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Abstract
Suffering from solar radiation, day–night replacement and seasonal changes, the structure will produce notable temperature 
behaviour, which has a vital effect on the long-term process of the health monitoring. Previous studies show that there is 
a significant correlation between the measuring responses and temperature from health monitoring systems. To analyse 
the structural state more accurately, much literature employed health monitoring methods considering temperature effects. 
This paper reviews technical research concerning health monitoring of civil structures under varying temperature. Firstly, 
the correlation researches of structural measuring responses (dynamic and static responses) and temperature are reviewed, 
which includes the researches of the influence mechanism and the data statistics, and the studies of the influence of non-
uniform temperature on responses are also reviewed. In addition, different types of separation and forecast methods of the 
temperature-induced part of the structural responses data are summarized, followed by a brief summary of benefits and 
drawbacks of these methods. Lastly, the recently proposed process frameworks of damage assessment considering tempera-
ture effects are also introduced.

Keywords  Structural health monitoring · Temperature effect · Damage detection

1  Introduction

During the long-term service life, affected by comprehen-
sive factors, large infrastructures (e.g., bridges and build-
ings, etc.) suffer from damage accumulation and resistance 

deterioration, or even collapse in some severe cases. Struc-
tural health monitoring (SHM) technology is a significant 
approach to ensure the safety and reliability of the structures, 
which uses the continuous and real-time monitoring data to 
identify structural damage and track structural integrity [1, 
2]. In the past few decades, SHM was one of the focus areas 
of civil engineering, and a large number of methods were 
proposed based on the vibration responses (e.g., accelera-
tion, frequency, mode, etc.) and the static responses (e.g., 
static displacement, stress, strain, etc.) [3–6].

Ultimately, SHM technology is an inverse process of 
structural design and verification reflecting the variations 
of structural material parameters and geometrical charac-
teristics with the change of structural responses. But many 
field monitoring data indicate that structural responses are 
not only related to the characteristics of the structure, but 
also highly susceptible to the environmental conditions, such 
as humidity, wind, and most importantly, temperature [7]. 
Taking bridge as an example, Farror et al. [8, 9] performed 
several modal tests on the Alamosa Canyon Bridge in New 
Mexico, USA, and found that temperature has an imperative 
influence on the natural frequencies, and that the changes in 
the first three natural frequencies over 24-h are about 5.0%, 
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this level is higher than the variability caused by vehicle 
weight in the tests. Duan et al. [10] applied the correlation 
analysis to quantify the correlation between strain and tem-
perature, based on the measurement data from a tied arch 
bridge, whose results revealed that temperature changes 
effect on strain of the bridge are significant. Ding et al. 
[11] studied the expansion joint displacements under nor-
mal environmental conditions for the Runyang Suspension 
Bridge based on long-term continuous data, which showed 
that the variations of displacement are highly correlated with 
the variation in temperature compared with the wind speed. 
As a consequence, either the vibration or static responses, 
the effect of temperature is one factor that cannot be ignored. 
To obtain more accurate structural damage alarm and condi-
tion evaluation results, considering the environmental fac-
tors reasonably during the analysis has received more and 
more attention. In recent years, many related work about the 
influence of environmental temperature on the monitoring 
process has been studied, and various methods to deal with 
this influence have been proposed.

In this study, the advances in SHM methods consider-
ing temperature effect are reviewed. Firstly, the related 
mechanism researches on the effects of temperature on 
structural monitoring responses are introduced, including 
the studies of structural vibration modal parameters and 
static response. In addition to the mechanism researches, 
the statistics and related verification work of the relation-
ship between temperature and structural responses data in 
the field monitoring system are summarized. Generally, as 
well as ambient temperature, the changes of the structural 
responses are the result of the comprehensive effects, such as 
traffic load, structural damage, etc. The influence of ambient 
temperature will interfere with the estimate of the effects 
of other factors. To make a more accurate assessment, it is 
necessary to forecast and separate the temperature-induced 
parts of the overall responses, for the purpose of this, many 
methods have been used, such as regression analysis (RA), 
support vector machine (SVM), artificial neural network 
(ANN), principal component analysis (PCA), etc. Accord-
ing to whether temperature data is used in the process, these 
methods are divided into two parts to be introduced in the 
passage, i.e., input and output methods and output-only 
methods. The final goal of forecasting and separating tem-
perature-induced responses (TIR) is to effectively identify 
damage and assess safety of a structure under the effects of 
the environmental factor, based on dynamic or static data, 
many process frameworks that integrate multiple methods 
have been developed recently, which greatly improve the 
effectiveness and robustness of structural monitoring under 
environmental changes. In this paper, the research of these 
damage assessment frameworks is also sorted out.

The rest of the paper is organised as follows. Section 2 
presents the influence mechanism researches of temperature, 

and summarizes the correlation statistics of temperature and 
structural responses (modal parameters and static responses) 
based on the SHM system data, which are divided into two 
subsections to introduce according to different response 
types. In addition, the researches of effect of non-uniform 
temperature are also reviewed in Sect. 2. Section 3 intro-
duces the forecast and separation methods of the temper-
ature-induced part of the structural responses. Section 4 
reviews the process frameworks of the damage detection 
and structure identification methods considering temperature 
effects, to correspond to the previous Sect. 2, this section is 
also divided into two subsections: vibration-based methods 
and static-based methods.

2 � Correlation between temperature 
and structural monitoring responses

2.1 � Correlation between temperature and modal 
parameters

Vibration-based analysis is one of the widely studied SHM 
methods for overall structures. In essence, structural damage 
is considered as a reduction of structural feature parameters, 
such as mass, stiffness, etc., which is intuitively reflected 
as changes in structural modal parameters (e.g., natural 
frequencies, mode shapes, etc.), therefore, Damage assess-
ment of the structure can be performed with the variation 
of modal parameters. However, matters are seldom as sim-
ple as this, numbers of field monitoring data and theoretical 
analysis show that the structural modal parameters are not 
only related to the structural feature, but also susceptible to 
environmental factors, especially temperature changes [12].

In recent years, some researchers have dedicated to study-
ing the mechanism of the effect of temperature change on 
natural frequency. Using theoretical analysis and experimen-
tal verification, Xia et al. [12] alleged that the main factor 
affecting the structural natural frequency with temperature 
is the change of elastic modulus, but the process ignored 
the influence of temperature-induced internal forces. Li and 
Zhang et al. [13] discussed the temperature effect factors on 
the natural frequency, including variations of elastic modu-
lus, deformations, structural internal force and boundary 
conditions induced by temperature, and the effects of both 
uniform and non-uniform temperature distributions case was 
investigated.

To illustrate the mechanism, a partially restrained beam 
with a longitudinal spring at the right end is considered, 
which is subjected to a uniform temperature change �T  
(assuming that is positive), as shown in Fig. 1, according 
to the Euler beam theory, the free vibration equation of the 
structure can be expressed as follow,
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deriving Eq. (1) gives the natural frequency fn of the nth 
order as [14],

where u(x, t) is the vibrational displacement of the beam at 
the horizontal x at time t; L is the length, I is the moment of 

(1)EI
�u4(x, t)

�x4
+ N
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�x2
+ m
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(
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NL2

n2�2EI

)
, n = 1, 2,… ,∞,

inertia; m is the linear density, E is the elastic modulus, and 
N is the structural reaction force caused by the temperature 
deformation being restrained.

It can be seen from Eq. (2) that the influence of tem-
perature changes on modal parameters mainly comes from 
several aspects [13]:

•	 First, the temperature change will cause the material 
properties (elastic modulus) to change. When the tem-
perature changes, the elastic modulus of the material 
changes, which can be expressed as:

	   Although the elastic modulus change with tempera-
ture is considered to be the main factor of the variabil-
ity of natural frequencies, there are not consensus of its 
quantification. According to the Refs. [12, 15–19], the 
elastic modulus changes linearly with temperature at the 
natural environment (−20 to 60 °C). For concrete, steel 
and aluminium, the linear temperature coefficient θE is 
− 3.0 × 10−3/°C, −3.6 × 10−4/°C, and −5.6 × 10−4/°C, 
respectively, but in Ref. [20–27] the variation of the elas-
tic modulus with temperature is described as the nonlin-
ear relationship, as shown in Fig. 2.

•	 Second, because of the thermal expansion and contrac-
tion effect, the temperature change will cause the struc-
ture deformation, one obtains,
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Fig. 1   Example of a partially restrained beam model subject to uni-
form temperature change
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where α is the thermal coefficient of linear expansion of 
the material, for concrete, steel and aluminium, the value 
is 1.0 × 10−5/°C, 1.1 × 10−5/°C, 2.30 × 10−5/°C, respec-
tively [12–15].

•	 Third, due to the existence of boundary conditions, the 
temperature deformation of the structure is constrained 
to the structural reaction force N, which affects the natu-
ral vibration characteristics of the structure, as Eq. (2). 
But this influencing factor is more difficult to quantify, 
since the temperature internal force is directly related to 
the boundary condition. If the constraints (e.g., structural 
support stiffness) change is caused by temperature, it will 
indirectly affect the structural dynamic characteristics, 
such as changes of restraints in the end bearings caused 
by colder weather [28–30].

With the advancement of vibration testing technology and 
data storage method, more extensive correlation studies of 
temperature and modal parameters of structures have been 
conducted based on long-term data collected from SHM 
systems, and most of these researches are aimed at natural 
frequency. This is probably due to a number of reasons. On 
one hand, compared with other modal parameters, natural 
frequency is easily measured by a small number of sensors 
directly, which results in its broad range of applications in 
SHM and facilitates its long-term change trend research 
[3, 31]. On the other hand, the effect of temperature on the 
mode shape and damping ratio is more complicated than 
the natural frequency, in addition, due to the complexity 
of modal testing progress, statistical results of the correla-
tions between mode shape, etc. and temperature are more 
susceptible to other uncertainties. For example, Ni et al.’s 
[32] modal analysis of the Ting Kau bridge shows that the 
mode shapes at different locations fluctuate differently over 
time and have no obvious correlation with temperature. The 
modal experiment of Balmes et al. [33] also shows that the 
temperature change has little effect on the mode shape. After 
analysing the vibration data of the Dowling Hall Footbridge 
for a period of time, Mosera and Moaveni [34] found that 

(4)
�L

L
= � ⋅ �T ;

�I

I
= 4� ⋅ �T ;

�m

m
= −� ⋅ �T

the identified damping ratios are significant scatter and 
have not obvious pattern of variation. Li and Zhang et al. 
[13] studied the relationships between modal parameters 
and temperature, and indicated that the correlation between 
Modal Assurance Criterion (constructed by modal shapes) 
and temperature is less than 0.2, and the damping ratios of 
different order have different correlations with temperature.

In comparison, more literatures published in recent years 
are focus on the correlation between natural frequencies and 
temperature, and because of its importance to public safety, 
bridge is the main research object. The SHM system of Ting 
Kau Bridge is one of the success applications (Fig. 3). Based 
on the vibration data collected from the system, Zhou et al. 
[35] found that the natural frequencies have a negative cor-
relation with temperature, but the measured data are more 
discrete and the nonlinear characteristics are obvious, as 
shown in Fig. 4.

Researches of the temperature effect on natural frequen-
cies of other building structures have also been reported. For 
example, to ensure the safety of Guangzhou New TV Tower 
during the construction stage and the long-term service 
stage, a sophisticated SHM system which contains several 
accelerometers has been established by the consortium of 
the Hong Kong Polytechnic University and the Sun Yat-Sen 
University [36, 37], Xia et al. [12] studied the variations in 
the modal properties based on the acceleration data from 
9:00 of 15-January-2009 to 11:00 of 16-January-2009, last-
ing 26 h. The variations in the first four frequencies and 
temperature at different hours are shown in Fig. 5. As can 
be seen, the natural frequencies of the structure generally 
decrease when the temperature goes up, though variations in 
the frequencies are very small. The results of modal analy-
sis of National Aquatics Center by Li et al. [13] indicated 
that the frequencies variation with the temperature for both 
February-2008 and May-2008 are illustrated in Fig. 6. It 
is clear that the second and third frequencies go up with 
the increase in temperature, and the first frequency shows a 
slight decrease with increase of temperature. To study the 
effects of changes in temperature on the natural frequencies 
of slender masonry buildings, a monitoring system is applied 
in an Italian monumental bell tower by Ubertini et al. [38]. 
The analysis of monitoring data of more than 9months 

Fig. 3   Ting Kau Bridge and the layouts of temperature sensors and accelerometers on it [35]
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shown that dry bulb temperature variations can produce 
significant changes in natural frequencies, up to 16 MHz/°C.

In addition, as the limitation of space, other researches 
about the correlation between temperature and natural fre-
quency are summarised in Table 1, published from 2001 to 
2019. Most of these studies are devoted to bridge, and others 
include high-rise buildings and large-spatial steel structures, 
historic buildings, etc.

2.2 � Correlation between temperature and static 
responses

Although the vibration-based monitoring methods can effec-
tively inspect and evaluate the overall state of a structure, 
the complicated analysis and high-frequency sample of the 
vibration data limit its use in some SHM systems. In com-
parison, the static responses are more widely used in long-
term health monitoring, due to its reduced requirements of 
data collection and analysis, these static data types include 
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Fig. 5   Variations in frequen-
cies versus temperature of the 
Guangzhou New TV Tower [12]
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strain or stress, displacement, deflection, rotation angle, 
etc. Under normal service conditions, affected by the time-
varying environment, temperature-induced parts are one of 
the main components of these static, and sometimes even 
exceeding the responses caused by traffic or other load.

To fully explain the mechanism of TIR, several researches 
have been conducted combined with field monitoring data 
[47–50]. To illustrate the concept of TIR simply, still take 
a partially restrained beam as an example [47], as shown in 
Fig. 7, which is subjected to a uniform temperature increase 
( �T  ). Attention to the structural deformation at the right 
spring support, the total deformation (Δtot) is a combination 
of the thermal deformation (Δth) and the restrained deforma-
tion (Δr) and can be expressed as,

The mechanical strain (εM) is defined as the restrained 
part of the strain, resulting from restrained deformation 
(Δr) that produces mechanical stress σ, and total defor-
mation (Δtot) is defined as the measured movement of the 
structural bearing or joint that does not produce mechanical 
strain, which can be calculated as shown in Eqs. (6) and (7), 
respectively,

It can be seen from Eqs. (6) and (7) that the mechani-
cal strain and the total displacement are directly related to 
structural stiffness (EA) and boundary stiffness (KL). In this 
way, the mechanical strain and the total displacement can be 

(5)Δtot = Δth + Δr = � ⋅ �T ⋅ L +
�

E
⋅ L.

(6)�M =
−KL�L

EA
(
1 +

KLL

EA

) ⋅ �T

(7)Δtot =
�L

1 +
KLL

EA

⋅ �T .

used to analyse the health condition of the structure or the 
support [47–51].

In addition, since TIR (e.g., �M, Δtot ) is directly related to 
temperature changes �T  , the static response usually shows a 
periodic law similar to temperature changes. In general, tem-
perature changes could be divided into seasonal and daily 
ones from timeline, which is expressed as [52],

where �Tssl and �Tdly are the seasonal and daily tempera-
ture component, usually have a period of 24 h and 365 days 
respectively, Tref is a reference temperature, and T0 is the 
initial one at structural closure instant. Temperature changes 
occur rather gradually, thus, when using static responses 
to assess the condition of the structure, it is reasonable to 
use hourly averages of temperature to discuss temperature 
changes and their corresponding effects [53]. Figure 8a is a 
hourly temperature data time-histories from an actual moni-
toring structure of more than 1 year, two obviously different 
scale periods (annually and daily) of temperature change can 
be observed intuitively, which may cause the static responses 
also varies annually and daily. Figure 8b is the frequency 
spectrograms corresponding to the data in Fig. 8a, it can 
be clearly seen that two significant frequency peaks appear 
around 0.0001 × 1/3600 Hz (corresponding to a period of 
365  days) and 0.0417 × 1/3600  Hz (corresponding to a 
period of 24 h), which further confirms that the periodic-
ity of the seasonal and daily of the temperature change and 
its corresponding TIR. Recently, the difference between the 
static responses of the structure under the two temperature 
change cycles has also been attended and studied, readers 
who are interested in more information should refer to the 
references [54].

As the durability and reliability of the SHM system 
improves, a large amount of data has been accumulated, 
based on the simultaneous acquisition data, more statistics 

(8)�T = �Tssl + �Tdly =
(
Tref − T0

)
+
(
T − Tref

)
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Table 1   Correlation studies of temperature and natural frequency based on the dada from SHM system

Proposed by Test time Structure Materials Remark

Peeters et al. [28, 39] 1 year Z24-Bridge (Switzerland) RC The relation between temperature and 
frequency can roughly be described by 
two lines, with the knee situated around 
0◦C

Fu et al. [29] 1 year A 2-span slightly skewed continuous 
bridge

Steel & RC The first three frequencies increase 
as the temperature decreases below 
approximately 60℉ and that there is 
little change for temperatures above 
this level

Ni et al. [32, 40], Zhou et al. [35] 1 year Ting Kau bridge (Hong Kong, China) — When the temperature varies from 3 °C 
to 53 °C, the 1st and 8th natural fre-
quencies of the bridge change by 6.7% 
and 1.7% respectively

Desjardines et al. [41] 6 months Confederation bridge (Canada) RC A clear trend of reduction in the modal 
frequencies with increase in the aver-
age temperature of the concrete of the 
bridge

Liu et al. [42] 5 years A curved posttensioned bridge RC In 1st–3rd mode, the natural frequen-
cies decrease as the temperature rises, 
the regression show that the first three 
frequencies decrease by 0.5%, 0.7% and 
0.3% respectively when the temperature 
increases by 1 °C

Nayeri et al. [43] 1 day A full-scale 17-story building Steel There is a strong correlation between 
the modal frequency variations and the 
temperature variations

Li et al. [44] 16 days Yonghe bridge (Tianjin, China) RC The normal environmental changes 
accounts for variation in modal fre-
quencies with relative difference from 
1.47 to 3.16%

Yuen et al. [45] 1 year A 22-storey building RC There is high correlation between the 
modal frequencies and the ambient 
temperature, for the three concerned 
modes, the natural frequencies increase 
as the temperature rises

Faravelli et al. [46], Xia et al. [12] 1 day New TV Tower (Guangzhou, China) Steel The frequencies generally decrease when 
temperature goes up and increase when 
temperature goes down

Li and Zhang et al. [13] — National Aquatics Centre of China 
(Beijing, China)

Steel The 1st frequency decreases with an 
increase of temperature, whereas the 
2nd and the 3rd frequencies go up as 
temperature increases. The variations 
in frequencies are about 1% at a tem-
perature range of 40 °C

Xia et al. [12] 1 day Ting Kau Bridge (Hong Kong, China) — The frequencies generally decrease when 
temperature goes up and increase when 
temperature goes down, the changes of 
natural frequencies are mainly caused 
by the change of modulus of material at 
different temperature

Moaveni et al. [15] 17 weeks Dowling Hall Footbridge (Medford, 
USA)

Steel and RC Natural frequencies show significant 
variability during the monitoring 
period, and ambient temperature is the 
most influential factor of the changes. 
The natural frequencies increase as 
the temperatures decrease, and this 
increase is much more significant when 
temperatures go below the freezing 
point
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between the static responses and temperature have been 
performed, and clearer correlation have been verified. For 
example, based on the long-term measurement data from the 
SHM system of the Runyang suspension bridge, Ding et al. 
[11] studied the effect of temperature on the expansion joint 
displacements, result reveal that measured displacements 
are observed to increase with an increase in temperature, as 
shown in Fig. 9. Using existing structural health monitoring 
systems on a large-span suspension bridge, Xia et al. [55, 56] 
plotted the time histories curves of typical longitudinal strain 
and temperature responses measured on a cross section of 
the main girder (Fig. 10).  It can been seen that the shape of 
the time course curve of the two is basically the same.

Large-span spatial steel structures are also temperature-
sensitive structural forms, significant thermal deformations 
are often observed on these structures. A large number of 
long-term monitoring work of the large-span spatial struc-
tures has been carried out by author’s team, which is used for 
temperature related research. For example, Fig. 11a shows 

Table 1   (continued)

Proposed by Test time Structure Materials Remark

Ubertini et al. [38] 9 months San Pietro bell tower (Italy) Masonry Temperature variations can produce sig-
nificant changes in natural frequencies, 
up to 16 MHz/°C

Regni et al. [16] 5 months A 10-story frame building RC Temperature variations and wind inten-
sity have a clear effect on the three 
natural frequencies and the correspond-
ing damping ratios

Kita et al. [17] 1 year Consoli Palace (Italy) Masonry An almost perfectly linear temperature 
correlation is observed for natural 
frequencies of most modes, whereas 
frequency-temperature correlations of 
some modes are better represented by 
quadratic regression lines, highlighting 
more complicated temperature-driven 
mechanisms

L
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(b) Temp. change δT (simple supported)
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Fig. 7   Schematic diagram of the mechanical strain and unrestrained 
displacement of a partially restrained beam model subject to uniform 
temperature change
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-20

-10

0

10

20

30

40

50

60

0 1500 3000 4500 6000 7500 9000

T
em

p
er

at
u

re
 (

)

Time (hour)

-5

10

25

1500 1625 1750 1875 2000

0

500

1000

1500

2000

2500

3000

3500

4000

-0.05 0.00 0.05 0.10 0.15 0.20 0.25

A
m

p
li

tu
d

e

Frequency (1/3600Hz)

(0.0417,1554)

(0.0001,3792)

Fig. 8   Temperature data in the time and frequency domains



157Journal of Civil Structural Health Monitoring (2021) 11:149–173	

123

the main components of a hangar roof structure at Beijing 
Daxing International Airport (BDIA), which consists of an 
upper grid and lower trusses. Sensors for stress and tempera-
ture monitoring have been placed on the structure to ensure 
the safety of the key components during service. The time-
histories of the temperature and stress in a certain period are 
shown in Fig. 12, and their sensors positions are shown in 
Fig. 11b–c upper and lower represent the upper surface and 
lower surface of the member, respectively. As can be seen 
from Fig. 12, the temperature and stress are positively cor-
related at some measuring points (Fig. 12a), while at some 
other points, the correlation are negative (Fig. 12b).

In addition to the above, other researches about the cor-
relation between temperature and (quasi) static response are 
summarised in Table 2.

As can be seen from Table 2, most of the (quasi) static 
response-temperature correlation statistics from the SHM 
system are focused on the mechanical strain (corresponds to 
stress) of the component and the unrestrained displacement 
at the structural bearing or joint.

2.3 � Non‑uniform temperature effects

Compared with seasonal and daily fluctuations of air tem-
peratures, solar radiation is a relatively more complex 

Fig. 9   Correlation between 
expansion joint displacements 
and temperature of Runyang 
suspension bridge [11]
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environmental factor. Effected by solar radiation, the tem-
perature distribution on a large structure is usually non-uni-
form, which leads to the correlations between temperature 
and structural responses of different components or different 
positions is not uniform. These non-uniform temperature 

effects can be roughly divided into two categories. One of 
them is the vertical temperature gradient (VTG) which is 
caused by the large cross-sectional size of the structures. 
Xia et al. [63] studied the effect of non-uniform temperature 
gradient on the natural frequencies of a simply supported RC 

Fig. 11   The schematic diagrams 
of the hangar roof structure at 
BDIA and its sensor layout
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slab, the result shows that there is a good linear correlation 
between the natural frequencies measured and the structural 
temperature distribution other than the air temperature. Liu 
et al. [64] studied the characteristics of temperature gradi-
ents in steel–concrete composite girder of a long-span cable-
stayed bridge by analysing the large amount of data in the 
long-term temperature field test, two profiles for positive 
vertical temperature gradient and one profile for negative 

vertical temperature gradient are proposed. Reilly and Gli-
sic [65] proposed two classes of methods to identify time 
periods of minimal thermal gradient on a structure, which is 
based on the range of raw temperatures and the distribution 
of the local thermal gradients.

Another kind of non-uniform temperature effect is caused 
by the spatial shape of structures, due to the complexity of 
the large structures, the components at different positions 

Table 2   Correlating research of temperature and (quasi) static responses based on the dada from SHM system

Proposed by Data length Structure Materials Monitoring parameter Remark

Ni et al. [58] 1 year Ting Kau bridge (Hong Kong, 
China)

— Displacement The temperature fluctuation mainly 
accounts for the movement of the 
expansion joint

Liang et al. [59] 1 month Dafosi Yangtse River bridge 
(Chongqing, China)

RC Strain Strain and temperature data have a 
highly linear positive correlation

Li et al. [60] 7 day Yonghe bridge (Tianjin, China) RC Strain The maximum distribution of slowly 
changing strain are caused by tem-
perature and dead loads

Duan et al. [10] 1 day A tied arch bridge RC Strain The temperature effect on responses 
of the structure may not be negli-
gible and may mask the response 
caused by the live loads or structural 
damage

Ding et al. [11] 148 days Runyang suspension bridge (Zhenji-
ang, China)

RC Displacement An overall increase in displacement 
is observed with an increase in the 
temperature of the bridge, there is a 
linear correlation between 10-min 
mean displacement and temperature

Luo et al. [57] 1 year National Stadium of China (Beijing, 
China)

Steel Stress The stress variation was notable under 
uniform temperature field action, 
and the member stress is linear to its 
temperature

Xia et al. [55, 56] 1 year A long-span suspension bridge RC Strain The strain curves exhibit a similar 
trend to the temperature curves, 
and the peaks of the temperature 
and strain time histories have an 
approximately 1-h delay in a day

Lyu et al. [51] 1 year Historic timber building (Lhasa, 
China)

Timber Strain The measurements on the column 
over 1 day and 1 year show clearly 
that structural strain responses 
closely follow the temperature cycle 
implying that temperature variations 
play a key role in determining defor-
mations of these components

Hu et al. [61] Guangzhou Canton Tower (Guang-
zhou, China)

Steel Displacement Temperature has a linear effect on the 
structural responses, the relation 
between the tower top displacement 
and structural temperature can be 
represented by a linear regression 
equation

Kita et al. [17] 1 year Consoli Palace (Italy) Masonry crack amplitudes The amplitudes of two major cracks 
show a marked linear decreas-
ing trend with increasing ambient 
temperature

Lee et al. [62] 11 months Gwangan bridge (Busan, Korea) RC Tilting angle The tilting angle of the first pylon has 
a strong correlation with tempera-
ture
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have different temperature values. The long-span cable-
stayed bridge is one of the typical structures affected by this 
non-uniform temperature, which has attracted more attention 
in recent years. Xia et al. [66] studied the temperature distri-
bution and related responses of the Tsing Ma Bridge through 
a combination of numerical analysis and field monitoring, 
it was found that the thermal response of different bridge 
components (deck, cable, tower, etc.) is obviously different. 
Zhou and Sun [54] simplified the structural temperature field 
of the cable-stayed bridge as three parts: girder, tower and 
stay cable, then the different modes of temperature–response 
correlation of the girder length and mid-span deflection have 
been proposed. Jang and Smyth [67] used the full-scale finite 
element to simulate the long-span cable-stayed bridge, and 
generated spatially varying temperature over the bridge 
model randomly, the effect of the spatial temperature dis-
tribution on the natural frequencies has been studied. The 
large-span spatial structure is also a typical structure affected 
by the spatial temperature distribution, based on the long-
term measurement of stress and temperature of National 
Stadium of China, Luo et al. [57] found that stress variation 
caused by non-uniform temperature field is larger than that 
caused by uniform temperature field action at some parts 
such as the top chords.

In short, both of the VTG and the temperature differ-
ence between different components are relatively complex 
structural thermal problems, and may require comprehen-
sive measurement setups and reasonable numerical model 
to capture these effects adequately. To clarify the effect of 
non-uniform temperature on the structural responses, further 
researches on this issue are needed in the future.

3 � Methods of forecasting and separating 
of the temperature‑induced responses

According to Sect. 2, either for vibration responses or static 
responses of the structures, temperature is an important fac-
tor of fluctuations in their daily data. The purpose of SHM 
is to detect damage and warn anomaly timely by analysing 
these data. Therefore, it is necessary to forecast and separate 
the environmental factors, especially temperature-induced 
responses, so that the structural safety condition can evaluate 
more effectively. In recent years, many different solutions 
have been proposed, which can be roughly divided into two 
categories from whether temperature data are required:

•	 Input and output methods: Using the data of temperature 
(input) and structural responses (output) simultaneously 
to separate and forecast the temperature-inducing part of 
the responses.

•	 Output-only methods: The data of temperature are not 
required, rather environmental effects are treated as 

embedded variables. The structural responses are only 
needed when separating and forecasting the temperature-
inducing part of the responses.

3.1 � Input and output methods

3.1.1 � RA

RA takes the structural response as a function of temper-
ature, and estimates the value of the dependent variable, 
which is considered to be the temperature-induced part of 
the response. Linear regression (LR) model is one of the 
simplest and most widely used RA method, the progress 
of LR is shown in Fig. 13. It assumes that temperature and 
structural response are strongly linearly related, hence the 
temperature data from a single point can be used as the input 
to estimate the structural response, whose explicit expression 
can be expressed as,

where the estimated values â and b̂ of the parameters in 
Eq. (9) can be determined by the available data from the 
SHM system, then the temperature-induced response 
Ŷ ∈ ℝ

1×n , namely the estimate of measured response 
Y ∈ ℝ

1×n , can be obtained the further by the temperature 

(9)Ŷ = â ⋅ T + b̂

(a) Time histories of Y and T (b) T-Y regression model
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data T ∈ ℝ
1×n . Moreover, the residual error E is derived as 

follows:

which includes the information of the structural response 
with the effect of temperature factor removed, such as pre-
dicting error, noise and other load effects, etc. Duan et al. 
[10] and Liang et al. [59] used the LR model to analyse the 
correlation between the strain and temperature monitoring 
data of the bridge, and then used the residual of strain after 
removing the temperature trend to alert damage or overload. 
Based on the long-term data of expansion joints displace-
ment and temperature of Runyang Suspension Bridge, the 
LR model have been established by Ding et al. [11], which 
was used to normalize all of the measured displacements to 
a fixed reference temperature before the correlation analysis 
of traffic-displacement and wind-displacement. To adjust the 
temperature-induced changes in natural frequencies that are 
used for damage detection, Kim et al. [31] performed a set of 
empirical frequency correction formulae which are derived 
from the relationship between temperature and frequency 
ratio by LR model.

As the temperature load of a structure is a kind of field 
load, for large structures, the temperature load is not the 
same for all parts due to the non-uniform temperature distri-
bution. Therefore, it is more reasonable to use the tempera-
ture data of multiple measuring points to the model. A mul-
tiple linear regression (MLR) model with the temperature 
data of multiple measuring points as input is expressed as:

where Ŷi ∈ ℝ
1×n (i ∈ 1, 2,… , q) is the the temperature-

induced response at location i, i.e. the estimated value of 
the ith monitoring response Yi ∈ ℝ

1×n (i = 1, 2,… , q) , 
Tj ∈ ℝ

1×n (j = 1, 2,… q) is the temperature data of the jth 
temperature measurement point, �̂ j

i
 is the estimated value of 

�
j

i
 , that is thermal effects of jth temperature measurement 

point on the ith response. Sohn et al. [68] established a MLR 
model of temperature and natural frequencies, and applied 
the trained model to new monitoring data to check whether 
the newly detected natural frequencies matched the specified 
confidence level. This level of confidence was used to deter-
mine whether the natural frequency changes were caused by 
temperature changes or stiffness degradation. Xia et al. [63] 
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employed the MLR to establish the relationship between 
the temperature data at different measurement points of the 
cross section and the first natural frequency, which discov-
ered that the natural frequency has a better linear relation 
with the temperature values at different points of the cross 
section than with the surface temperatures only. Hu et al. 
[61] proposed a regularized MLR method to establish the 
quantitative relation between the displacement and tem-
perature data at different facades and sections of the Canton 
Tower in different seasons, then the temperature-induced 
and wind-induced displacement of the structure have been 
separated. For the cable-stayed bridge, considering the tem-
perature difference between the cable, girder and tower; and 
the temperature gradient of the girder and tower, Xu et al. 
[53] proposed a method combining finite element model and 
MLR to separate the thermal effects.

To obtain good fitting results, in addition to the linear 
regression method, some quadratic and multiple polynomial 
regression (MPR) models have also been used to analyse the 
correlation between temperature and structural responses, 
more details about these methods can be found in Refs. [15, 
34].

3.1.2 � SVM

SVM is a paramount statistical learning algorithm to study 
data relations, which can not only solve pattern recogni-
tion problems such as classification, but also can be used 
for regression analysis of data. SVM technique is applied 
to formulate the dependence of the input and output of the 
system and accurately determine the nonlinear relationship 
between them, so sometimes it referred to as support vec-
tor regression (SVR). The basic principle of SVM can be 
briefly expressed as follows: first, map the original dataset 
to a higher-dimensional feature space, and then use the opti-
mization method to find the hyper plane that best separates 
the dataset in this transform feature space. Using the tem-
perature data T = [T1,T2,…,Tj,…,Tp]T of the p temperature 
points in the health monitoring system as input, the process 
of predicting the structural response using SVM is shown 
in Fig. 14 [40], the decision function used for the estimation 
can be expressed as:

where K
(
Ti,T

)
=
⟨
Φ
(
Ti

)
,Φ(T)

⟩
 is a kernel function, Φ(∗) 

is represented as a mapping function, ⟨∗, ∗⟩ is an inner prod-
uct, Ti is the support vector, vi is the weight factor to each 
kernel function, and b is an offset; the temperature data T 
and the structural response data Y which are used to train 
the model can be selected from SHM system, and the SVM 
model is established by calculating the vi and b by a suitable 

(12)Ŷ=f (T)=

n∑
i=1

vi ⋅ K
(
Ti,T

)
+ b
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kernel function, so that the temperature influence part Ŷ  can 
be effectively separated in the structural response Y later.

In theory, SVM can predict better than RA method, but 
the difference depends on the nonlinear degree of the rela-
tionship between the temperature and response. Ni et al. [40] 
addressed a SVM model of the temperature effect on modal 
frequencies of Ting Kau Bridge, and compared the results 
of SVM model with that of MLR model, which showed that 
the SVR model can map modal frequencies better accord-
ing to temperature. Jang and Smyth [67] also compared the 
prediction results of temperature-induced natural frequen-
cies between MLR and three machine learning methods 
(SVM, ANN and random forests), which indicated that the 
predicted results of machine learning methods have not 
been significantly improved, since the degree of nonlinear-
ity between the natural frequency and temperature distri-
bution is relatively low. Kromanis et al. [69] developed a 
SVM model to predict the thermal strain of bridges from 
distributed temperature measurements, and in his later study 
[70], the performance of various models of establishing the 
temperature-induced strain relationship are compared, such 
as MLR, SVM, ANN and robust regression, which showed 
that all of the above methods can produce accurate results.

3.1.3 � ANN

Another input and output method has been developed with 
ANN, due to its strong capability to approximate the nonlin-
ear functions between inputs and outputs through learning 
from historical data. The basic principle of predicting the 
structural response Y = [Y1,Y2,…,Yi,…,Yq]T with an ANN 
model is shown in Fig. 15, the ANN of the nonlinear rela-
tionship between input T and output Ŷ can be described as,

(13)Ŷ = �(T)

Training the ANN model with monitoring data from 
undamaged structures, the temperature-induced part of 
the response Ŷ can be effectively separated from the total 
response Y later.

Zhou et al. [71] used the back propagation neural net-
work (BPNN) to establish a correlation model between 
damage sensitive modal features and temperature, and nor-
malize modal features at different temperature conditions 
to an identical reference status of temperature, and the pro-
posed approach was examined in the instrumented Ting Kau 
bridge. BPNN may suffer from slow convergence and cannot 
give the confidence intervals of the predictions, to overcome 
these drawbacks, Jin et al. [72] established a neural network 
model trained by extended Kalman filter (EKFNN) to elimi-
nate temperature effect of natural frequency.

Fig. 14   A schematic presentation of SVR for separate the temperature-induced responses [40]
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3.1.4 � Other input and output methods

In addition to the methods described above, some other input 
(temperature)-output (structure response) statistical meth-
ods have also been proposed. For example, autoregressive 
model with an exogenous input (ARX). Peeters et al. [28] 
trained an ARX to predict natural frequencies using tem-
perature data as the exogenous data, and use this method 
to assess the future damage of the Z24 Bridge. To obtain 
a better fitting model of the relationship between the natu-
ral frequency of Dowling Hall footbridge and temperature, 
Moser and Moaveni [34] compared the analysis results of 
the ARX method with other RA, and found that the fit result 
of 4-order regression model is better than ARX. Wang et al. 
[73] compared the prediction accuracy of the LR and ARX 
for temperature and frequencies correlation, which found 
that the precision of the ARX model was better than that of 
the LR. Noted that all the above results are data-specific, so 
the reproducibility needs to be verified. Jang and Smyth [67] 
tried to establish the correlation between temperature and 
natural frequencies using random forests method to predict 
the vibration characteristics of bridge.

3.2 � Output‑only methods

3.2.1 � PCA

PCA is a multivariate statistical analysis method, which has 
a basic idea of reducing dimensions, that is, on the premise 
of ensuring less loss of original data information, transform-
ing high-dimensional related variables into low-dimensional 
unrelated variables. The new variables retain the most infor-
mation of the original variables, which are known as the 
principal components (PCs) of original variables. PCA 
considers the temperature effect as hidden variables, tak-
ing the simplest two-dimensional data as an example, the 
temperature-induced response separation process using PCA 
is shown in Fig. 16 [74], considering that the temperature-
induced part is the main influencing factor of the structural 
response, that is, the first-order principal component of the 
structural response is the temperature-induced part (PC1), 
and the PC1 is extracted by singular value decomposition of 
a covariance matrix of the features from the original matrix 
Y (composed of the structural response).The environmental-
factor characterized space (known as scores matrix) can be 
obtained by projecting the original matrix Y onto the first-
order principal component transformation matrix P1:

(14)X̂ = P1Y

then the new data can be re-mapped into the original axes 
with the opposing transformation PT

1
:

Kullaa [7] embedded environmental factors as damage 
variables in the damage characteristic parameters, PCA is 
used to eliminate the influence of environmental factors on 
the damage characteristic parameters. Yan et al. [20] pro-
posed a linear method based on PCA to eliminate the effect 
of temperature on the natural frequency, and further Yan 
et al. [75] discussed an extension of the method to handle 
non-linear cases, which can be encountered in some com-
plex structures. Kromanis et al. [76, 77] proposed to use 
PCA to extract the temperature-induced component of strain 
response in the pre-processing of strain monitoring data. 
Wah et al. [78] used the PCA method to distinguish the 
effects of damage and of the changing temperature condi-
tions on damage sensitivity features. Xu et al. [79] estab-
lished a residual strain energy method to locate the dam-
age of 3D structures under temperature variations, which 
employed the residual mode shapes by PCA to construct the 
damage localisation indicator.

Although the conventional PCA (linear PCA, LPCA) 
method is widely used to separate TIR, due to the complex 
nonlinear characteristics of the actual monitoring data, the 
method cannot achieve good results in some cases. To sepa-
rate complex environmental effects more effectively, some 
nonlinear PCA (NLPCA) methods have been proposed in 
recent years. Jin et al. [74, 80] proposed a novel adaptive 
PCA to consider varying environmental conditions (i.e., both 
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stationary and non-stationary conditions), which enables 
to capture the intrinsic system behaviour by continuously 
updating the reference model before detecting damage. Lim 
et al. [81] developed a data normalization method using Ker-
nel PCA to improve the ability of damage detection under 
varying temperature and external loading conditions, which 
achieved good results in the detection of bolt looseness.

3.2.2 � Auto‑associative neural network (AANN)

AANN is a special ANN structure with the same input and 
output layer, which is usually used to simulate the NLPCA 
process [82] and solve the problems of feature extraction, 
dimensional reduction and pattern recognition of high-
dimensional spatial data. The temperature effect separation 
process of the structural response Y using AANN model is 
shown in Fig. 17. This network consists of five layers: input 
layer, hidden layer (mapping layer, “bottleneck” layer, de-
mapping layer) and output layer. The “bottleneck” layer has 
a small number of neurons. When the input data (structural 
response Y) transmitted to the “bottleneck” layer during the 
training process, most representative feature of the multi-
dimensional input data, that is, the temperature-induced 
response part is extracted. Then the data are reconstructed 
through the de-mapping layer to obtain Ŷ that retains the 
main features of the data. The de-mapping layer and the 
mapping layer respectively represent the nonlinear rela-
tionship between the input layer to the “bottleneck” layer 
and the “bottleneck” layer to the output layer, which can be 
expressed as:

(16)T = �(Y)

(17)Ŷ = �(T)

Ko et al. [83, 84] used a series of structural natural fre-
quencies under healthy and damaged conditions as the inputs 
of AANN, and reduced the uncertainty in environmental 
conditions. Sohn et al. [85] extracted the damage-sensitive 
features by a linear prediction model combining autoregres-
sive and autoregressive with exogenous inputs models (AR-
ARX), input the damage-sensitive features to the AANN, 
and separated the temperature response part of the extracted 
damage feature change. Hsu et al. [86] utilized AANN to 
extract potential environmental factors in the stiffness of 
structural components. Gu et al. [24] took temperature as 
a potential effect factor of modal frequencies, and used the 
natural frequencies in the undamaged condition to train 
the AANN to establish the potential mapping relationship 
between temperature and natural frequency, thereby elimi-
nating the effect of temperature change. Zhang et al. [87] 
constructed the damage features by time series analysis, 
and extracted the damage features of undamaged structures 
under different temperatures for training AANN, thus effec-
tively eliminating the effect of temperature in damage iden-
tification. Ye et al. [88] proposed an AANN-SVR model to 
interpret the relation between environmental factors (e.g., 
temperature, wind speed, and wind direction) and natural 
frequencies. In their study, AANN was used to eliminate the 
high correlation between environmental factors and extract 
nonlinear principal components, and then SVR model was 
used for prediction.

3.2.3 � Empirical mode decomposition (EMD)

EMD is a significant time–frequency analysis method for 
analysing nonlinear and non-stationary signals. The essence 
is to decompose the original signal into several sets of intrin-
sic mode function (IMF) [89]. A signal is separated into a 
sum of intrinsic mode functions Ii(t) and a margin rn(t) by 
EMD, and the order of the Ii(t) separated from the original 
signal corresponds to the frequency of the signal from low to 
high. The frequency of the margin rn(t) is the lowest which 
is the trend component in the signal:

Unlike other high-frequency loads, the frequency of the 
temperature effect is lower in the overall response. There-
fore, to separate temperature effects with EMD, it is gener-
ally assumed that the low-frequency component in Ii(t) or 
margin rn(t) is mainly composed of the temperature effect 
part of the response. So that the temperature effect can be 
separated from the total. Wu et al. [90] established a rap-
idly convergent EMD method to more efficiently decom-
pose the effective temperature and cable force signals for 
possible applications in the SHM of cable-stayed bridges. 

(18)Y(t) =

n∑
i=1

Ii(t) + rn(t)

Fig. 17   A schematic presentation of AANN for separate the tempera-
ture-induced responses [24]
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The IMF obtained by EMD is often modal mixed, ensem-
ble empirical mode decomposition (EEMD) is an improved 
EMD method, which can solve this problem well. Xia et al. 
[56] used EEMD to separate the temperature-induced strain 
from measured strain responses. Zhu et al. [91] proposed 
a temperature-induced extraction method, which combined 
mode decomposition, data reduction, and blind separation. 
For mode decomposition, EMD and EEMD were performed, 
followed by PCA is used to data reduction. Then independ-
ent component analysis (ICA) for blind separation was used. 
It enabled the extraction of temperature-induced responses 
from the mixed structural response without the need for any 
previous loading conditions and information on the struc-
tural physical model.

3.2.4 � Other output‑only methods

For output-only methods, in addition to PCA, AANN, and 
EMD, other important methods are also used to predict and 
separate TIR, e.g., wavelet method, autoregressive analysis 
and Bayesian method, etc. Ni et al. [92] presented a wave-
let solution analysis method that can effectively separate 
and extract temperature-induced and traffic-induced parts 
from the measurement strain. Wu et al. [93] used wavelet 
transform to extract the temperature change component with 
higher cut-off frequency in the strain data. Xu et al. [52] 
proposed an application based on the multi-resolution wave-
let method, which extracts thermal effects from the bridge 
response based on the distinguished frequency bandwidths. 
Wang et al. [94] developed an improved Bayesian dynamic 
linear model to forecast the temperature-induced strain, 
which considers an autoregressive component in addition to 
the trend, seasonal and regression components. Liang et al. 
[25] proposed a co-integration analysis method to filter the 
temperature effect in frequency. Erazo et al. [95] elaborated 
a Kalman filtering method which can decouple dynamic 
characteristics changes caused by structural damage and 
varying environmental conditions.

3.3 � Summary

Summing up the above methods mentioned, the main idea 
of input & output method is to establish the relationship 
model between temperature and structural responses, and 
use the model to separate and forecast the further responses 
with the future monitoring temperature data. RA methods 
(e.g., LR, MRA, RMLR, MPR etc.) are simple and feasible, 
more importantly, the analysis results can be expressed by 
explicit formulas, but the separation effect of the non-linear 
condition is poor. Compared with RA, SVM and ANN meth-
ods are not usually easy fall into local minimum problems, 
which can theoretically approximate arbitrary functions 
with arbitrary accuracy, therefore the non-linear relationship 

between temperature and responses can be determined accu-
rately. But both SVM and ANN are black box models which 
means that they have no explicit formulas of the modelling 
results. In addition, since the input parameters of these input 
and output models (e.g., RA, SVM, ANN, ARX etc.) are 
only temperature data, to ensure accuracy in the separation 
and prediction of further, the responses data of the model 
training should be less affected by other loads except the 
temperature, and the under-fitting and over-fitting problem 
also needs to be noted.

The basic idea of the output-only method is that the 
measure environmental parameters are not needed, because 
they are taken into account as embedded variables. In the 
PCA method, the number of principal components of the 
responses is implicitly assumed to correspond to the number 
of independent environmental factors, that is, it can separate 
the structural responses under the effect of many environ-
mental factors (e.g., temperature, wind speed, etc.). How-
ever, PCA can only analyse the current responses while it 
cannot predict future responses, and the ability to deal with 
complex nonlinear environmental effects also needs to be 
further improved. AANN can analyse the data by NLPCA, 
and the trained neural network model can also use to forecast 
the future data, but selecting the network topology structure 
is needed. EMD and wavelet analysis are signal analysis 
methods, which can separate the different periodicity and 
trend temperature-induced part from the overall response 
data. But those signal analysis methods are suitable for the 
analysis of time series response data of a certain sampling 
frequencies, thus are not usually used to analyse static data 
of low frequency sampling. The probabilistic methods (e.g., 
the Bayesian method) have good prospect, which can quan-
tify the uncertainty of the environmental factors of the data. 
Furthermore, in addition to temperature effects, the response 
data of the on-site monitoring system will also be affected 
by other environmental and load factors, which are very 
complex. In the process of temperature-induced response 
separation or prediction, the above methods can be used in 
combination to take advantages of them.

4 � Damage assessment considering 
temperature effects

Section 3 introduced the different methods for forecasting 
and separating TIR, from the perspective of health monitor-
ing, the ultimate purpose of these methods is to identify 
structural damage and evaluate its safety under the combined 
effects of environmental temperature factors effectively. In 
this section, the research frameworks of damage assessment 
considering temperature effects that integrates various meth-
ods in recent years have been introduced. Corresponding to 
the Sect. 2, those methods are organized into two categories, 
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that is, vibration-based methods and static-based methods 
according to the type of monitoring data.

4.1 � Vibration‑based methods

As mentioned in Sect. 2.1, the idea of vibration-based dam-
age detection is to identify the changes of dynamic char-
acteristics Y (e.g., natural frequencies, mode shapes, etc.) 
based on the monitoring data. But as a simple beam depicted 
in Fig. 18, these dynamic parameters are sensitive to both 
structural damage and temperature, that is, the change in 
dynamic characteristics YD

�T
 , is a superposition of damage-

induced part YD and temperature-induced part Y�T  , and 
damage may not be detectable under ambient temperature 
changes. Therefore, the variability of dynamic characteris-
tics caused by temperature effect must be eliminated so that 
the detection of the actual changes by the damage can be 
found. According to whether finite element model (FEM) 
are used in the process or not, these existing vibration-based 
methods can be classified as model-based methods and data-
driven methods.

In the model-based method, the structural parameters 
(here, i.e., damage criteria) are iteratively adjusted to mini-
mize the difference between the calculated response of the 
numerical model and the measured response of the actual 
monitoring structure, so as to realize the updating of the 
FEM of the structural state. In this way, the updated FEM 
can be used as a baseline to detect the damage of the struc-
ture. In view of the important influence of the environment 
on structural response, it is reasonable to take temperature 
effect and damage criteria as updated structural parameters 
at the same time [15]. Hence, the stiffness matrix of the 
structure depends on the damage factors and the temperature 
[22]:

(19)KD
�T
(�, T) =

∑
i

(
1 − �i

)
ki
(
Ti
)

where KD
�T

 is the stiffness matrix of the damaged structure 
under varying temperature, ki

(
Ti
)
 is the stiffness matrix of 

the ith element at temperature Ti , and �
i
 is the damage fac-

tors of the ith element, which is represented here as a ele-
ment stiffness reduction. Since the temperature impacts has 
been embedded in the updated parameters, the model-based 
methods do not need to remove the temperature effect, and 
can locate and identify the damage degree from the global 
perspective [96]. Meruane et al. [22] proposed a model-
based damage detection methods to distinguish the temper-
ature effects and real damage events, and the efficiency of 
the method is verified by the simulated data of a three-span 
bridge and experimental data of the I-40 Bridge. To avoid 
the non convergence and local minimum in the optimization 
process, some model-based methods combine global opti-
mization algorithm, such as genetic algorithm (GA) [26], 
particle swarm optimization (PSO) [73] and particle swarm 
optimization-cuckoo search (PSO-CS) [27] with some novel 
objective response functions, which have been proved to be 
efficient in the location and severity identification of struc-
tural damage under the influence of temperature variation 
and noise.

Different from the model-based method, the data-driven 
method does not resort to the structural numerical model, 
but simply relies on the collected monitoring data to explain 
the structural behavior. With the help of machine learning 
algorithm, it is the most widespread and expected to achieve 
long-term continuous monitoring. In conclusion, the data-
driven Damage assessment process considering tempera-
ture change can be roughly divided into three parts: feature 
extraction, temperature effect filtering and damage decision. 
For feature extraction, damage sensitive features (DSFs) are 
usually constructed directly by frequency domain parameters 
(such as natural frequency and mode shape) obtained from 
modal analysis [31], and some novel DSFs constructed by 
modal parameters have also been studied, such as modal 
strain energy [79], mode shape curvatures [97]. In addition, 
some DSFs extracted by time-domain analysis are also pro-
posed recently [87, 98]. In terms of temperature effect fil-
tering, PCA including LPCA and NPCA (such as AANN) 
are more commonly used, some other filtering methods 
have also been proposed in recent years [95]. Addition-
ally, exploring some DSFs that are sensitive to damage but 
not sensitive to environmental changes provide new ideas 
for environmental impacts filtering, such as the frequency 
ratios proposed by Surace et al. [99]. For damage decision, 
the most commonly way is distinguish the damage directly 
based on the residual of DSFs (or damage indicators, DIs) 
filtering out the temperature effect. In addition, the methods 
of Euclidean distance [24], Mahalanobis distance [100] and 
control chart [21] are also often used in the damage deci-
sion-making process. A clearer comparison of some current Fig. 18   Changes of modal characteristics due to damage (D) and tem-

perature-change (δT) [31]
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damage assessment frameworks is shown in Table 3. The 
last three columns show the decision-making ability of these 
frameworks, I, II and III represent three levels, which are 
damage alarm, damage location and damage quantification, 
respectively.

4.2 � Static‑based methods

A multitude of damage assessment frameworks have been 
employed based on the static responses under varying tem-
perature. In short, there are two different approaches to 
handling temperature effects in these processes, as shown 
in Fig. 19. The first approach is similar to vibration-based 
monitoring methods, where temperature is considered as 
an adverse effect during the monitoring progress, which is 
likely to cover the changes in the responses caused by other 
external loads, thereby causing false negative or false posi-
tive results of damage identification and safety assessment. 
Therefore, the temperature-induced part should be removed 
in the monitoring static responses. Based on the normalized 
displacement after removing the temperature effect, Ding 
et al. [11] evaluated the damage of the expansion joint of 
the cable-stayed bridge effectively.

The second approach is considered to offer more promise. 
Because the temperature effect of structure is no less than 
other external loads in some cases, temperature-induced 

static responses should be reflected rather than elimi-
nated. Since temperature-induced static responses are typi-
cally substantial and relatively easy to measure, the health 
monitoring process can be performed by directly analysing 
the changes in temperature-induced responses. Similar to 
Sect. 4.1, depending on whether to rely on numerical models 
in the process, these methods can be divided into model-
based methods and data-driven methods.

Since the main work of the model-based method is to 
update and identify structural model parameters, it is also 
called structure identification (St-Id). As is shown in Eqs. (6) 
and (7), temperature-induced responses are highly sensitive 
to structural stiffness and boundary stiffness, therefore, tem-
perature can be used as a favorable driving load for St-Id. 
Kulprapha et al. [102] proposed a method to monitor the 
structural health of multi-span concrete bridges using their 
ambient thermal loads and responses, and an numerical 
model was developed to diagnose damage in further stud-
ies. Yarnold et al. [47] proposed a temperature-based struc-
ture identification (TBSI) and structure health monitoring 
(TBSHM) process (Fig. 20) based on the responses under 
temperature loading, and applied it to the monitoring of sev-
eral bridge structures successfully [48, 50]. For TBSI and 
TBSHM, the measured values are just temperature, tempera-
ture gradient, strain and displacement, linear or non-linear 
analysis of the measured input and response based on the 

Table 3   A summary of vibration-based data-driven damage assessment frameworks proposed recently

Proposed by Method DSF Deci-
sion‑making 
ability

Feature extraction Temperature effect 
filtering

damage decision I II III

Kim et al. [31] Modal analysis LR Control chart Natural frequencies √
Deraemaeker et al. [21] Spectrum analysis PCA Shewhart-T control 

charts
Peak indicators of 

spectrum
√

Jin et al. [74, 80] Modal analysis Adaptive PCA Euclidean distance Natural frequencies √
Gu et al. [24] Modal analysis AANN Euclidean distance Natural frequencies √
Kostic and Gul [98] Time series analysis 

using ARX
ANN Residual-based Fit ratio of ARX √ √

Xu et al. [79] Modal analysis PCA DIs constructed with 
residual

Residual strain energy √ √

Shokrani et al. [97] Modal analysis PCA DIs constructed with 
residual

Mode shape curvatures √ √

Zhang et al. [87] Time series analysis 
using ARX

AANN Residual-based Fit ratio of ARX √ √

Erazo et al. [95] Spectrum analysis Kalman filtering Residual-based peak indicators of spec-
tral density

√

Kumar et al. [100] Time series analysis 
using PCA

PCA Mahalanobis distance, 
X-bar control chart

PCs of acceleration 
series

√

Sarmadi et al. [101] Modal analysis kNN kNN, generalized 
extreme value, block 
maxima

Mahalanobis-squared 
distance of test fre-
quencies

√
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characteristics of the observed values and the final target 
of the St-Id, and finally the prior finite element model is 
updated. Under the traditional St-Id framework, TBSI has 
innovated and developed its prior model and experimen-
tal steps, making it possible to assess the structural safety 
based on temperature-induced responses. Lyu et al. [51] 
used TBSI to identify the connection stiffness of historic 
timber buildings. Jesus et al. [103, 104] applied a modular 

Bayesian method for St-ID of a reduced-scale aluminium 
bridge model subjected to thermal loading.

Data-driven methods based on temperature-induced static 
responses have also received attention in recent years. Krom-
anis et al. [70, 76, 77] proposed a temperature-based meas-
urement interpretation (TB-MI) framework to detect anom-
aly of structure. TB-MI method can be implemented using 
a data-driven strategy to generate statistical models that can 
accurately predict the thermal response, given a reference set 
of measurements. Compared with model-based method, this 
method can be applied to other structures after fine-tuning 
or without modification, and has advantages when large 
amounts of data from continuous monitoring are processed. 
The framework includes two key steps (Fig. 21): first, predict 
the thermal effects of the structure through a regression-
based thermal response prediction (RBTRP) method which 
can build a model that predicts thermal response values 
by calculation. Then, analyse the differences between the 
predicted results and the subsequent measured results to 
identify structural anomalies. Zhu et al. [105] presented an 
anomaly detection method, called temperature-driven mov-
ing principal component analysis method, designated as Td-
MPCA, which introduced the idea of blind source separation 
(BSS) for thermal identification with intent to enhance the 
performance of moving principal component analysis for 
anomaly detection, see Fig. 22 for details.
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Fig. 19   Two different approaches to handling temperature effects based on the static responses

Input

Temperature Structural system

Output
Member strains

Displacements

Rotations

Data Acquisition

(input / output)

Identify signature

Parameter identification

(through model-

experiment correlation)

TBSI

Long-term performance tracking

TBSHM

Conclusions

Alert/Reporting

Fig. 20   TBSI and TBSHM process [47]



169Journal of Civil Structural Health Monitoring (2021) 11:149–173	

123

4.3 � Summary

In this section, damage assessment frameworks considering 
temperature effects are classified and introduced. As eve-
rything has two sides, these methods also have their own 

strengths and drawbacks, as shown in Table 4. To obtain 
better damage decision-making, future research should 
devote to improving these drawbacks, and combination 
methods should be proposed to solve the actual SHM sys-
tem problems.

5 � Conclusions

This paper presents a comprehensive review on the recent 
development of SHM under varying temperature. The goal 
is to help broaden the study of health monitoring under con-
sideration of environmental uncertainty. Conclusions of the 
work is as follows:

1.	 Most of the correlation researches of modal parameters 
and temperature are focusing on changes in natural fre-
quencies of bridge structures, while less researches on 
other structural forms such as large venues and high-rise 
buildings. In addition, due to the influence of modal test 
accuracy, few studies concerning the correlation between 
other modal parameters (vibration modes and damping) 
and temperature. With the continuous development of 
methods of sensor layout optimization and modal analy-
sis, these problems should be solved in future research. 
For static responses, the main researches focuses on the 
strain responses of bridges, with some studies on vari-
ations in displacement, deflection and tilting angle and 
other types of structures. Future researches about the 
correlation of structural measuring static responses and 
temperature need to pay more attention to the mecha-
nism of temperature effects of the structures, so that the 
relationship between temperature and responses can be 
better established. Moreover, due to the complexity of 
the spatial distribution of the structure and the sunshine 
factor, the non-uniform temperature field also has sig-
nificant effect on the structural responses, due to the 
complexity of the mechanism of thermal environment, 
there are currently little literatures on this issue, and 
further research is still needed in the future.

2.	 The separation and forecast methods of the tempera-
ture-induced part of the structural response data are 
commented, and the benefits and drawbacks of these 
methods have also been discussed. Many of these cur-
rent methods only consider a single environmental 
effect such as temperature. Monitored responses usu-
ally include the impact of other environmental loads, 
such as wind, vehicle load, humidity, and complex noise 
interference, with the big data from field monitoring, the 
continuous improvement of the combination of some 
new machine learning algorithms to deal with multiple 
environmental factors is the future development trend. 
Furthermore, considering the complexity and uncer-
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tainty of site environmental factors, the probability 
methods should be paid more attention in the future.

3.	 For damage assessment, most of vibration-based pro-
cesses are employed based on residuals after removing 
temperature effects, which are combined with statisti-
cal theory and hypothetical test to detect whether dam-
age has occurred, more techniques for damage location 
and damage degree identification under variable tem-
perature effects should be developed in the future. For 
static-based methods, the research framework based on 
the temperature-induced responses offer more promise, 
which treats temperature as a measurable excitation to 
establish a complete transfer function. In addition, most 
of the existing damage detection methods are determin-
istic methods, that is, the materials and working condi-
tions of the damage detection structure are completely 
determined and known, but in fact, the true state of the 
structure is difficult to determine and obtain accurately. 
From this perspective, later test data for statistical prob-
ability analysis are used to correct this uncertain state 
of the structure.
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