

,

(4)
da

dN
= C(ΔK)m,

less-frequent stress ranges (below 1% of total stress cycles 
experienced at the bridge) are removed from estimating 
fatigue damage indices. Low-amplitude stress ranges may 
occupy a significant portion of the field-collected data. 
These stress ranges are induced by the lower class of vehi-
cles (class 1–5), or recorded data during light traffic time 
(based on traffic data records). The low-amplitude stress 
ranges may not impact the estimated fatigue damage indi-
ces, and therefore, are removed from the analysis. Also, 
before computing the fatigue damage index, the existing 
outliers due to the random noise or malfunction of the 
sensor must be removed from the collected SHM data. 
The outlier removal, in this study, is performed using the 
filtering toolbox in MATLAB.

2.1.2  Fatigue cycle estimates using numerical analyses

Application of SHM data for fatigue assessment of welded 
structural components is restricted to the instrumented 
locations of the structural component. Fatigue prone 
welded structural components are often less accessible 
areas for instrumentation. Consequently, the crack tip 
stress concentration may not be reflected in the fatigue 
damage index, which is estimated using the long-term 
SHM data. Alternatively, through a validated FE model, 
numerical stress responses at the desired stress-concen-
trated locations can be utilized for fatigue assessment. A 
validated FE model can also incorporate the traffic details, 
including the frequency and class of vehicles. The traffic 
scenarios can be simulated through a validated FE model 
of bridges, as dynamic moving loads. However, due to 
excessive computation time for analysis, only the major 
traffic conditions of a bridge shall be simulated via the FE 
model. The resulting numerical stress ranges are used to 
estimate fatigue damage index, using Eq. (1). The required 
stress cycles can be counted through the SHM data or traf-
fic information of the bridge [27].

The model-based fatigue assessment method provides 
knowledge on structural performance of the concerning 
components to determine the fatigue category in estimating 
the remaining fatigue life of the component. A validated FE 
model also allows obtaining stress responses at the desired 
locations of structural components for estimating fatigue 
life of the component. In addition, the FE model aids to 
investigate propagation of the crack and the impact on the 
remaining fatigue life of the structural component. If the 
concerning structures do not include any reported crack, a 
possible crack can be simulated via the FE model, based on 
the assumptions on the location and characteristics of the 
crack. In this study, both the numerical healthy and damage-
induced stress responses are utilized for the crack detection 
scope of the paper.
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2.2  Artificial neural network

ANN is a mathematical tool that can be used for predicting 
the behavior of a system through a learning stage, which is 
the process of finding the weights and biases of a set of inter-
weighted regression functions, namely, the neurons [28]. In 
this study, a Multilayer Perceptron (MLP) is adopted for 
fatigue crack detection. MLP is a back-propagation algo-
rithm that trains the networks to link the nodes of the input 
layer, to the nodes of the output layer [29]. The relation-
ship between the input and output through a neuron i can be 
expressed as follows:

where xj are the inputs of the network that are multiplied 
by the weights, wij. yj is the output of the network, which is 
computed through an activation function fi , when the sum 
of the weighted inputs wijxj are higher than a threshold ti.

2.3  The proposed fatigue crack detection algorithm

A stepwise procedure for crack detection is shown in Fig. 1. 
In the beginning of the algorithm, it is required to locate the 
fatigue prone locations of the bridge, regarding the inspec-
tion reports of the bridge. Long-term SHM data are required 
to be collected through the installed sensors at the investi-
gating structural component. The period of data collection 
needs to be long enough to incorporate the dominant traffic 

(5)yj = fi

(

∑

wijxj − ti

)

,

loads at the bridge and capture environmental variabilities. 
The collected long-term SHM data is subsequently divided 
to several shorter periods with similar duration. The unique 
duration of field data is determined based on the recorded 
stress variations at the objective structural component. 
For each small period, the SHM data are post-processed 
to extract cycles of recorded stress ranges for estimating 
fatigue damage index through Miner’s rule. In addition to 
SHM data for each period, additional information needs 
to be collected, which include environmental data to input 
ANN. An average temperature and wind speed were consid-
ered for these estimated fatigue damage indices. In the next 
step, fatigue damage indices of the damaged structure are 
estimated, which is required for the ANN input. In this algo-
rithm, damage stresses are obtained via numerical efforts to 
estimate fatigue damage index of the damaged component. 
A validated FE model is applied to simulate fatigue cracks 
and extract crack tip time-history stresses under dynamic 
traffic loads on the model. The traffic load information of 
the bridge shall be acquired from field observations to pre-
cisely define the truckloads in the FE model. Crack type 
and locations are either obtained from the inspection report 
or simulated at fracture critical locations of the component. 
The numerical crack tip stresses in this step are utilized to 
calculate fatigue damage indices of the damaged component 
(Dcrack). The estimated healthy and damaged fatigue damage 
indices as well as the additional data (environmental) are 
input to ANN for training. The damage detection results are 
extracted from ANN.

Fig. 1  The procedure to develop a NN model for fatigue crack detection
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3  The case‑study bridge

3.1  Details, design, and construction

The case study in this research is the Memorial Bridge, a 
steel vertical-lift truss bridge in Portsmouth, NH, that con-
nects the two states of NH and ME, as shown in Fig. 2 [30, 
31]. The bridge was inaugurated to vehicular and naval traf-
fic in August 2013. The bridge consists of three spans and 
two towers. The two fixed and one movable span have the 
identical size of 90 m length, and 15.24 m width. The two 
identical towers have the height of 42 m. The bridge includes 
a novel gusset-less connection, which has a specific com-
plex web geometry and cold-formed bent flanges shown in 
Fig. 2b. The bent flanges of the connection are connected to 
the, web through curved fillet welds, with 15. 85 mm size. 
The complex geometry of the connection and the weld create 
an exclusive structural performance, which is reflected in the 
structural responses. Given the complex performance of the 
connection, this study focuses on fatigue crack detection at 
the gusset-less connection through integrating field collected 
SHM data of the connection and numerical results of an FE 
model of the bridge. The long-term SHM program and FE 
model of the bridge are explained in the following.

3.2  Long‑term SHM program of the bridge

A long-term SHM program was designed for the Memorial 
Bridge, which has been started to operate, since March 2017. 
The sensors are instrumented at the south span and south 
tower of the bridge to provide continuous real-time data at 
the critical locations of the structure. The SHM instrumenta-
tion plan includes 16 strain rosettes, 2 uni-axial strain gages, 
12 uni-axial accelerometers, 4 tiltmeters installed at multiple 

locations of the bridge to provide continuous data for condi-
tion assessment, design verification, and decision-making 
program of the bridge [31].

Fatigue assessment of the gusset-less connection is one 
of the main objectives of the SHM program of the bridge, 
which contributes to the maintenance programs of the 
bridge. In addition, the complex geometry of the gusset-less 
connection does not fit in the documented fatigue categories 
in the available design codes [24]. Therefore, fatigue assess-
ment of this novel gusset-less connection provides insights 
on this new design approach. An array of five strain rosettes 
is installed at multiple locations of the top chord and bot-
tom chord gusset-less connection to precisely understand 
the local performance of the connection (shown in Fig. 2). 
The current inspection results did not report any detected 
damage. Therefore, no information is available about the 
damage-induced stress responses. The complex structural 
response distribution and fatigue performance of the gus-
set-less connection motivate to implement the proposed 
algorithm of this study for fatigue crack detection of this 
component.

4  The data‑driven fatigue damage index

In this section, the procedure for data-driven fatigue dam-
age indices is expressed which include field data collection, 
post-processing of the data, and calculation of fatigue dam-
age indices. The data are collected from the healthy condi-
tion of the gusset-less connection.

4.1  Long‑term field data collection

In this section, time-history strain responses of the five 
installed strain rosettes at the bottom gusset-less connection 

Fig. 2  The Memorial Bridge, Portsmouth, NH (a), The gusset-less connection of the Memorial Bridge (b)
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(as shown in Fig. 2) are collected to estimate the fatigue 
damage index. In Fig. 3, the horizontal, vertical and diago-
nal time-history strain responses of the five strain rosettes 
are used to show a representative of principal strain time-
history for the strain rosettes, SG-A to SG-E, which are 
shown with letters A–E, respectively. It is observed that the 
recorded strain responses at locations A, C, D, have a similar 
trend, while the strain response of the SG-B is different. The 
SG-E is significantly influenced by the floor beam, which is 
directly located close to the strain rosette. In addition, SG-A 
is close to the side curve weld of the gusset-less connection, 
which may reflect the concentrated strains at this welded 
area. However, all the recorded strain responses report a 
similar cycle count. A fatigue crack may be captured by one 
or more of these strain rosettes, depending on the size and 
location of the fatigue crack.

The recorded time-history strain responses require some 
preprocessing to calculate fatigue damage index. Given the 
linear elastic performance of the structure, the field-col-
lected strain responses are transferred into principal stresses, 
using the elasticity modulus (200 GPa), which was consid-
ered in the design of the bridge. In addition, before comput-
ing the fatigue damage index, the existing outliers must be 
removed from the collected data. These outliers are either 
induced by random noise or malfunction of the sensor. In 
this study, the filtering MATLAB toolbox is used for outlier 
removal. Subsequently, the time-history strain responses are 
transformed to variable amplitude stress ranges using the 
Rainflow cycle algorithm [22]. The extracted stress range/
cycles of a period of data collection are used to exclusively 
calculate the fatigue damage index for each strain rosettes.

4.1.1  Time interval for field data collection

To calculate the fatigue damage index, an ample period is 
required to ensure the frequent traffic loads are included in 
the response. The traffic load variations can be associated 
with seasonal changes or the changes in the traffic program 
of the bridge, which result in a fluctuating trend for the cal-
culated fatigue damage indices. The fatigue damage index 
depends on the number of cycles and stress amplitudes, 
which are the major sources of variability of the responses 
estimated in different periods. This variability of the fatigue 
damage indices can adversely impact fatigue crack detec-
tion. Therefore, in this section, a consistent time-interval is 
defined for the estimated fatigue indices, in the long inves-
tigating period of data collection.

The unique consistent intervals can remove the impact 
cycle number on the estimated fatigue damage indices. 
Therefore, the variability of fatigue damage index with the 
stress cycle changes was studied to determine the appropri-
ate duration of data collection. In this study, 12 months of 
measured sensor data from the Memorial Bridge was inves-
tigated to select the duration of the time window, required 
for capturing the statistical features of traffic induced stress 
cycles. Fatigue damage indices were estimated using Miner’s 
rule, expressed in Eq. 1. The lower strain responses that 
were recorded under the lightweight traffic were excluded 
from the data collection periods. Only strain cycles above 
20 micro-strains were included in the analysis. In some pub-
lished literature, 20 µε was adopted by engineering judge-
ment to be a suitable threshold for excluding signals in 
fatigue damage detection analyses [32, 33]. Therefore, the 
duration of the period was defined based on the cycles of 
high-amplitude strain ranges. The duration of periods was 
expressed as the truck events, since the higher amplitude 
strain ranges are frequently induced under the heavy truck 
passages.

In Fig. 4, the trend of fatigue damage index with sequen-
tial truck events is depicted for four different periods. The 
four considered periods were chosen to start at four different 
seasons of the year with similar truck events. Therefore, the 
selected periods coincide at the end of the period. It is dem-
onstrated that the four graphs have a fluctuating trend at the 
beginning of data collection, while the difference between 
the fatigue damage indices is considerable. As the number 
of truck events reaches a specific level, each graph’s trend 
begins to plateau and the discrepancy between the estimated 
fatigue damage indices becomes marginal. It is also illus-
trated that the sufficiency points for the selected periods 
may not be identical. However, a period of about 600 truck 
events, seems to be a reasonable interval, which is selected 
as the exclusive period of data collection. In this study, the 
12-months collected time-history strain responses of five 
strain rosettes are utilized. The 12-month data collection Fig. 3  Time history strain responses of the five strain rosettes
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period is divided into multiple periods with a unique dura-
tion of 600 truck events, and fatigue damage index is esti-
mated for each period.

4.2  Fatigue damage index estimation

Based on the performance of the gusset-less connection and 
the designer’s assumption, fatigue category B is assumed 
for estimating fatigue damage index, using the field col-
lected data. Fatigue Category B is a terminology adopted 
by AASHTO Design Manual with allocated S–N curve. Cat-
egory B represents the continuous fillet weld parallel to the 
direction of applied stress [24]. The recorded time-history 
responses of the strain rosettes are post-processed to obtain 
the stress ranges, and associated cycles, via the Rainflow 
cycle algorithm. Using the stress range/cycles of a period 
of data collection, the fatigue damage index is exclusively 
calculated for the five investigating strain rosettes. The 
resulting indices become only dependent on the amplitude 

of collected stress ranges, due to the equal cycle counts. The 
stress ranges and resulting fatigue damage indices may still 
reflect the traffic pattern changes, seasonal variations, ambi-
ent noise, and measurement errors. However, the structural 
effects of excessive crack tip stresses may be better reflected 
in the resulting fatigue damage index, which improves the 
fatigue crack detection procedure.

In Fig. 5, the average monthly collected fatigue damage 
indices are shown for the 12 months of data collection at 
strain rosette SG-A. The graph demonstrates the variability 
of the estimated fatigue damage index, using field collected 
SHM data. It is observed that the fatigue damage index has a 
variable mean value in different seasons, while less variabil-
ity is observed within each season. Therefore, in a long-term 
SHM program, application of a consistent period causes a 
more predictable trend for the estimated fatigue damage 
indices. Consequently, the damage-induced changes can be 
detected more efficiently through the estimated trend of the 
fatigue damage index.

The calculated fatigue damage indices from the measured 
signals of the strain rosettes express the healthy conditions 
of the structure, as there was no damage observed during the 
period in which the data were being collected. Therefore, a 
high fidelity and computationally efficient numerical model 
was used for simulating the bridge response to the truck 
events, in the presence of fatigue cracks.

5  Computational model of the Memorial 
Bridge: bridge response in the presence 
of fatigue cracks

In this section, an FE model of the Memorial Bridge is used 
to obtain the numerical structural responses that are required 
for calculating fatigue damage index in the healthy and dam-
aged conditions of the gusset-less connection.

Fig. 4  Trend of averaged fatigue damage index versus truck event 
cycles for four periods

Fig. 5  Monthly averaged fatigue 
damage index for 12-month 
period of data collection at 
SG-A
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5.1  FE model development

The FE model shown in Fig. 6 is created in LUSAS, an 
FE software package, which is appropriate for modeling the 
bridges. The model includes the instrumented part of the 
bridge (south span and south tower). As shown in the fig-
ure, the structural members are modeled with three-dimen-
sional thick beam elements and three-dimensional eight-
noded thick shell elements [33]. The shell element provides 
stress contour responses along the structural members to 
determine the stress concentrated areas, which are prone to 
fatigue crack initiation. The properties of the FE model are 
expressed in Table 1.

The created FE model is validated using the measured 
responses of the bridge during quasi-static and dynamic 
live load tests [34]. The simulated time-history responses 
are dependent on multiple uncertain modeling parameters, 
including element type, size, mesh layout, unintended rigid-
ity induced by nonstructural components, and material prop-
erty. Calibrating the FE model with the dynamic load tests 
can ascertain the accuracy of the numerical time-history 
stress responses for calculating fatigue damage index. In 
Fig. 7, the numerical and field-collected time-history stress 
responses are compared for SG-A under a single truck 
(Fig. 7a) and multiple trucks (Fig. 7b). It can be observed 
that the numerical and field-collected responses are in good 
agreement for the two traffic scenarios. At the same time, the 
difference may not impact the stress ranges and the resulting 
fatigue damage index.

The calibrated FE model is utilized to extract the required 
numerical time history responses at the location of the five 
strain rosettes for the healthy and damaged conditions of the 
structure. Traffic scenarios of the bridge are simulated to 
utilize the resulting numerical stress responses for estimating 
fatigue damage index. The simulated traffic scenarios of the 

bridges can result in. the numerical stress responses, which 
are consistent with the field-collected stress responses. 
Simulating all of the experienced traffic scenarios of the 
bridge can cause excessive computational cost for this study. 
Therefore, the simulated traffic scenarios are restricted to the 
dominant stress ranges of the bridge with high amplitude 
and frequency.

Fig. 6  The FE model of the Memorial Bridge in LUSAS

Table 1  The properties of FE model of the Memorial Bridge in 
LUSAS

Parameter Quantity

Shell element number 158,993
Beam element number 5,160
Steel modulus of elasticity 200 GPa
Elasticity modulus of concrete 16.5 GPa
Poisson’s ratio 0.3
Shell element sizes (max, min) 2.5,7.5 cm
Beam element sizes (max, min) 5,10 cm

Fig. 7  Numerical and field-collected stress time-history at SG-A for a 
single truck, b multiple trucks
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The information about the traffic patterns and truck 
counts are obtained from Annual Average Daily Traffic 
(AADT) information, which is reported by NHDOT and 
the traffic camera of the bridge. The axle load of each truck 
is applied to the deck of the model as a point moving load, 
with the constant speed of 45 km/h, traveling at the north-
bound, southbound, or two bounds of the bridge [35]. The 
cycle count information for estimating fatigue damage index 
is also based on the reported AADT data. In Table 2, seven 
simulated traffic scenarios are explained which may occur 
in the northbound (NB), southbound (SB) or both (NS). The 
number of trucks for each traffic scenarios is also expressed. 
The resulting fatigue damage indices are expressed for the 
five strain rosette locations, which represent the healthy con-
dition of the structure. In the next section, the procedure for 
modeling fatigue cracks and calculating damage-induced 
structural responses are discussed.

5.2  Simulating fatigue crack via calibrated FE 
model

The fatigue cracks are often initiated at the high-stressed 
welded locations. Imperfections and the structural disconti-
nuities at the welds can significantly increase the local stress 
concentrations and hence, the potential for crack initiation. 
In this section, fatigue crack is simulated at the high-stressed 
locations, at the weld toes of the gusset-less connection. 
Most of the available literature implements damage as the 
reduction of stiffness, thickness, or change in material prop-
erties of the FE models [36]. In complex structural compo-
nents, there is a lack of data regarding structural responses 
in presence of various sources of damage [37]. As a remedy, 
structural responses in presence of damage can be obtained, 
using high-fidelity numerical simulations of fatigue cracks. 
Using stress state at the crack tips through fatigue crack 
simulations results in more precise fatigue damage indices 
of damaged structural components.

In this section, fatigue cracks are simulated via three-
dimensional shell elements [37]. Small sizes of fatigue 
cracks are selected for simulation, since the current study 

seeks to detect the possible cracks, at the early stages. 
The available literature has multiple recommendations for 
initial crack sizes [38]. In this study, a minimum size of 
12.5 mm is selected for crack initiation due to the con-
siderable thickness of the gusset-less connection web 
(31.75 mm). The initiated crack is propagated to a 125 mm 
crack size, with 12.5 mm increments, to study the stress 
response variations due to crack growth. For each crack 
step, the moving loads are applied to the FE model, and 
the stress time histories are extracted at the five strain 
rosettes location. Also, the crack propagation direction is 
determined based on the principal stress directions at the 
crack tip, which is determined via the FE model results 
[39].

Three locations at the connection are selected for crack 
simulation, as shown in Fig. 8. The cracks are simulated at 
stress-concentrated locations along with the weld toes of the 
gusset-less connection. Two of the cracks are implemented 
at a close distance to the instrumented strain rosettes. The 
third crack is simulated at the interior stiffener of the gusset-
less connection. The mesh sizes are adjusted in the vicinity 
of the cracked area ranging from 2.5 to 25 mm. Every crack 
case is modeled in a unique FE model, while the crack sizes 
are increased for each crack case. Consequently, three crack 
scenarios are simulated via the FE model, which include 
locations 1, 2, 3 in Fig. 8.

The numerical structural responses are obtained for each 
step of the crack size. Figure 9 displays the stress contour 
results of the gusset-less connection for the three crack 
cases. The figure shows the maximum size of the simulated 
cracks. It is seen that simulated cracks cause a higher stress 
amplitude around the cracked area, which may be reflected 
at the stress responses of one or more strain rosette locations.

Multiple traffic scenarios are considered for crack prop-
agation. Lightweight traffic conditions (scenarios 1–4) 
were not applied to the model during crack propagation. 
The applied loads are required to result in the high ampli-
tude stresses such that the crack is triggered to propagate 
[40]. In Fig. 10, an example of time-history principal stress 
responses is shown for the three cracks cases, under the traf-
fic scenario 3 trucks-NB.

The resulting numerical crack tip time-history stress 
responses are utilized for fatigue damage estimation. The 
required cycle quantities are obtained from the collected 
SHM data. In Fig. 11, the range of estimated fatigue dam-
age indices is shown for the five strain rosette locations, 
considering all of the crack sizes for the three crack cases. It 
is seen that the fatigue damage indices have more variability 
for SG-A and SG-E, as compared to the other strain rosette 
locations. The fatigue damage indices calculated, using the 
signals from healthy and damaged structure, which are inte-
grated for training, validation and testing process via the 
ANNs, which is discussed in the next section.

Table 2  Fatigue damage index for simulated traffic scenarios

Traffic scenario Fatigue damage index  (10–6)

SG-A SG-B SG-C SG-D SG-E

1 truck-SB 3.35 2.93 3.80 3.61 5.48
1 truck-NB 7.61 6.95 9.83 6.66 12.1
2 trucks-NS 8.34 7.51 10.30 7.85 15.8
4 trucks-NS 13.21 11.84 15.79 12.82 17.95
6 trucks-NS 35.93 31.81 36.37 34.05 38.69
3 trucks-SB 28.73 24.64 29.16 27.88 30.22
3 trucks-NB 32.85 28.78 33.48 32.06 35.44
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6  ANN for fatigue crack prediction

6.1  Training process of fatigue damage index 
responses

In this section, the calculated fatigue damage indices, 
which are obtained from the field-collected data and 
the numerical responses of the validated FE model, are 
used for training the ANNs. The healthy fatigue damage 
indices are calculated using the field-collected data and 
the simulated numerical time histories at the location of 
these strain rosettes. The fatigue damage indices of the 
unhealthy structure are estimated using only the numeri-
cal time histories obtained from the cracked FE model. 
The healthy and cracked fatigue damage indices, which 

vary depending on crack location and size, as well as the 
additional information about the crack location and sizes, 
are the inputs to train the ANNs [41].

In Table 3, the number of samples used for training, vali-
dation, and testing of the ANNs is summarized. The esti-
mated fatigue damage indices are labeled into three different 
categories, which are healthy, healthy-cracked, and cracked. 
It is noteworthy that for the healthy-cracked category, half 
of the stress cycles belong to healthy conditions, with the 
remainder of the stress cycles being extracted from early-
stage crack initiation (12.5–50 mm crack size) and con-
sisting of 300 samples of fatigue responses. In the cracked 
category, all stress cycles belong to the crack propagation 
process, which contain 400 samples of fatigue responses. 
The healthy-cracked category represents the insignifi-
cant changes in the calculated fatigue damage indices as 

Fig. 8  The simulated fatigue 
cracks at the gusset-less con-
nection through FE model in 
LUSAS

Fig. 9  The stress contours of the gusset-less connection healthy and three crack cases
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compared with cracked category. The input data is divided 
into approximately 70%, 15%, and 15% for training, valida-
tion, and testing, respectively. The ANNs are constructed 
using the Neural Network Toolbox in MATLAB [42].

6.2  ANN development

The input fatigue damage indices are used to train the ANNs. 
Other features, such as the size and location of the crack 
are also included in the ANNs. In Table 4, the details of 
the ANNs are explained. A total of 25 neurons are utilized 
for the 2 hidden layers. With a learning rate of 0.01, around 
1000 epochs were used to obtain the desired responses. In 
Fig. 12, the correlation curves are shown for the training, 
testing, and entire input data sets, with circles representing 
the magnitude of the estimated damage indices. In this fig-
ure, the dashed line represents the ideal correlation. A linear 
fit is shown in the colored lines, which represents the mini-
mized least squares error for the predicted fatigue damage 
indices. It can be observed that the estimated correlation line 
is superimposed on ideal correlation, which demonstrates 
the accuracy of the ANN‐based regression in detecting 

cracks. The applied data for training, validation, and testing 
are extracted from different groups, as previously discussed.

The ANNs are trained, validated, and tested by the fatigue 
damage indices inputs for the healthy and cracked (damaged) 
condition of the gusset-less connection. In this section, the 
crack detection results of the ANNs are discussed. The ANN 
results demonstrated that the healthy fatigue damage indices 
of the five strain rosettes have a unique correlation, which 
can be utilized as the criterion for fatigue crack detection. 
This correlation between the responses may not be valid for 
unhealthy fatigue damage indices. The deviance from the 
healthy condition is significantly influenced by the crack 
size, location, and distance to the installed sensors. There-
fore, depending on these crack properties, one or more strain 
rosettes may not follow the existing correlation for healthy 
condition. The observed difference can be used as a tool to 
estimate the crack location [43, 45].

6.2.1  Crack properties’ influence on damage detection

In Fig. 13, the ANN results for fatigue crack detection at 
the five strain rosettes are shown for the investigated crack 

Fig. 10  Numerical time-history 
principal stress responses under 
the dynamic moving loads for a 
healthy, b crack case#1, c crack 
case #2, d crack case #3
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cases. The damage detection results are expressed through p 
values. The null hypothesis,  H0, is defined when the correla-
tion between the fatigue damage indices remains unchanged 
[44]. The p value results range from 0 to 1, ranging from 
completely expected to unexpected results, respectively. 

Any calculated p value is evaluated with the “significant 
level” parameter, α. The p values below α denotes the H0 
is rejected, while for the p values above α,  H0 cannot be 
rejected [46]. In this study, α is considered as 0.005.

As shown in Fig. 13, Crack 1 is located at the left curved 
weld of the gusset-less connection, which is close to SG-A. 
At early crack sizes, the correlation of the five responses 
does not change, while larger crack sizes only impact SG-A. 
The crack subsequently changes the correlation at SG-E, 
SG-C, SG-D, and SG-B. Crack 2 is simulated close to SG-E, 
which is detected to be a smaller size fatigue crack compared 
to Crack 1. SG-A, SG-B, SG-C have the largest distance to 
the simulated Crack 2 and may less effectively provide infor-
mation about early-stage crack growth at the curved weld 
toes. Crack 3 does less significantly change the correlation 
between the fatigue damage indices, though some change 
is observed at larger crack sizes, as compared to Cracks 1 
and 2. Therefore, Crack 3 is first detected via SG-E and is 
subsequently detected through other sensors at very large 
crack sizes, when the concentrated stresses are transferred 
to the web of the gusset-less connection.

The crack detection results demonstrated the importance 
of having a sufficient sample of crack-induced fatigue dam-
age indices for training. Therefore, simulating multiple 
fatigue crack cases via the FE model and providing suffi-
cient fatigue damage indices for training can enhance the 
efficacy of the fatigue crack detection algorithm. Addition-
ally, since crack propagation in steel bridges occurs under 
variable loading conditions, it is essential to investigate the 
impact of variable cyclic loading on fatigue crack predic-
tions made via ANNs.

6.2.2  Loading conditions’ influence on damage detection

In this section, fatigue crack detection performance via the 
ANNs is investigated, considering the impact of variable 
loading conditions. Fatigue damage indices under different 
traffic scenarios are compared with the ANN results. In 
addition, fatigue damage indices of the healthy structure 
were considered to evaluate the possibility of false posi-
tive results through the ANNs [47]. It is noteworthy that 
different traffic scenarios were used for validation and for 
training the ANNs. In Fig. 14, the fatigue crack detection 
results are shown for multiple crack tip stress ranges for 

Fig. 11  Variability of the measured fatigue damage indexes with mul-
tiple crack sizes for a crack case#1, b crack case#2, c crack case#3

Table 3  Data inputs for training ANN

Health conditions 
of the component

Crack induced 
stress cycles (%)

Training Validation Test

Healthy 0 400 100 100
Healthy/cracked 50 200 50 50
Cracked 100 300 50 50
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the three cracked cases. It can be observed that the error 
in prediction of crack-induced fatigue indices increases for 
the less frequent stress cycles. These stress amplitudes are 
below the threshold required for crack opening, which is 
shown for the 15 MPa stress ranges in Fig. 14. The fatigue 

damage indices from scenarios 5 to 8 have more significant 
amplitudes, which can cause crack propagation, but they 
also have lower frequency (cycles). Therefore, the fatigue 
damage indices of unhealthy conditions are required to be 
estimated for above threshold stress ranges.

Table 4  Summary of ANN properties

ANN parameter

Number of neurons 25

Type of back propagation Levenberg–Marquardt

Activation function Sigmoid function
Learning rate 0.01
Training mode Batch mode

Fig. 12  Correlation between artificial neural network output and target values for training, validation, and testing inputs
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6.2.3  Minimum crack size detection via the ANN model

In this study, the minimum size of a fatigue crack, which can 
be captured through an array of strain rosettes, is determined 
using the trained ANNs. A possible fatigue crack may be 
detected via one or more strain rosettes, depending on the 
crack properties and instrumentation system of the struc-
tural component. In Fig. 15, the minimum detected crack 
size is shown for the five installed strain rosettes and the 
three crack cases. SG-E is shown to be more sensitive to 
the defined crack cases and has a significant impact on the 
correlation between the fatigue damage indices of the five 
strain rosettes locations. It is also seen that the fatigue dam-
age index of strain rosettes SG-B and SG-D may not consid-
erably influence the correlation of fatigue damage indices. 
This result can be due to the relatively large distance of the 
strain rosettes to the damage locations.

It is also shown that Crack 3 may not be predicted when 
using only the SHM data of the strain rosettes for training 
the ANNs, because it is located on the other side of the con-
nection. The results confirm that even excessive numbers 
of data acquisition system might not warrant early damage 

detection if they are not installed at appropriate positions. 
Indeed, this is a well-understood fact that the responses 
measured by a sensor network must have a sensitivity to 
the damage scenarios of interest. In this case, the success 
of early-stage fatigue crack prediction is dependent on the 
instrumentation plan, including the quantity and the location 
of the sensors.

7  Conclusion

In this study, an ANN-based algorithm is utilized to detect 
initiated fatigue cracks in complex welded components of 
steel bridges by using a sensor network and a high-fidel-
ity computational model. The SHM and numerical strain 
responses of a case-study welded component, the gusset-less 
connection of the Memorial Bridge, were utilized to esti-
mate the fatigue damage index of the investigated structural 
component. Fatigue damage index was the primary input 
for training the ANN, which allows integrating SHM data 
with numerical data of a validated FE model. Additional 
inputs consisted of environmental data, such as wind speed 

Fig. 13  Crack detection in five 
strain rosettes vs. crack lengths 
for three crack cases
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and temperature. Furthermore, a multiscale FE model of the 
case-study bridge was utilized to obtain crack tip stress time 
histories under the simulated dominant traffic loads of the 
bridge. It was demonstrated that the fatigue damage index, 
which reflects crack tip stress variations, is an appropriate 
input for damage detections utilizing ANNs. The efficacy 

of the ANN inputs was illustrated through more successful 
damage detection results. The following concluding remarks 
were also deduced from the damage detection results:

1. The applied multiscale FE model provide the opportu-
nity to obtain time-history stress responses at the simu-
lated crack tip, which can be more compatible with the 
field data. The local FE models of damaged components 
only show crack tip stresses, under constant amplitude 
stress. This multiscale model also allowed simulating 
the geometry of fatigue cracks via three-dimensional 
shell elements. Also, the FE model can provide addi-
tional stress results at non-instrumented locations of 
the component to address the restriction of insufficient 
instrumentation. Other useful numerical stresses include 
stress from unexpected traffic conditions and progressive 
damages that may occur in the future service life of the 
bridges.

2. The included environmental data for training ANN were 
shown to have a significant impact for damage detec-
tion if SHM data are used as inputs. The environmental 
changes may not directly impact the estimated fatigue 
damage indices, while they can describe the traffic 

Fig. 14  Crack detection vs. 
crack tip stresses in five strain 
rosettes for three crack cases

Fig. 15  Minimum detected crack size detected using the ANN mod-
els of the five strain rosettes for three crack cases
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changes and, the resulting stresses, which are reflected 
in the estimated fatigue damage indices. Using this envi-
ronmental information allows ANNs to differentiate the 
variation of the stresses due to traffic changes from dam-
aged stress results.

3. Damage detection and localization with this method 
report general trends of bridge performance. Therefore, 
the proposed damage detection program assists the man-
agement system of bridges with in-demand inspections 
and provides fatigue life degradations of the structural 
components of the bridges over the designated service 
lives.

4. In this study, it was shown that the combination of moni-
toring data and a physics-based model facilitates detect-
ing, locating, and characterizing the fatigue damage. 
Without the use of a physics-based model, it is unlikely 
to characterize the damage.
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