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Abstract
Detecting damage at an early stage can avoid a serious catastrophic failure of structures due to inevitable cause, such as 
fatigue, environmental corrosion, and natural disasters. Various damage detection algorithms have been proposed based on 
autoregressive model using time series data, which are computationally expensive, and the selection of an optimal order of 
the model requires extra expertise. In this paper, computationally efficient algorithm is proposed to process the time series 
data using principal component analysis (PCA) in an effective way. PCA is utilized to model a feature space to compute 
damage sensitive features insensitive to environmental variations and measurement noise. The modeled feature space pre-
serves the damage information along with eliminates the consequences of environmental variations and measurement noise. 
Furthermore, Mahalanobis squared distance is adopted to compute damage index as the severity of the damage. The proposed 
method is validated on analytical models of IASC–ASCE benchmark structure. The test results show that the proposed dam-
age diagnosis method can be useful for wireless sensor network-based structural health monitoring with less computation 
and low data transmission rate.

Keywords Structural health monitoring · Damage detection · Eigenspace · Principal component analysis · Mahalanobis 
squared distance · Outlier detection

1 Introduction

Structural health monitoring (SHM) of aerospace, civil, and 
mechanical structures has become one of the fastest-growing 
multi-disciplinary research problems among the research 
community [1–3]. Usually, these structures operate under 
excessive loads (for example, large variation in temperature, 

humidity, dynamic loads due to traffic and wind, etc.), and 
are often exposed to an open environment resulting in 
wear and tear due to corrosion, flood, earthquake, etc. [4, 
5]. Collectively, these factors affect the predicted life span 
of structures or lead to catastrophic failures [6]. To avoid 
such catastrophic failures, continuous health monitoring of 
structures is very much demanded [7]. In that context, there 
exist numerous monitoring approaches that include a wide 
range of data interpretation techniques [8–10]. In SHM, data 
interpretation are performed mainly using two approaches: 
model-based and data-driven approaches. While model-
based approach uses accurate finite element model [7, 11, 
12], which is a time-consuming approach, the data-driven 
approach uses time series data analysis that allows continu-
ous monitoring of structures in real time for damage diagno-
sis, and, hence, is considered as an effective method [13, 14].

In the data-driven approach, time series data sequences 
(vibration signals) are measured through an array of sen-
sors and are transmitted mainly through wired [15] or wire-
less networks [16]. The shortcomings of wired sensor net-
works such as cable installation, source of power supply, 
maintenance and repair, etc., especially for remotely placed 
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structures [17], can be mitigated using wireless sensor net-
work-based SHM [16, 18]. Accordingly, various time series-
based SHM systems using wireless sensor network have 
been proposed [2, 19, 20]. However, many of them use com-
plex algorithms, which could be time-consuming. Moreo-
ver, an optimal wireless sensor network-based SHM system 
needs to be energy efficient with low data transmission rate 
[18]. Undeniably, the amount of data transmission through 
the network can be minimized by employing either the fea-
ture extraction or data compression at the sensor node itself 
[21–23].

The feature extraction is a process of identifying the 
underlying patterns, known as damage sensitive feature 
(DSF), in a measured vibration signal. In the previous stud-
ies, several DSFs have been proposed based on Fourier trans-
form [24], wavelet transform [25], Hilbert-Huang transform 
[26], Auto-associative Neural Network [27], Autoregressive 
(AR) model [9], etc. Among them, AR model [19, 28, 29] 
and its alternatives, such as autoregressive with exogenous 
input (ARX) [30], autoregressive with moving average 
(ARMA) [31, 32], and autoregressive integrated moving 
average (ARIMA) [4, 22] models, are widely adopted mod-
els for DSFs extraction in SHM. Besides, data compression 
using principal component analysis (PCA) [33] has been 
employed on time series data to obtain orthogonal modes 
[also called principal components (PCs)], which could be 
used to compute DSFs. Moreover, Yan et al. [5] and Pozo 
et al. [34] have shown that DSFs can be made insensitive to 
different environmental conditions by discarding first few 
PCs from the analysis. It has been observed that the compu-
tation of orthogonal modes are computationally expensive if 
the data streams have significantly higher lengths [35]. Liter-
ature suggests that the corresponding computational burden 
can be reduced by computing orthogonal modes from the 
windowed data streams of time series data [8, 36]. Accord-
ingly, Posenato et al. [37] have found promising results using 
moving PCA based on windowed data streams, in compari-
son to AR model-based and wavelet-based approaches for 
damage diagnosis. Furthermore, Cavadas et al. [8] have used 
a similar approach for the early detection of structural dam-
age. However, these works did not consider operational and 
environmental variations in the damage diagnosis process. 
Additionally, their application in a wireless sensor network-
based SHM is limited, because it processes all the sensor 
data in a single windowed matrix [16].

Given that, here, we propose a computationally effi-
cient algorithm using PCA to extract the DSFs, which are 
insensitive to environmental variations and measurement 
noise. In addition, we compute the damage severity of the 
test structure by calculating the Mahalanobis squared dis-
tance (MSD) [38] of the test data stream from the feature 
distribution corresponding to undamaged data streams. 

Furthermore, we validate the proposed DSFs using the 
ASCE benchmark structure (Johnson et al. [39]). Accord-
ingly, the algorithm addresses the issues of (a) varying 
environmental conditions, (b) low energy efficiency, and 
(c) poor data transmission. Besides, our algorithm is com-
putationally efficient for DSFs extraction, which can have 
application in wireless sensor network-based continuous 
health monitoring. Specifically, here, we present:

– An efficient algorithm for DSFs extraction: While most 
of the PCA-based algorithms given in the literature 
are computationally expensive, because they compute 
eigenvectors from the covariance matrix of full size 
[5, 8], the algorithm presented in the paper processes a 
comparatively smaller covariance matrix and, thereby, 
makes it efficient.

– Local sensor-level analysis: Various reports suggest 
the successful implementation of PCA for global sen-
sor-level analysis [8, 37]; however, local sensor-level 
analysis using PCA is lacking. Accordingly, local sen-
sor-level analysis proposed in this work could possibly 
pave the path for wireless sensor network-based SHM.

– DSFs insensitive to environmental variations: Reported 
approaches to make DSFs insensitive to environmental 
variations suggest that a number of PCs equal to the 
number of environmental factors present during moni-
toring need to be discarded [5, 34] from the analysis. 
Therefore, the computation by the reported algorithms 
is biased by the prior information of the environmental 
factors. Contrastingly, here, we introduce an automated 
approach to decide the number of PCs to be discarded 
that is based on cumulative percentage of variance 
(CPV) criterion [40], and hence, the presented meth-
odology is independent of any prior information of the 
environmental factors.

Above all, the proposed feature space model can compute 
the DSFs corresponding to test data streams at the sensing 
node itself by just projecting them onto the feature space 
using an embedded algorithm. Accordingly, a significant 
data compression at the sensor node is possible that could 
result in a noteworthy reduction of the amount of data 
transmission.

To discuss the details of the proposed algorithm and 
results in an orderly manner, we organize the paper as 
follows. The mathematical background of PCA is dis-
cussed in Sect. 2. Section 3 describes the proposed dam-
age diagnosis algorithm. A novel DSF extraction method 
is described in Sect. 3.2. Section 4 describes the analytical 
model structure of ASCE benchmark problem for the vali-
dation of the proposed algorithm. The results are reported 
in Sect. 5. Finally, work is concluded in Sect. 6.
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2  Principal component analysis background

The principal component analysis (PCA) is a statistical 
procedure that provides an efficient way to find a lower 
dimensional space to simplify the structure and reveals the 
hidden information [33]. Computationally, PCA calculates 
the eigenvectors and eigenvalues of the covariance of a 
data matrix.

Let X =
[
x1 x2 … xn

]
 be an m × n dimensional data 

matrix, where xk is a column vector with m number of data 
points (m ≫ n) . Here, m defines the number of observa-
tions and n defines the number variables. The covariance 
matrix of mean centered data matrix X can be defined as:

where � is a square matrix with the variance of individual 
measurements in the main diagonal, and the covariance 
between the measurement types in off-diagonals. The matrix 
equation for eigenvalue decomposition can be written as:

which is equivalent to write as:

The columns of matrix V = [v1 v2 ⋯ vm] are the 
eigenvectors; and the diagonal elements in the matrix 
� = diag

(
�1, �2,… , �m

)
 are the eigenvalues of the covari-

ance matrix � . The eigenvectors are orthonormal vectors 
that satisfy the orthonormality property as in Eq. (3):

There will be m number of eigenvalue and eigenvector 
pairs as the dimension of the covariance matrix � is m × m . 
Among these, most of the eigenvalues are nearly equal to 
zero; therefore, the corresponding eigenvectors contain 
redundant information. Moreover, the eigenvalue decom-
position of the matrix XXT is computationally expensive 
as m ≫ n . Therefore, the smaller matrix XTX of size n × n 
can be used instead of XXT to compute the eigenvalue and 
eigenvector pairs. It can be shown that the eigenvalues of 
XTX are also the eigenvalues of XXT , whereas corresponding 
eigenvectors are strongly related [41].

Suppose uk and �k are the kth eigenvector and eigen-
value pair of XTX ; therefore, we can write as:

Multiply Eq. (4) both side by X, we get:

𝛴 =
1

n − 1

n∑
k=1

(
xk − x̄

)(
xk − x̄

)T
=

1

n − 1
XXT ,

(1)�V = V�,

(2)� = V�VT .

(3)∀ vj, vk ∈ V ,
⟨
vj, vk

⟩
=

{
1 if j = k

0 if j ≠ k

(4)XTXuk = �kuk.

We can observe from Eq. (5) that as long as Xuk is a non-
zero vector; it will be an eigenvector of XXT , and �k will be 
the eigenvalue of XXT as well as XTX . On this account, first, 
we compute the eigenvectors of the smaller matrix XTX of 
dimension n × n , then we calculate vk = Xuk as the kth eigen-
vector of XXT . The set of eigenvectors, corresponding to the 
covariance matrix XXT , can be obtained as:

where U =
[
u1 u2 … un

]
 is the eigenvector matrix of the 

covariance matrix XTX . It can also be verified that:

Because the eigenvectors of the covariance matrix XXT 
are the principal components (PCs) of the data matrix X, 
we have used eigenvectors and PCs interchangeably in the 
paper.

3  Proposed damage diagnosis algorithm

The detailed steps of the damage diagnosis algorithm are 
discussed in the following sections.

3.1  Preprocessing

Suppose xi(t) be the vibration signal measured from ith sensor 
placed on the structure to be monitored, where i = 1, 2,… ,N . 
N is the number of sensors placed on the monitoring structure. 
The signal is partitioned into n number of data streams xi

j
(t) , 

where i and j are the indices for the sensor number and stream 
number, respectively. The partition of the signal into a number 
of data streams can be viewed as non-overlapped windowed 
data streams [36]. Next, each data streams are smoothed using 
weighted moving average filter (WMAF) [42] to remove the 
random noise, but at the same time, retain the sharp step 
responses. Binomial weighted average and exponential 
weighted average filters are the good choices in which filtered 
output retains sharp step responses. In this work, binomial 
WMAF is used which follow the binomial expansion of [
1

2

1

2

]n
 . The binomial filter coefficients are obtained by con-

volving 
[
1

2

1

2

]
 with itself, and the output is convolved with [

1

2

1

2

]
 for 5 times iteratively. Each data point is produced in 

filtered output after weighted averaging of data points from the 
input data stream. In literature, the WMAF is the fastest digital 
filter for smoothing; however, multiple passes of the moving 
average are comparatively slower but still faster than Gaussian 

(5)XXT
(
Xuk

)
= X�uk = �k

(
Xuk

)
.

(6)V = XU,

(7)�n+1 = �n+2 = ⋯ = �m ≈ 0.
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and Blackman filters [42]. A typical signal stream and its fil-
tered output are shown in Fig. 1.

Furthermore, filtered data streams are standardized to 
zero mean and unit standard deviation, because PCA on non-
standardized variables may lead to higher eigenvalues for the 
variables with higher variance, resulting in principal compo-
nents (PCs) may dependence on the variables having higher 
variance.

3.2  Feature space model

The preprocessed data streams referring to an undamaged 
structure are arranged in a matrix Xi to create a feature space 
model for ith sensor location:

The flow diagram of the feature extraction process is shown 
in Fig. 2. The covariance of the data matrix Xi is calculated 
using Eq. (9):

(8)Xi =

⎡
⎢⎢⎢⎣

xi
11

xi
12

… xi
1n

xi
21

xi
22

⋯ xi
2n

⋮ ⋮ ⋱ ⋮

xi
m1

xi
m2

⋯ xi
mn

⎤
⎥⎥⎥⎦
.

(9)�
i =

1

m − 1
XiTXi.

The eigenvalue and eigenvector pairs of the covariance 
matrix � i are obtained using PCA which satisfy the princi-
pal decomposition as:

where Ui =
[
u1 u2 … un

]
 is the eigenvector matrix having 

each column as eigenvector, and the diagonal elements of �i 
are eigenvalues arranged in descending order. The principal 
vectors for the feature space are computed as:

where Vi = [v1 v2 ⋯ vn] . Here, all the principal vectors do 
not contain the useful information in the feature space. Yan 
et al. [5] have suggested that various environmental factors 
have a strong influence on the vibration features mainly 
along the direction of the principal components (PCs) asso-
ciated with the higher eigenvalues. They have computed 
residual error by re-mapping the projected data back to the 
original space by discarding operational and environmen-
tal factor characterized space. However, Abolhassani et al. 
[43] discarded PCs corresponding to smaller eigenvalues to 
improve the signal-to-noise ratio (SNR) in the speech pro-
cessing domain. These two notions are integrated to make 
the DSF more robust to change in environmental condi-
tions and measurement noise. Therefore, we, here, assume 
that the eigenvectors corresponding to higher eigenvalues 
are affected due to change in varying environmental loads. 
However, eigenvectors corresponding to lower eigenvalues 
are affected due to redundant information and measurement 
noise. Accordingly, mid-range eigenvectors are selected to 
construct the feature space model. The reduced size feature 
space model is determined as:

where the parameters a and b define the range of eigenval-
ues that need to be chosen carefully. The first a number of 
eigenvectors corresponding to higher eigenvalues represents 
the perturbation in the data samples; however, eigenvector 
corresponding to b smallest eigenvalues contains redundant 
information and measurement noise.

To choose the appropriate value of the parameter a and 
b, cumulative percentage of variance (CPV) criterion is 
introduced. The CPV is the statistical property of the PCA 
which is the cumulative sum of the percentage of total 
variance (PTV). The PTV accounted by the kth eigenvec-
tor is obtained as �k∑n

j=1
�j

× 100 . However, CPV accumulated 

by the first � PCs is defined as:

(10)�
i = Ui

�
iUiT ,

(11)Vi = XiUi,

(12)Vi
red

=
[
va+1, va+2, … , vb

]
,

(a)

(b)

(c)

Fig. 1  A typical time-series data stream: a undamaged data stream, b 
filtered data stream, and c part of the filtered data stream
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(13)p� =

⎡⎢⎢⎣

∑�

j=1
�j∑n

j=1
�j

⎤⎥⎥⎦
× 100.

The PTV and CPV for a typical undamaged data matrix 
are plotted in Fig. 3, where pa and pb are CPV corresponding 
to ath and bth PCs. In the reduced size feature space model, 
DSF corresponding to data stream xi

j
 is obtained using 

Eq. (14):

Fig. 2  Feature extraction process
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where yi
j
 is the DSF vector insensitive to varying environ-

mental conditions and measurement noise. In the same man-
ner, we compute the DSFs for all the undamaged data 
streams and store them to derive a model to compute damage 
severity.

3.3  Damage indices

The extracted DSFs are modeled using Mahalanobis squared 
distance (MSD) based approach to determine the severity of 
damage in the structure. Mahalanobis squared distance (MSD) 
has been used as a distance measure for multivariate statistics 
outlier detection [38]. This distance measure is widely adopted 
for outlier detection, because it computes the distance from the 
sample population of similar characteristics, and it also needs 
less computational effort [9]. Mahalanobis distance of a test 
feature vector yi

test
 from a distribution of baseline feature vec-

tors at ith sensor location is defined as in Eq. (15):

where � i
y
 is the covariance matrix of baseline features (serve 

as sample population of similar characteristics) and ȳi is 
mean feature vector corresponding to ith sensor location. 
The Mahalanobis distance di

test
 gives the damage index (DI) 

corresponding to ith sensor location. However, global DI, 
DItest , is obtained by accumulating all DIs corresponding to 
all sensor as:

(14)yi
j
= ViT

red
xi
j
,

(15)di
test

=
(
yi
test

− ȳi
)T
𝛴

i
y

−1(
yi
test

− ȳi
)
,

(16)DItest =

N∑
i=1

log10
(
di
test

)
.

3.4  Decision‑making

To make the decision, whether the structure is damaged or 
undamaged, statistical process control (SPC) technique is 
applied on DIs of the healthy data streams. The SPC tech-
nique provides a framework to monitor the change in mean 
and variance of DIs correspond to a new measurement. 
We, here, adopted the X-bar control chart-based SPC to 
decide the threshold and make the decision system auto-
mated. The preliminary criteria to apply the control chart 
technique is that DIs are to be normally distributed [44]. 
Yan et al. [5] have defined the three-sigma limits, upper 
control limit ( UCL ), center limit (CL), and lower control 
limit ( LCL ), as given in Eq. (17), in terms of mean DI and 
standard deviation � of the DIs corresponding to undam-
aged structure:

To classify the undamaged and damaged structural condi-
tions, UCL is regarded as the threshold.

4  Application to ASCE benchmark structure

Various damage detection methodologies have been pro-
posed for different structures. Wherever, the side-by-side 
comparison is very difficult. Johnson et al. [39] have pro-
vided a common platform for consistent evaluation of dif-
ferent methods using IASC–ASCE benchmark problem in 
SHM. For this reason, we have chosen ASCE benchmark 
structure to validate our proposed algorithm.

(17)

CL = DI,

UCL = DI + 3�, and

LCL = DI − 3�.

(a) (b)

Fig. 3  Percentage of total variance and their cumulative sum for a typical data matrix corresponding to undamaged structure
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The potential of the proposed algorithm is validated on 
the analytical model of the benchmark structure which is 
a four-story 2-bay by 2-bay steel braced frame, as shown 
in Fig. 4. The structure is 3.6 m tall with a 2.5 m × 2.5 
m base located at the Earthquake Engineering Research 
Laboratory of the University of British Columbia (UBC). 
IASC–ASCE task group [45] has provided a MATLAB 
computer code to simulate various analytical models. 
Vibration responses in the form of acceleration signal are 
simulated for the following analytical models:

– 12-DOF (symmetric), load on each floor (Ambient vibra-
tion)

– 120-DOF (symmetric), load on each floor (Ambient 
vibration)

– 120-DOF (unsymmetric), roof is excited diagonally 
(Shaker vibration).

The 12-DOF and 120-DOF models are used to consider the 
model error; however, symmetric and unsymmetric mass 

distribution on each floor is taken into account to simulate 
uneven mass distribution of real structure. Ambient loads 
on all stories are used to excite the structure which is con-
sidered as the wind load to simulate the ambient vibrations. 
However, the diagonal load on the roof is used to excite the 
structure to simulate the shaker vibration. The 12-DOF model 
is a shear-building model that constrains all motion except 
two horizontal translations and one rotation per floor. On the 
other hand, all the floor nodes in the 120-DOF model have 
the same horizontal translation and in-plane rotation. The 
acceleration signals were measured from 16 different sensor 
locations ( N = 16 ) (see Fig. 4) for structural health diagnosis. 
Four sensors were placed on each floor, where two sensors 
measured acceleration in the x-direction (strong) and other two 
measured in the y-direction (week). Additionally, 10% of noise 
is added to all simulated acceleration signals to introduce ran-
domness in the data. Damage was introduced in the structure 
by means of removing braces from the different stories of the 
frame. Table 1 presents the different damage patterns, used to 
validate the proposed algorithm. For more details about the 

(a) (b)

Fig. 4  ASCE Benchmark structure: a dimensions  (Johnson et al. [39]), and b sensor locations (S1–S16) and the direction of the acceleration 
measurements for analytical model

Table 1  Numerically simulated 
test cases [39]

Configuration

Case 1 No damage: fully braced configuration
Case 2 Pattern 1: removal of all braces on the 1st floor
Case 3 Pattern 2: removal of all braces on the 1st and 3rd floors
Case 4 Pattern 3: removal of one brace on the 1st floor
Case 5 Pattern 4: removal of one brace on the 1st and 3rd floors
Case 6 Pattern 5: Pattern 4 + beam-column connection weakened at 1st floor
Case 7 Pattern 6: area of one brace is reduced to 2/3 on the 1st floor
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damage patterns, one can refer to the research paper of John-
son et al. [39].

5  Results and discussion

The proposed algorithm is validated using time series data 
collected from analytical model of IASC–ASCE benchmark 
structure. Both ambient and shaker vibrations are used to ana-
lyze the capability of the proposed DSF in different damage 
scenarios and excitation.

5.1  Selection of model parameters m, n

Before validating the proposed algorithm, in this section, 
selection of the model parameters m and n is discussed that 
how to choose them for SHM applications. In the context of 
this work, choosing model parameters m is similar to choos-
ing window size in case of moving PCA proposed by Cavadas 
et al. [8]. Here, m should be sufficiently large enough, so that 
it should not be influenced by measurement noise and small 
enough to be stationary in nature. Stationary test of the undam-
aged data streams with different length is presented in Table 2.

Another parameter n is the number of operational and envi-
ronmental variability corresponding to similar structural con-
dition (i.e., undamaged). This may also depend on the number 
of data points collected for time-history signals in some appli-
cations as adopted in [8]. Our observation is that n should be 
sufficiently large, so that it can accommodate various possible 
operational and environmental conditions.

5.2  Numerical validation

The test cases tabulated in Table 1 are simulated for 480 s 
at the sampling rate of 1000 Hz, resulting in 480,000 data 
points in each time history signals. Collectively, we have sim-
ulated total seven time history signals (i.e., one time series 
with 480 s of duration for each test case). Among all the test 
cases, Case 1 (Undamaged pattern) is used to construct the 
feature space model. To split the time-history signals in a 
number of data streams, a stationary test is performed (see 
Sect. 5.1). From Table 2, it was observed that data streams 
are stationary for minimum length of 1000 data points. In 
this study, the acceleration signal of Case 1 is divided into 
a number of streams with each data stream having 1500 data 
points ( 480, 000∕1500 = 320 undamaged data streams), i.e., 
m = 1500 and n = 320 . Each data streams are preprocessed 

and standardized to remove the trends present in the signal. 
Similarly, the acceleration signals corresponding to other test 
cases, Case 2 − Case 7 (6 cases), are split into a number of 
data streams followed by preprocessing and standardization. 
Resulting in total 2240 ( 320 + 6 ∗ 320 ) data streams are gen-
erated for numerical validation of the proposed algorithm.

Furthermore, entire 320 undamaged data streams corre-
sponding to ith sensor are arranged in a data matrix Xi as in 
Eq. (8). Next, principal component analysis (PCA) is applied 
on the matrix Xi to obtain the reduced size feature space Vi

red
 . 

The principal components (PCs) of the matrix Xi are com-
puted by the proposed methodology. Consequently, a total 
of 320 PCs are obtained. The percentage of total variance 
(PTV) and the cumulative percentage of variance (CPV) for 
the Case 1 are plotted in Fig. 3. Based on our assumption, the 
PCs corresponding to higher and relatively lower eigenval-
ues are discarded to obtain the feature space model for DSF 
extraction. Discarding the portion of data stream spanned 
by the PCs corresponding to lower eigenvalues is equiva-
lent to eliminate higher frequency contents from the data 
stream. On the other hand, discarding the PCs corresponding 
to higher eigenvalues removes the perturbations from the 
data streams. Selecting parameter a for a desired CPV, e.g., 
90%, 95%, is very subjective that how much perturbations 
are allowed in the data streams [40]. However, setting CPV 
for b in the range of 97.0–99.7% is a good choice to improve 
the SNR for wide range of SHM applications. In this work, 
a set of PCs are selected in between a and b, where a and 
b are the principal component indices corresponding to pa 
and pb . Percentage band selection is not much difficult as it 
seems. As we know that all the training data streams came 
from the same healthy structure, and hence, perturbation in 
the data is due to environmental variations and measurement 
noise. Therefore, a percentage band between pa = 95% and 
pb = 99.7% has been selected for damage diagnosis. How-
ever, a sensitivity analysis of these parameters on the per-
formance is discussed in Sect. 5.4.

The DSFs are extracted from all the data streams corre-
sponding to various damage patterns at each sensor location. 
It is worth noting that size of the feature vector may not be 
the same for different sensor location, because the dynam-
ics of the structure in x-direction and y-direction may not be 
same due to the geometry of the structure. For the ASCE 
benchmark structure, the structural response strength in the 
x-direction (weak) and y-direction (strong) is not same due 
to its geometrical behavior. Total seven damage patterns 
were investigated for the damage severity quantification. 

Table 2  Stationary test to the 
number of data points for Case 
1

Number of data points in data stream (m)

250 500 750 1000 1250 1500 1750 2000

Mean value 0.132 0.031 0.027 0.006 0.004 0.006 0.006 0.006
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Mahalanobis squared distance (MSD) of test feature vec-
tors from the distribution of basedline (undamaged) features 
are computed at each sensor location. The DIs for test data 
streams are obtained using Eq. (16) and shown in Fig. 5 for 
three different analytical models of the ASCE benchmark 
structure.

Figure 5 shows that proposed method assigned a mean-
ingful damage severity to different levels of damage. Inter-
estingly, it can be noticed that proposed feature is sensi-
tive to small damages (Case 7) in the structure. As we 
closely analyzed the damage patterns, we found that Case 
4 has damage in week direction; however, Case 5 and Case 
6 have one damage in week direction and another in the 
strong direction. In the ambient vibration case, the structure 
was excited along week direction, and the damage in strong 
direction has very less impact on the structure. Therefore, 
DI for Case 4, Case 5, and Case 6 for ambient vibration are 
approximately same (Fig. 5a and b). However, in case of 
shaker vibration, shaker load was applied diagonally at 45◦ 
of x-axis which excited the structure equally in both x- and 
y-directions. Therefore, a sharp difference between the DIs 
for Case 4 and Case 5 has been observed (Fig. 5c). In both 
the scenarios (under ambient and shaker excitation), Case 7 

(small damage) is clearly identified. We have also analyzed 
the average DI of individual damage pattern, where average 
DI has been computed by averaging 320 damage indices cor-
responding to the damage pattern. Table 3 presents the aver-
age DI of the entire test cases for different analytical mod-
els. Note that average DI for Case 5 and Case 6 are exactly 
the same in the case of 12-DOF model, because the floor 
was perfectly rigid, and bending of the floor beams was not 
allowed, unlike 120-DOF model as mentioned by Johnson 

(a)

(b) (c)

Fig. 5  Damage index for analytical models: a 12-DOF symmetrical ambient, b 120-DOF symmetrical ambient, and c 120-DOF unsymmetrical 
shaker

Table 3  Average damage severity for each test case corresponding to 
analytical models

Scenarios 12-DOF sym-
metric

120-DOF sym-
metric

120-DOF 
unsym-
metric

Case 1 3.356 3.355 3.468
Case 2 4.505 4.521 4.920
Case 3 4.750 4.520 5.050
Case 4 3.804 3.846 3.952
Case 5 3.805 3.850 4.241
Case 6 3.805 3.857 4.244
Case 7 3.515 3.563 3.540
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et al. [39]. However, for other models, a slight difference 
between Case 5 and Case 6 has been observed due to the 
weak beam-column connection. We have also verified that 
the proposed damage sensitive feature (DSF) is insensitive 
to a new source of excitation producing much higher accel-
eration. For that, we have simulated a few more time series 
data streams for the same damaged cases considering much 
higher force intensity in the MATLAB computer code. The 
average DIs are computed for these new time series data 
streams, and we found that average DIs are insensitive to 
different force intensities applied on the structure. 

For the quantitative analysis of the proposed algorithm, a 
threshold is decided using undamaged data streams of Case 
1. 90% data streams of Case 1 are used for training and rest 
10% data streams for validation. X-bar control chart is used 
to obtain UCL , CL , and LCL . For the classification, UCL is 
considered as the threshold. If the DI exceeds the threshold, 
structural conditions are classified as damaged, otherwise 
undamaged. Classification accuracy for all three analytical 
models are presented in Table 4. Results show that the pro-
posed DSF is very efficient to detect all types of damages in 
the structure with high classification accuracy.

For real-time applications, in the proposed framework, 
the feature space models can be feed to individual sen-
sors placed on the monitoring structure using embedded 
algorithms. Moreover, as the sensor node will record the 
vibration signals during continuous monitoring, the test 
data streams can be trimmed and projected onto the mod-
eled feature space to compute the corresponding DSFs. The 
computed DSFs from all the synchronized sensor nodes can 
be transmitted through wireless channels to the receiver 
end for further processing, where the damage index can be 
computed as severity of damage. The change in the damage 
index can be monitored for continuous health monitoring of 
the structure.

5.3  Influence of parameter m and n

In this section, an experiment is performed on the various 
length of data streams to study the influence of parameter m 
and n to the classification accuracy (shown in Table 5). It is 
worth mentioning that for m < n , the feature space models 
are computed directly from the covariance matrix XXT . It 
can be observed that the length of data stream should not be 
less than 1000 data points for a better classification accuracy 

which validates our stationary test performed in the previous 
section (see Table 2).

5.4  Analysis of performance sensitivity to pa and pb

In this section, the sensitivity of the classification per-
formance to the parameters pa and pb is analyzed. First, 
we fixed the parameter value of pb to 99.7% according to 
3-sigma rule [46] and varied the parameter pa in the range 
of 15 − 95 % to study the sensitivity to pa . From Table 6, 
we infer that an increase in the number of PCs (after a cer-
tain number of PCs) to be discarded in the DSF extraction 
process improves the classification accuracy. We also find 
that the proposed algorithm achieves maximum accuracy at 
pa = 95% . Therefore, for the sensitivity analysis correspond-
ing to pb , we fixed the value of pa equal to 95% and varied 
the parameter pb in the range of 97–99.7% (see Table 7). 
It should be mentioned here that most of the misclassified 
results shown in both the tables actually correspond to Case 
7.

5.5  Computational time

In the present section, the computational time of the pro-
posed DSF extraction process is evaluated. We have per-
formed an experiment to find an optimal number of AR 
model coefficients, which defines the dynamics of the ASCE 
benchmark structure, using Akaike Information Criterion 
(AIC) [47]. Our results indicate that most of the variation in 
the data due to change in dynamics of the structure can be 

Table 4  Classification accuracy 
for each test case corresponding 
to different analytical models

Excitation Classification accuracy in %

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

12DOF Ambient 99.37 100 100 100 100 100 100
120DOF Ambient 98.75 100 100 100 100 100 100
120DOF Shaker 99.06 100 100 100 100 100 94.06

Table 5  Influence of parameter m and n to the classification accuracy

m n 12-DOF Ana-
lytical Model, 
Ambient

120-DOF Ana-
lytical Model, 
Ambient

120-DOF 
Analytical 
Model, Shaker

250 1920 66.05 65.34 69.91
500 960 66.91 66.78 78.38
750 640 70.54 70.83 89.46
1000 480 99.82 99.87 92.81
1250 384 99.91 99.93 96.44
1500 320 99.94 99.89 98.98
1750 274 99.33 99.87 98.63
2000 240 96.70 98.05 96.90
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captured by AR model of order in the range of 5–8. These 
results corroborate well with the reported values in the con-
text of AR model-based damage diagnosis. The reports sug-
gest that AR model of order in the range of 5–8 is sufficient 
to detect all damaged cases of ASCE benchmark structure 
[32]. Therefore, in the current work, we have chosen the 
eighth-order AR model for the comparison with our pro-
posed DSF in terms of computational time. Accordingly, 
the average processing time for the proposed DSF extrac-
tion is compared with the average processing time to esti-
mate eighth-order AR model coefficients. This experiment 
was performed in MATLAB R2015b on a computer with a 
third-generation core i5 64-bit processor running Windows 
7 and 4 GB of RAM. To calculate the average time, 320 
data streams of case 1 corresponding to analytical model 
were used. AR model coefficients of 8th order models are 
estimated from 320 data streams and averaged to compute 
the processing time per data stream. The average process-
ing time for AR coefficient estimation is obtained as 1.76 
s/stream; however, the proposed DSF takes 155 millisec/
stream. This shows that the proposed DSF extraction is much 
faster than the estimation of AR coefficients. Less process-
ing time saves power consumption at wireless sensor node. 
Thus, the proposed DSF would be very efficient for the wire-
less sensor network-based SHM.

6  Conclusions

In this paper, a time series-based damage diagnosis algo-
rithm has been proposed by introducing a new compu-
tationally efficient damage sensitive feature (DSF). A 

reduced size feature space model has been proposed to 
extract DSFs using multivariate analysis of time series 
data using PCA. The proposed feature extraction process 
eliminates the consequence of environmental variations 
and measurement noise during the feature extraction itself 
by selecting a number of principal components (PCs) cor-
responding to mid-range eigenvalues. The range of eigen-
values has been selected successfully using cumulative 
percentage of variance (CPV) criterion. The major advan-
tage of the proposed DSF is that it is simple and compu-
tationally efficient. The applicability of the proposed DSF 
has been validated on ASCE benchmark structure under 
different excitations and structural conditions. The results 
show that the levels of damage are well detected, and the 
proposed DSF is also sensitive to small damages in the 
structure.

The extraction of the proposed DSF is much faster 
than estimation of AR coefficients for the same length of 
time series signal. Therefore, the proposed approach can 
work efficiently for the wireless sensor network, where 
measured signals can be processed at the sensor node 
itself through embedded algorithms. The damage detec-
tion results are promising. Although we have discussed 
the algorithm in the context of wireless sensor network-
based SHM, it can be utilized for cable-based SHM. Fur-
thermore, field testing is required to validate the proposed 
algorithm in an extensive change in environmental condi-
tions along with various damage patterns like loosening 
of bolts or cracking at joints.

Table 6  Analysis of 
performance sensitivity to pa for 
fixed value of pb = 99.7%

pa Avg. no. of PCs discarded correspond-
ing to higher eigenvalues (a)

No. of misclassified 
data streams

% of misclassified 
data streams

Accuracy

15 2 79 4.11 95.89
35 5 82 4.27 95.73
55 9 83 4.32 95.67
75 19 78 4.06 95.94
85 32 65 3.38 96.62
90 46 40 2.08 97.92
95 71 20 1.04 98.96

Table 7  Analysis of 
performance sensitivity to pb for 
fixed value of pa = 95%

pb Avg. no. of PCs discarded correspond-
ing to lower eigenvalues ( 320 − b)

No. of misclassified 
data streams

% of misclassified 
data streams

Accuracy

97.0 231 555 24.78 75.22
97.9 218 417 18.62 81.38
98.8 198 341 15.22 84.78
99.7 50 20 1.04 98.96
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