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Abstract
Structural health monitoring is usually implemented by model-driven or data-driven methods. Both of them have their 
advantages and disadvantages. This article proposes an innovative hybrid strategy as a combination of model-driven and 
data-driven approaches to detecting and locating damage in civil structures. In this regard, modal flexibility matrices of the 
undamaged and damaged conditions are initially derived from their modal frequencies and mode shapes. Subsequently, the 
discrepancy between these matrices is proposed as a damage-sensitive feature. To increase damage detectability and localiz-
ability, the modal flexibility discrepancy matrix is expanded by the Kronecker product and then converted into a vector by 
a simple vectorization algorithm yielding vector-style feature samples. To detect and locate damage, this article introduces 
the k-medoids and density-based spatial clustering of applications with noise techniques. The vector-style feature samples 
are incorporated into these clustering methods to obtain two different damage indices including the direct clustering outputs 
and their Frobenius norms. The great novelty of this article is to develop an innovative hybrid strategy for damage detection 
and localization under noise-free and noisy conditions so that the damage-sensitive feature is obtained from a model-driven 
scheme and the decision-making is carried out by a data-driven strategy. A shear-building frame and the numerical model 
of the ASCE benchmark structure are used to validate the accuracy and performance of the proposed methods. Results 
demonstrate that the hybrid strategy presented here is influentially able to detect and locate damage in the presence of noisy 
modal data.
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1  Introduction

Structural health monitoring (SHM) is an important and 
practical process for ensuring the integrity and serviceability 
of civil structures [1–5]. Aging, material deterioration, and 
unpredictable excitation loads always threaten the health and 
safety of such structural systems and may cause irreparable 
damage, failure, and even collapse. Damage is an adverse 
phenomenon that causes changes in the inherent properties 
of a structure, in most cases its stiffness and dynamic char-
acteristics such as modal data. Generally, this phenomenon 
is defined as intentional or unintentional changes in the 
material and/or geometric properties of structural systems, 
changes in the boundary conditions and system connectiv-
ity, which may appear as cracks in concrete elements and 
connections, bolt loosening and weld cracking in steel con-
nections, failure in steel elements, scour of a bridge pier, 
etc. The term regarding damage does not necessarily imply a 
total loss of the structural system functionality but rather that 
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the system of interest is no longer operating in its optimal 
and normal manner [6]. To preserve civil structures from 
unfavorable events caused by damage, it is essential to ini-
tially evaluate the global state of the structure in terms of 
early damage detection and then locate and quantify damage 
in local manners. Early damage detection is the first level of 
SHM, which enables civil engineers to know whether the 
damage is available throughout the structure. Subsequently, 
it is attempted to implement the second and third levels of 
SHM, that is, damage localization and quantification [2].

In general, a SHM strategy can be implemented by 
model-driven and data-driven approaches. A model-driven 
method is based on constructing an elaborate finite element 
(FE) model of the real structure and utilizing the main con-
cept of model updating for damage detection, localization, 
and quantification [7–10]. Model updating is a computa-
tional approach that is intended to adjust or correct the FE 
or analytical model of the real structure [11–13]. For SHM 
applications, one supposes that the FE model of the struc-
ture behaves as an undamaged condition and the real struc-
ture is a potentially damaged state [12]. Any dissimilarity 
between the FE and real models is indicative of damage 
occurrence. In most cases, the model-driven strategy for 
SHM is an inverse problem and one needs to apply mathe-
matical techniques for solving damage equations [8, 13–15]. 
On the other hand, a data-driven method is based on using 
raw measured vibration data without any FE modeling and 
model updating. Most of the data-driven techniques rely on 
the statistical pattern recognition paradigm [16–23]. In the 
context of SHM, this paradigm consists of sensing and data 
acquisition, feature extraction, and statistical decision-mak-
ing via machine learning algorithms [24]. Both the model-
driven and data-driven methods have their advantages and 
disadvantages. Therefore, it is difficult to distinguish which 
of them prevails against the other one. To address this limita-
tion, one can combine model-driven and data-driven algo-
rithms to develop a hybrid method for SHM [25, 26].

When a structure suffers from damage, the stiffness 
decreases leading to adverse changes in structural responses 
and dynamic characteristics. Modal data (i.e., natural fre-
quencies and mode shapes) are useful features for SHM 
because those are directly related to the structural proper-
ties. Despite the simplicity of the measurement of the modal 
frequencies, those are global dynamic characteristics and 
cannot present spatial information, which is very important 
for damage localization. Although the use of mode shapes 
can address this drawback, it is difficult to obtain a com-
plete set of the modal displacements due to practical and 
economical limitations regarding dense sensor networks and 
sensor placement. Therefore, one needs to present a new 
feature for SHM. As an alternative, modal flexibility is a 
function of both the modal frequencies and mode shapes. 
This function is an inverse of the structural stiffness [27], in 

which case one can exploit it as a proper damage-sensitive 
feature. The great advantage of the modal flexibility func-
tion is that it is only derived from the modal data, even in a 
few modes, without any requirement of using the structural 
properties. Another merit of this function is to deal with 
the drawbacks of the modal frequencies and mode shapes 
for damage detection and localization. Therefore, one can 
consider the modal flexibility as a better damage-sensitive 
feature than the modal data. Due to such remarkable merits, 
many researchers proposed this function for damage detec-
tion [9, 27–32]. Most of these studies are based on solving 
inverse problems or applying linear and non-linear optimiza-
tion techniques. When the modal data used in the flexibility 
matrix are contaminated with noise, those problems become 
ill posed [8, 13, 32], which are susceptible to an unstable 
solution with erroneous results.

Rather than using mathematical and optimization tech-
niques for solving the ill-posed inverse problems, this article 
proposes statistical methods for damage detection and locali-
zation using the modal flexibility. These methods can be 
utilized in an unsupervised learning manner. Among them, 
cluster analysis presents a data-driven unsupervised learn-
ing method that does not require rigorous learning schemes 
[33]. In this regard, Diez et al. [22] presented a clustering-
based method to group substructures or joints with the same 
behavior on bridges and then detect abnormal or damaged 
areas by k-means clustering. In another article, Mahato and 
Chakraborty [34] utilized this clustering technique with 
the aid of the wavelet transform for modal identification. 
da Silva et al. [35] proposed a three-stage damage detec-
tion framework and used fuzzy clustering methods in the 
third stage to detect damage. Figueiredo and Cross [21] 
proposed the Gaussian mixture model for detecting dam-
age under strong environmental variability conditions and 
concluded that this kind of clustering analysis outperformed 
some linear approaches to SHM. Silva et al. [36] proposed 
agglomerative concentric hypersphere clustering for early 
damage detection under varying environmental variations. In 
another study, Langone et al. [37] proposed kernel spectral 
clustering for SHM in bridge structures.

The main objective of this article is to propose an innova-
tive hybrid method as the combination of the model-driven 
and data-driven strategies for detecting and locating dam-
age under noise-free and noisy modal data. In this regard, 
the discrepancy between the modal flexibility matrices of 
the undamaged and damaged states of the structure is intro-
duced as the main damage-sensitive feature. To increase 
damage detectability and localizability, the discrepancy 
matrix of modal flexibility is initially expanded by the Kro-
necker product and subsequently converted into a vector 
using a simple vectorization algorithm. In the second stage 
regarding the data-driven strategy, this article introduces 
the k-medoids and a new non-parametric clustering method 
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called density-based spatial clustering of applications with 
noise (DBSCAN) to apply the vector-style damage feature 
for detecting and locating damage. Two kinds of damage 
indices including the direct clustering outputs and their 
Frobenius norms are used to present the results of damage 
detection and localization. The accuracy and performance of 
the proposed methods are numerically verified by a simple 
shear-building model and the ASCE benchmark structure in 
the first phase. Results show that both clustering methods 
are capable of detecting and locating damage even when the 
modal parameters are contaminated with different levels of 
noise. Furthermore, it is observed that the modal flexibility 
discrepancy matrix, which is used as the damage-sensitive 
feature, assists the clustering methods in providing reliable 
results of damage detection and localization.

2 � Modal flexibility

The modal flexibility or structural flexibility matrix F is a 
function derived from the modal frequencies (eigenvalues) 
and mode shapes (eigenvectors). In a FE model of a structure 
with n degrees-of-freedom (DOFs), which this model refers 
to the undamaged state of that structure, the modal flexibility 
function (Fu) is expressed as follows:

where λi and φi = [φi,1… φi,n]T denote the eigenvalue and 
eigenvector of the ith mode, respectively. Because the global 
mass and stiffness matrices of the FE model or undamaged 
state of the structure are available, the modal data can simply 
be obtained by the eigenvalue problem. On the other hand, 
it is possible to define the same formulation of the modal 
flexibility for the real structure, which is considered as the 
potentially damaged condition. Here, one assumes that no 
FE model is needed for this condition and its modal frequen-
cies and mode shapes are representative of the measured 
data. The main limitation is that the measured modal param-
eters are usually incomplete. In reality, one cannot measure 
all modes of the structure in an experimental program due 
to some practical and economic limitations. Furthermore, 
it is not necessarily feasible to measure all modal displace-
ments at all DOFs. Under such circumstances, the meas-
ured modal parameters of the damaged state are incomplete, 
which means that those are only available and measurable in 
a few modes and DOFs.

The other important note is that the mode shape vectors 
of the undamaged and damaged conditions of the structure 
should originate from the same physical condition [38]. 
This means that both of them should be scaled and mass-
normalized. Due to the availability of the mass matrix of 
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the FE model, the mode shapes of the undamaged state are 
always mass-normalized. However, the inherent properties 
of the real structure are often unknown, in which case it is 
necessary to scale or normalize the measured modal dis-
placements. With these descriptions, the mode shapes of 
the real model are initially normalized and then expanded 
to obtain a complete set of the mass-normalized measured 
modal displacements. In this article, the procedures of nor-
malization and mode expansion are carried out by the modal 
scale factor and SEREP technique [8].

Assume that the only m measured modes of the modal 
frequencies and mode shapes of the damaged state are avail-
able. This means that limited identifiable frequencies in the 
first few modes are measurable. Hence, the modal flexibility 
matrix (Fd) of the real structure or damaged condition is 
derived from the truncated lower modes of the measured 
modal frequencies and mode shapes as follows:

where 𝜆̂ j and �̂ j = [𝜑̂ j,1… 𝜑̂ j,n]T are the jth modal frequency 
and normalized mode shape vector of the damaged state, 
respectively. Despite the difficulty or impossibility of meas-
uring all modes, the truncated modal flexibility in Eq. (2) 
using the first lower modes is sufficiently accurate and can 
be correctly estimated [27]. Furthermore, it should be men-
tion that both Fu and Fd are n-by-n square matrices despite 
using incomplete modes associated with the damaged state. 
Each of the modal flexibility matrices cannot alone express 
the changes in the structure caused by damage. The best way 
is to calculate their difference or residual and obtain the dis-
crepancy matrix of modal flexibility, that is, ΔF = |Fd − Fu|, 
where |.| stands for the absolute operator.

3 � Cluster analysis

Clustering is a statistical tool for arranging and dividing data 
samples into groups or clusters [39]. Because this method 
conforms to the unsupervised learning class, it is widely 
used in SHM applications. Cluster analysis consists of vari-
ous clustering algorithms, each of which seeks to organize 
a given data set into homogeneous clusters. A cluster is gen-
erally defined as a group of observations such as objects or 
data points that have large similarities [39]. Clustering meth-
ods depend on how to separate similar or dissimilar observa-
tions from each other. In other words, the same observations 
are treated as a homogeneous cluster, while dissimilar obser-
vations make additional clusters. There are a large number 
of clustering algorithms for data analysis. The choice of a 
clustering algorithm depends on the type of data and the 
purpose and application of clustering. If cluster analysis is 
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used as a descriptive or exploratory tool, it is possible to try 
several algorithms on the same data to observe what the data 
may disclose. Generally, most of the clustering algorithms 
can be classified into (1) hierarchical, (2) partitioning, (3) 
density-based, (4) grid-based, and (5) model-based methods. 
A full discussion on each of these methods is beyond the 
scope of this article. For more information, the reader can 
refer to [39, 40].

3.1 � k‑medoids clustering

The k-medoids clustering is a partitioning method that 
divides the data of s samples into k clusters. In this method, 
there is no hierarchical relation between the k-cluster solu-
tion and the (k + 1) cluster solution; therefore, it is an 
appropriate clustering method for large data sets [39]. This 
approach is related to the k-means clustering, that is, both 
of them are intended to divide a set of observations into k 
clusters in such a way that the clusters minimize an error 
sum-of-squares (ESS) criterion between an observation and 
a center of the cluster.

A distinction between these methods is that the center 
of observations in the k-means clustering is the mean of 
observations, which is usually called centroid as a ref-
erence point, whereas the k-medoids clustering chooses 
a representative observation as a reference point. To put 
it another way, the medoid of a cluster in the k-medoids 
clustering is defined as an observation (i.e., the most cen-
trally located observation in the cluster) that minimizes 
the total dissimilarity to all other observations within that 
cluster, while the centroid in the k-means clustering is the 

mean or average of the observations. In other words, the 
key merit of the k-medoids clustering is to use representa-
tive observations as reference points rather than taking the 
mean of observations in each cluster. Due to such a merit, 
this method is more robust to noise and outliers compared 
to the k-means clustering [39]. Figure 1 depicts the differ-
ence between these methods when one of the data points 
(i.e., one that is far away from the others) is an outlier. As 
can be observed, the k-means clustering is sensitive to the 
outlier and chooses the cluster mean by considering that 
data point. On the contrary, the k-medoids clustering finds 
the cluster center or medoid without affecting the outlier.

The k-medoids clustering starts with defining a prox-
imity metric such as the Euclidean distance and finds a 
medoid within each cluster that minimizes the total dis-
similarity to all other medoids within that cluster. For the 
s-dimensional vectors xi and xj, the proximity between 
these vectors (Di,j) based on the Euclidean distance is 
expressed as:

In the k-medoids clustering, the ESS criterion is formu-
lated based on the pre-defined proximity metric as follows 
[39]:

where ck is the kth cluster medoid and c(i) is the cluster 
containing xi. For more information, Fig. 2 illustrates the 
flowchart of the k-medoids clustering.
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√(
�i − �j
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K-Means Clustering K-Medoids Clustering

Data Point Cluster Mean Cluster Medoid

Fig. 1   The graphical representation of the difference between the k-means and k-medoids clustering methods
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3.2 � DBSCAN

DBSCAN is a density-based clustering approach, which was 
initially proposed by Ester et al. [41]. This method clusters 
a set of observations into spaces with different sizes and 
shapes under the assumption that a cluster is a region in the 
data space with a high density. Indeed, the DBSCAN method 
groups the data points that are dense and nearby into a single 
cluster [40]. The algorithm of this method has computational 
similarities to centroid-based clustering techniques such as 
the k-means and k-medoids clustering. However, DBSCAN 
utilizes the density of the data points in the feature space to 
identify clusters rather than the locations of the centroids or 
medoids. Most of the clustering methods including hierar-
chical and partitioning methods require the number of clus-
ters that should be known and determined by some compu-
tational techniques. However, the DBSCAN algorithm only 

needs two input parameters including the minimum number 
of points, which is required to insert into a region for making 
it dense (MinPts), and the maximum distance between points 
in a cluster as a radius (Eps). More precisely, this technique 
adopts the radius value Eps based on a user-defined distance 
measure and the value MinPts for collecting the points in the 
region made by Eps. Using these scenarios, it is not neces-
sary to specify the number of clusters.

Given the vector x = [x1…xs]T, DBSCAN yields a local 
density denoted as ρ(xi) in the neighborhood of the ith point 
xi, which is the total number of points in its neighborhood. 
Note that the neighborhood is a distance measure for two 
points xi and xj, denoted by di,j. The algorithm of DBSCAN 
classifies the data points x1…xs as core, border, density-
reachable, and outlier points. Figure 3 depicts a graphical 
representation of these points. Having considered the mini-
mum number of points in the neighborhood (MinPts), xi is 
defined as a core point (xi = xcore) if ρ(xi) ≥ MinPts as can 
be observed in Fig. 3b. Moreover, xi can be a border point 
(xi = xborder) if ρ(xi) < MinPts, in which case a core point 
exists so that xborder∈NEps(xcore). This means that the bor-
der point xborder belongs to the neighborhood of xcore and 
the local density is less than MinPts. It is worth remark-
ing that NEps represents the nearest points in the neighbor-
hood of the radius Eps of the ith point, which is defined as 
NEps(xi) = 

{
xj|∀j, di,j < Eps

}
 . The other important definition 

used in the DBSCAN algorithm is related to the density-
reachable points. Given two points x1 and xs, these are the 
density-reachable points if a chain of points x1,…, xi, xi+1,…, 
xs exists, where i ≥ 1 and s ≥ 2. In such a case, for all i < s, 
xi is a core point (ρ(xi) ≥ MinPts), and xi+1 is a neighbor of xi 
(xi+1∈NEps(xi)). Eventually, a point is an outlier (xoutlier) if its 
local density is less than MinPts. In Fig. 3d, the three black 
points out of the clusters are the outlier points.

It should be mentioned that the DBSCAN algorithm 
begins with an arbitrary starting point from the vector x and 
retrieves all neighbors of that point within Eps. If it is a core 
point, the algorithm creates a new cluster and assigns that 

Locate the medoid for each cluster.

Note: The medoid of the kth cluster is defined as that item in the kth cluster that 
minimizes the total distance to all other items within that cluster.

Step 1

Step 2

Step 3

Step 4

Choose the proximity measure and the number of clusters k.

Form an initial assignment of the observations or points of 
the dataset used in the clustering into k clusters.

For the rth cluster, where r=1,2,…,k, reassign the ith 
observation to its nearest cluster medoid in such a way that 
the objective function ESS presented in Eq. (4) decreases.

Note: Repeat the third and fourth steps until no further 
reassignment of observations occurs.

Fig. 2   The flowchart of the k-medoids clustering

Fig. 3   The graphical representation of the key components of the DBSCAN algorithm: a a cluster, b a core point (the blue point), c a border 
point (the yellow point), d density-reachable points
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point and its neighbors into this new cluster. Subsequently, 
the algorithm collects the neighbors within Eps from all core 
points in an iterative manner. The process is repeated until 
all of the data points in x are considered.

4 � Proposed SHM strategy

The k-medoid and DBSCAN methods utilize the vector 
x∈ℜs (input) to divide its data points into clusters and yield 
clustering outputs. As explained in Sect. 2, the modal flex-
ibility discrepancy matrix ΔF∈ℜn×n is considered as the 
damage-sensitive feature for damage detection and locali-
zation. In such a case, it is necessary to convert it into a 
vector and use the vector-style feature as the input data in 
the above-mentioned clustering methods. Before this pro-
cedure, it is better to expand ΔF by the Kronecker prod-
uct to increase damage detectability and localizability. 
Using this operator, one can obtain the expanded matrix 
ΔF* = ΔF ⨂ ΔF∈ℜn2×n2 . In the following, this matrix is 
converted into a vector using the vectorization process lead-
ing to the vector Γ∈ℜn4 . In mathematics and linear algebra, 
the vectorization of a matrix is a linear transformation that 
converts it into a column vector [12]. Therefore, the vector 

Γ, which is equivalent to the vector x (i.e., s = n4), is fed into 
the k-medoids and DBSCAN methods for damage detection 
and localization.

5 � Applications

This section presents the results of damage detection and 
localization via the proposed methods using two numerical 
models including a shear building frame and the numerical 
ASCE benchmark structure related to the first phase.

5.1 � The shear building model

As the first example, a simple undamped shear building 
frame with six stories is modeled to evaluate the robustness 
and performance of the proposed methods. This model is 
a simulation of a dynamic discrete system with six DOFs 
as shown in Fig. 4. The initial structural properties of the 
model such as the mass and stiffness of each story are listed 
in Table 1. In this model, one assumes that each floor at 
each DOF, except for the ground floor, equips with a sensor; 
therefore, it is possible to measure all modal displacements 
at all DOFs. Several damage scenarios are defined to simu-
late structural damages in the model based on the stiffness 
reduction of some stories. Accordingly, it is presumed that 
the mass matrix remains invariant in these scenarios. Table 2 
lists the three damage cases applied to the shear-building 
model. Moreover, one can simply observe these cases in 
Fig. 4.

Given the initial structural parameters of the shear build-
ing model in the undamaged and damaged conditions, the 

Story 1

Story 2

Story 3

Story 4

Story 5

Story 6

Ground Floor

Floor 1

Floor 2

Floor 3

Floor 4

Floor 5

Floor 6

DC1

DC2

DC3

Damage Cases
and Locations

Fig. 4   The shear-building model

Table 1   The structural characteristics of the shear-building model

Story no. Mass (kg) Stiffness (kN/m)

1–2 3000 1200
3–4 2000 1000
5–6 1000 800

Table 2   The damage scenarios in the shear-building model

Damage cases Location (story) Stiffness 
reduction 
(%)

DC1 1 − 5
DC2 1 − 10

2 − 25
DC3 1 − 15

2 − 30
3 − 55
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global mass and stiffness matrices are simply obtained using 
their simple formulations regarding the discrete dynamical 
systems. The generalized eigenvalue problem is applied to 
extract the modal parameters of the undamaged and dam-
aged conditions. As described earlier, one assumes that the 
modal data of the undamaged state are related to the FE 
model of the shear building. Furthermore, it is supposed 
that the modal parameters of the damaged conditions (i.e., 
DC1–DC3) are measurable and available in a few modes. In 
most cases, noise contaminates measured modal data regard-
ing the damaged states and causes undesirable perturbations 
in such data. On this basis, four levels of noise such as 1, 3, 
5, and 10% are introduced to the measured modal parameters 
in the following forms:

where α is the noise level; v and ν represent the vector of 
random samples with the standard normal distribution and 
a scalar value with zero mean and unit standard deviation, 
respectively. Once the inherent physical properties of the 
undamaged and damaged states, as well as their modal 
parameters, have been obtained, the modal flexibility matri-
ces Fu, Fd, and ΔF∈ℜ6×6 are determined. As a sample, 
Fig. 5 indicates the modal flexibility discrepancy matrix 
related to DC2. It is clear from this figure that most of the 
changes have occurred in the first and second stories. An 
important note in Fig. 5 is that the reduction in the first story 
is much less than the second story despite the presence of a 
more intensive severity of damage in the second story (the 
stiffness reduction equal to − 25%) than the first one (the 

(5)�̂
∗

j
= �̂j + 𝛼�,

(6)𝜆̂∗
j
= 𝜆̂j + 𝛼𝜐,

stiffness reduction equal to − 10%). Therefore, one can con-
clude that although the discrepancy matrix of modal flex-
ibility is sensitive to damage, it is not sufficiently suitable 
for damage detection and localization. In fact, this conclu-
sion emphasizes the importance of applying the clustering 
methods.

Using the Kronecker product, the modal flexibility dis-
crepancy converts into a 36-by-36 matrix. Finally, this 
expanded matrix is converted into a vector with 1296 sam-
ples through the vectorization algorithm. It is important to 
note that each story of the shear-building model has 216 
samples (observations), in which case the vector-style fea-
ture used in the k-medoids and DBSCAN algorithms divides 
into 6 clusters with 216 samples. The results of damage 
detection by DBSCAN and k-medoids clustering in DC1-
DC3 are shown in Figs. 6, 7, 8, respectively. Note that the 
expression “ST” stands for the abbreviation of “Story”, 
which is used throughout this article. For the k-medoids 
clustering, the number of clusters (k) is set as 6. From Fig. 6, 
one can observe that most dispersion of the clustering out-
puts (the amounts of the vector Γ) is related to the first 216 
samples, which belong to the first story of the shear-building 
model. For the other stories, it is seen that the outputs of the 
clustering methods are zero implying the undamaged areas 
in the shear-building model. In Fig. 7, the first and second 
216 samples of the clustering outputs are more than the other 
stories. Therefore, it can be argued that the first and second 
stories of the shear-building model have suffered from dam-
age. Eventually, the observations in Fig. 8 demonstrate that 
the first, second, and third stories of the model are the dam-
aged areas due to considerable dispersion of the clustering 
outputs at these stories. All the obtained results in Figs. 6, 7, 
8 lead to the conclusion that the proposed clustering meth-
ods in conjunction with the modal flexibility discrepancy 
are highly capable of detecting and locating damage in the 
noise-free condition.

To assess the robustness of the proposed methods in the 
presence of noisy modal data, Fig. 9 shows the results of 
damage detection in DC3 for the high level of noise (10%). 
As can be discerned, the first, second, and third stories of 
the shear building are identified as the damaged areas due to 
substantial dispersion of the clustering outputs. This conclu-
sion is similar to the corresponding result in Fig. 8 without 
any noise in the modal data. Therefore, it can be realized that 
the proposed methods are still successful in detecting dam-
age even under the noisy modal data. Furthermore, one can 
observe that there are some erroneous results at the locations 
of undamaged areas (the stories 4–6) due to the negative 
effect of noise. By comparing the clustering outputs at these 
stories, it can be perceived that DBSCAN outperforms the 
k-medoids clustering owing to smaller computational errors. 
In Fig. 9a, the maximum output of the k-medoids clustering 
at the mentioned undamaged stories is about 0.04, whereas 
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Fig. 9b indicates that the maximum DBSCAN output (error) 
in these areas corresponds to 0.001.

The other way for verifying the accuracy and effective-
ness of the proposed methods in detecting and locating 
damage is to determine the norms of the clustering outputs 
concerning DC1–DC3 in the different noise levels as shown 
in Figs. 10, 11, 12, respectively. From these figures, it can 
be understood that the Frobenius norms of the clustering 
outputs in the noisy modal data are approximately identi-
cal to the corresponding values in the noise-free condition. 
This conclusion is also valid for both clustering methods. 
Thus, it can be concluded that the k-medoids clustering and 
DBSCAN methods along with the modal flexibility discrep-
ancy succeed in detecting and locating damage under noise-
free and noisy conditions. An important note in Figs. 10, 11, 

12 is that the use of the Frobenius norms of the clustering 
output provides an appropriate tool for locating damage. It 
is simply seen in these figures that the norms of the clus-
tering outputs precisely identify the damaged areas of the 
shear building. In this regard, the comparison between the 
results of damage detection and localization in Figs. 6–8 and 
10–12 reveals that the Frobenius norms present more obvi-
ous results of damage localization than the direct use of the 
clustering outputs.

5.2 � The ASCE benchmark structure

Another verification example is the numerical model of the 
ASCE benchmark structure [42, 43]. It is a four-story steel 
frame in the model scale as shown in Fig. 13. This structure 
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Fig. 6   Damage detection and localization in the shear-building model for the noise-free condition in DC1: a k-medoids clustering, b DBSCAN
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includes a plan of 2.5 m-by-2.5 m and a height of 3.6 m. 
The members are hot rolled grade 300 W steel with nomi-
nal yield stress 300 MPa. The columns and floor beams are 
B100 × 9 and S75 × 11 sections, respectively. There are 
two types of FE models of the ASCE structure including 
12-DOF and 120-DOF models. This article considers the 
first model for damage detection and localization. For this 
structure, six damage patterns were defined as reductions in 
the structural stiffness by removing brace systems from some 
stories as illustrated in Fig. 14. Accordingly, the third and 
fourth damage patterns are used here to evaluate the perfor-
mance and effectiveness of the proposed methods.

Since the main objective of modeling the numerical 
ASCE benchmark structure is to simulate acceleration 
time histories at simulated sensor locations, it is possible 

to access the mass and stiffness matrices of the undam-
aged and damaged conditions. Similar to the previous 
example, it is assumed that the FE model of the ASCE 
structure refers to its undamaged condition and the dam-
aged state is indicative of the real model. The general-
ized eigenvalue problem is employed to extract the modal 
parameters of the undamaged and damaged conditions. In 
order to simulate realistic situations, one supposes that the 
only five modes regarding the damaged state are available 
and measurable. Since the mode shapes of the undamaged 
condition are mass-normalized, the modal scale factor is 
applied to scale the modal displacements of the damaged 
condition. Furthermore, the mode expansion technique is 
used to expand the mass-normalized modal displacements 
of this condition using the SEREP technique. The same 
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noise levels as the previous numerical example are con-
sidered to simulate noisy modal data.

Using the structural properties and modal parameters of 
the undamaged and damaged conditions, the modal flex-
ibility matrices Fu and Fd∈ℜ12×12 are obtained to determine 
the modal flexibility discrepancy matrix ΔF∈ℜ12×12. Based 
on the Kronecker product, the modal flexibility discrep-
ancy matrix is expanded into a 144-by-144 matrix and this 
expanded matrix is then converted to a vector with 20,736 
samples, which serves as the input data for the clustering 
methods. It is important to point out that each story of the 
ASCE structure consists of 5184 observations (samples). 
The results of damage detection and localization for the third 

and fourth damage patterns on the basis of the outputs of 
the k-medoids clustering and DBSCAN under the noise-free 
condition are shown in Figs. 15 and 16, respectively. Note 
that the number of clusters required for the k-medoids clus-
tering is equal to 4. As Fig. 15 shows, it can be observed that 
the first story of the ASCE structure is representative of the 
damaged area because the first 5184 samples of the cluster-
ing outputs have the most dispersion in comparison with the 
other areas. This is a reasonable result since the damage pat-
tern of the third case has been simulated at this story. From 
Fig. 16, one can discern that the first and third 5184 samples 
of the clustering outputs include most dispersion compared 
to the other samples. Therefore, it is deduced that the first 
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and third stories of the ASCE structure have suffered from 
damage, which is an accurate conclusion according to the 
fourth damage pattern.

All the previous results have been achieved using the 
vector-style input data obtained from the vectorization of 
the expanded matrix of the modal flexibility discrepancy 
through the Kronecker product. The main premise is that the 
use of this operator increases the damage detectability and 
localizability. As a comparison, one attempts to evaluate the 
result of damage detection without the Kronecker product. 
In other words, the vectorization procedure is only carried 
out on the modal flexibility discrepancy matrix ΔF∈ℜ12×12. 
Hence, the new vector-style input data needed for the clus-
tering methods consists of 144 samples. Figure 17 shows 
the outputs of DBSCAN in the third and fourth damage 

patterns without applying the Kronecker product. By com-
paring the results in Figs. 15, 16, 17, one can realize that 
the Kronecker product gives more clear results than the 
situation without applying it. This issue may be significant 
when small damage occurs in the structure. In such a case, 
the clustering methods may not be able to detect and locate 
damage accurately.

Similar to the previous numerical example, the other 
result of damage detection and localization is based on 
computing the Frobenius norms of the clustering outputs as 
shown in Fig. 18, where Fig. 18a, b is related to the results 
obtained from the k-medoids clustering, and Fig. 18c, d 
shows the results of the DBSCAN method. All observa-
tions in Fig. 18 confirm the great ability of the proposed 
methods to detect and locate damage even under the noisy 
modal data. Some inconsiderable norm quantities are also 
observable in the undamaged areas (i.e., the stories 2–4 for 
the third pattern and the stories 2 and 4 concerning the four 
pattern), which can be neglected them. Furthermore, it can 
be seen that the Frobenius norms of the clustering outputs 
in the noisy modal parameters are roughly similar to the cor-
responding values in the noise-free condition. This means 
that the proposed methods are satisfactorily able to detect 
and locate damage under noise-free and noisy modal data.

6 � Conclusions

In this article, an innovative hybrid method was proposed 
to detect and locate damage under noisy modal data. The 
discrepancy between the modal flexibility matrices regard-
ing the undamaged and damaged conditions was selected 
as the main damage-sensitive feature. The modal flexibility 
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Fig. 13   The numerical model of the ASCE benchmark structure [42]
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Fig. 14   The six damage patterns of the numerical problem of the ASCE benchmark model [42]
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matrices of these conditions were determined based on the 
fundamental principle of the model-driven scheme. Using 
the Kronecker product and the vectorization algorithm, 
a vector-style feature set was obtained and fed into the 
k-medoids clustering and DBSCAN. Finally, the direct clus-
tering outputs and their Frobenius norms were utilized as 
indices for damage detection and localization. The effective-
ness and performance of the proposed methods were veri-
fied numerically by a shear-building model and the ASCE 
benchmark structure.

Based on the numerical structures, the following con-
clusions are drawn. (1) The proposed hybrid strategy is 
an effective tool for extracting a reliable damage-sensitive 

feature in a model-driven manner as well as detecting 
and locating damage using the k-medoids clustering and 
DBSCAN methods on the basis of a data-driven strategy. 
(2) The modal flexibility discrepancy matrix is sensitive 
to damage so that the damaged areas have the most reduc-
tions. (3) The use of the Kronecker product in providing 
the main damage-sensitive feature and the input data of 
the clustering methods increases damage detectability and 
localizability. This conclusion confirms its positive effect 
on presenting more obvious results of damage detection 
and localization compared to the situation without apply-
ing it. (4) Both clustering outputs and their Frobenius 
norms are able to give accurate and obvious results of 
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Fig. 16   Damage detection and localization in the ASCE benchmark structure in the fourth damage pattern: a k-medoids clustering, b DBSCAN

1 36 72 108 144
Number of observations

0

1

2

3

4

5

6

7

8

N
or

m
s 

of
 D

B
S

C
A

N
 o

ut
pu

ts

10-4 (b)

ST1 ST2 ST3 ST4

1 36 72 108 144
Number of observations

0

1

2

3

4

5

6

7

8

N
or

m
s 

of
 D

B
S

C
A

N
 o

ut
pu

ts
10-4 (a)

ST1 ST2 ST3 ST4

Fig. 17   Damage detection and localization using the DBSCAN method without applying the Kronecker product: a Pattern 3, b Pattern 4



858	 Journal of Civil Structural Health Monitoring (2020) 10:845–859

123

damage detection and localization. However, it is recom-
mended to apply the Frobenius norm for locating dam-
age. (5) The DBSCAN method outperforms the k-medoids 
clustering in terms of smaller computational errors in the 
undamaged areas under noisy conditions.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Brownjohn JMW, De Stefano A, Xu Y-L, Wenzel H, Aktan AE 
(2011) Vibration-based monitoring of civil infrastructure: chal-
lenges and successes. J Civ Struct Health Monit 1(3):79–95. https​
://doi.org/10.1007/s1334​9-011-0009-5

	 2.	 Mesquita E, Antunes P, Coelho F, André P, Arêde A, Varum H 
(2016) Global overview on advances in structural health moni-
toring platforms. J Civ Struct Health Monit 6(3):461–475

	 3.	 Li H, Ou J (2016) The state of the art in structural health 
monitoring of cable-stayed bridges. J Civ Struct Health Monit 
6(1):43–67

	 4.	 Bukenya P, Moyo P, Beushausen H, Oosthuizen C (2014) Health 
monitoring of concrete dams: a literature review. J Civ Struct 
Health Monit 4(4):235–244

	 5.	 Das S, Saha P, Patro S (2016) Vibration-based damage detection 
techniques used for health monitoring of structures: a review. J 
Civ Struct Health Monit 6(3):477–507

	 6.	 Farrar CR, Worden K (2007) An introduction to structural 
health monitoring. Philos Trans R Soc A Math Phys Eng Sci 
365(1851):303–315

	 7.	 Entezami A, Shariatmadar H, Ghalehnovi M (2014) Damage 
detection by updating structural models based on linear objec-
tive functions. J Civ Struct Health Monit 4(3):165–176. https​
://doi.org/10.1007/s1334​9-014-0072-9

	 8.	 Entezami A, Shariatmadar H, Sarmadi H (2017) Structural dam-
age detection by a new iterative regularization method and an 
improved sensitivity function. J Sound Vib 399:285–307. https​
://doi.org/10.1016/j.jsv.2017.02.038

Fig. 18   Damage detection and localization using the Frobenius norms of the clustering outputs in the different noise levels: a k-medoids cluster-
ing in Pattern 3, b k-medoids clustering in Pattern 4, c DBSCAN in Pattern 3, d DBSCAN in Pattern 4

https://doi.org/10.1007/s13349-011-0009-5
https://doi.org/10.1007/s13349-011-0009-5
https://doi.org/10.1007/s13349-014-0072-9
https://doi.org/10.1007/s13349-014-0072-9
https://doi.org/10.1016/j.jsv.2017.02.038
https://doi.org/10.1016/j.jsv.2017.02.038


859Journal of Civil Structural Health Monitoring (2020) 10:845–859	

123

	 9.	 Katebi L, Tehranizadeh M, Mohammadgholibeyki N (2018) A gen-
eralized flexibility matrix-based model updating method for damage 
detection of plane truss and frame structures. J Civ Struct Health 
Monit 8(2):301–314. https​://doi.org/10.1007/s1334​9-018-0276-5

	10.	 Krishnanunni CG, Raj RS, Nandan D, Midhun CK, Sajith AS, 
Ameen M (2019) Sensitivity-based damage detection algorithm for 
structures using vibration data. J Civ Struct Health Monit 9(1):137–
151. https​://doi.org/10.1007/s1334​9-018-0317-0

	11.	 Sehgal S, Kumar H (2016) Structural dynamic model updating 
techniques: a state of the art review. Arch Comput Methods Eng 
23(3):515–533

	12.	 Sarmadi H, Karamodin A, Entezami A (2016) A new iterative model 
updating technique based on least squares minimal residual method 
using measured modal data. Appl Math Model 40(23):10323–
10341. https​://doi.org/10.1016/j.apm.2016.07.015

	13.	 Rezaiee-Pajand M, Entezami A, Sarmadi H (2020) A sensitivity-
based finite element model updating based on unconstrained opti-
mization problem and regularized solution methods. Struct Control 
Health Monit 27(5):e2481. https​://doi.org/10.1002/stc.2481

	14.	 Yin T, Jiang Q-H, Yuen K-V (2017) Vibration-based damage 
detection for structural connections using incomplete modal data 
by Bayesian approach and model reduction technique. Eng Struct 
132:260–277

	15.	 Yuen KV, Beck JL, Katafygiotis LS (2006) Efficient model updating 
and health monitoring methodology using incomplete modal data 
without mode matching. Struct Control Health Monit 13(1):91–107

	16.	 Sarmadi H, Karamodin A (2020) A novel anomaly detection method 
based on adaptive Mahalanobis-squared distance and one-class kNN 
rule for structural health monitoring under environmental effects. 
Mech Syst Signal Process 140:106495. https​://doi.org/10.1016/j.
ymssp​.2019.10649​5

	17.	 Sarmadi H, Entezami A, Daneshvar Khorram M (2020) Energy-
based damage localization under ambient vibration and non-sta-
tionary signals by ensemble empirical mode decomposition and 
Mahalanobis-squared distance. J Vib Control 26(11–12):1012–1027. 
https​://doi.org/10.1177/10775​46319​89130​6

	18.	 Entezami A, Sarmadi H, Behkamal B, Mariani S (2020) Big data 
analytics and structural health monitoring: a statistical pattern recog-
nition-based approach. Sensors 20(8):2328. https​://doi.org/10.3390/
s2008​2328

	19.	 Entezami A, Shariatmadar H, Karamodin A (2019) Data-driven 
damage diagnosis under environmental and operational variability 
by novel statistical pattern recognition methods. Struct Health Moni 
18(5–6):1416–1443

	20.	 Entezami A, Shariatmadar H (2019) Structural health monitoring by 
a new hybrid feature extraction and dynamic time warping methods 
under ambient vibration and non-stationary signals. Measurement 
134:548–568. https​://doi.org/10.1016/j.measu​remen​t.2018.10.095

	21.	 Figueiredo E, Cross E (2013) Linear approaches to modeling non-
linearities in long-term monitoring of bridges. J Civ Struct Health 
Monit 3(3):187–194

	22.	 Diez A, Khoa NLD, Alamdari MM, Wang Y, Chen F, Runcie P 
(2016) A clustering approach for structural health monitoring on 
bridges. J Civ Struct Health Monit 6(3):429–445

	23.	 Neves A, Gonzalez I, Leander J, Karoumi R (2017) Structural health 
monitoring of bridges: a model-free ANN-based approach to dam-
age detection. J Civ Struct Health Monit 7(5):689–702

	24.	 Farrar CR, Worden K (2013) Structural health monitoring: a 
machine learning perspective. Wiley, Chichester, United Kingdom

	25.	 Ghorbani E, Buyukozturk O, Cha Y-J (2020) Hybrid output-only 
structural system identification using random decrement and 
Kalman filter. Mech Syst Signal Process 144:106977. https​://doi.
org/10.1016/j.ymssp​.2020.10697​7

	26.	 Ghannadi P, Kourehli SS (2019) Data-driven method of damage 
detection using sparse sensors installation by SEREPa. J Civil Struct 
Health Monit 9(4):459–475

	27.	 Duan Z, Yan G, Ou J, Spencer BF (2007) Damage detection in ambi-
ent vibration using proportional flexibility matrix with incomplete 
measured DOFs. Struct Control Health Monit 14(2):186–196

	28.	 Li J, Wu B, Zeng Q, Lim CW (2010) A generalized flexibility 
matrix based approach for structural damage detection. J Sound Vib 
329(22):4583–4587

	29.	 Sung S, Koo K, Jung H (2014) Modal flexibility-based damage 
detection of cantilever beam-type structures using baseline modi-
fication. J Sound Vib 333(18):4123–4138

	30.	 Yan W-J, Ren W-X (2014) Closed-form modal flexibility sensitivity 
and its application to structural damage detection without modal 
truncation error. J Vib Control 20(12):1816–1830

	31.	 Zare Hosseinzadeh A, Ghodrati Amiri G, Seyed Razzaghi SA, Koo 
KY, Sung SH (2016) Structural damage detection using sparse sen-
sors installation by optimization procedure based on the modal flex-
ibility matrix. J Sound Vib 381(Supplement C):65–82. https​://doi.
org/10.1016/j.jsv.2016.06.037

	32.	 Sarmadi H, Entezami A, Ghalehnovi M (2020) On model-based 
damage detection by an enhanced sensitivity function of modal flex-
ibility and LSMR-Tikhonov method under incomplete noisy modal 
data. Eng Comput. https​://doi.org/10.1007/s0036​6-020-01041​-8

	33.	 Aghabozorgi S, Shirkhorshidi AS, Wah TY (2015) Time-series 
clustering—a decade review. Inf Syst 53:16–38

	34.	 Mahato S, Chakraborty A (2019) Sequential clustering of syn-
chrosqueezed wavelet transform coefficients for efficient modal 
identification. J Civ Struct Health Monit 9(2):271–291. https​://doi.
org/10.1007/s1334​9-019-00326​-x

	35.	 da Silva S, Dias Júnior M, Lopes Junior V, Brennan MJ (2008) 
Structural damage detection by fuzzy clustering. Mech Syst Sig-
nal Process 22(7):1636–1649. https​://doi.org/10.1016/j.ymssp​
.2008.01.004

	36.	 Silva M, Santos A, Santos R, Figueiredo E, Sales C, Costa JC (2017) 
Agglomerative concentric hypersphere clustering applied to struc-
tural damage detection. Mech Syst Signal Process 92:196–212

	37.	 Langone R, Reynders E, Mehrkanoon S, Suykens JA (2017) Auto-
mated structural health monitoring based on adaptive kernel spectral 
clustering. Mech Syst Signal Process 90:64–78

	38.	 Mottershead JE, Link M, Friswell MI (2011) The sensitivity method 
in finite element model updating: a tutorial. Mech Syst Signal Pro-
cess 25(7):2275–2296. https​://doi.org/10.1016/j.ymssp​.2010.10.012

	39.	 Izenman AJ (2009) Modern multivariate statistical techniques: 
regression, classification, and manifold learning. Springer, New 
York

	40.	 Aggarwal CC, Reddy CK (2016) Data clustering: algorithms and 
applications. CRC Press

	41.	 Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algo-
rithm for discovering clusters in large spatial databases with noise. 
In: Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining, Portland, Oregon, US, vol 34. 
pp 226-231. https​://ascel​ibrar​y.org/doi/10.1061/%28ASC​E%29073​
3-9399%28200​4%29130​%3A1%283%29

	42.	 Johnson EA, Lam HF, Katafygiotis LS, Beck JL (2004) Phase I 
International Association of Structural Control-American Society 
of Civil Engineer structural health monitoring benchmark problem 
using simulated data. J Eng Mech 130(1):3–15

	43.	 Yuen K-V, Au SK, Beck JL (2004) Two-stage structural health 
monitoring approach for phase I benchmark studies. J Eng Mech 
130(1):16–33

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s13349-018-0276-5
https://doi.org/10.1007/s13349-018-0317-0
https://doi.org/10.1016/j.apm.2016.07.015
https://doi.org/10.1002/stc.2481
https://doi.org/10.1016/j.ymssp.2019.106495
https://doi.org/10.1016/j.ymssp.2019.106495
https://doi.org/10.1177/1077546319891306
https://doi.org/10.3390/s20082328
https://doi.org/10.3390/s20082328
https://doi.org/10.1016/j.measurement.2018.10.095
https://doi.org/10.1016/j.ymssp.2020.106977
https://doi.org/10.1016/j.ymssp.2020.106977
https://doi.org/10.1016/j.jsv.2016.06.037
https://doi.org/10.1016/j.jsv.2016.06.037
https://doi.org/10.1007/s00366-020-01041-8
https://doi.org/10.1007/s13349-019-00326-x
https://doi.org/10.1007/s13349-019-00326-x
https://doi.org/10.1016/j.ymssp.2008.01.004
https://doi.org/10.1016/j.ymssp.2008.01.004
https://doi.org/10.1016/j.ymssp.2010.10.012
https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9399%282004%29130%3A1%283%29
https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9399%282004%29130%3A1%283%29

	An innovative hybrid strategy for structural health monitoring by modal flexibility and clustering methods
	Abstract
	1 Introduction
	2 Modal flexibility
	3 Cluster analysis
	3.1 k-medoids clustering
	3.2 DBSCAN

	4 Proposed SHM strategy
	5 Applications
	5.1 The shear building model
	5.2 The ASCE benchmark structure

	6 Conclusions
	References




