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Abstract
A new signal reconstruction is proposed for damage detection on a simply supported beam using multiple measurements 
of displacement induced by a moving sprung mass. The new signal is constructed from the difference between the spatially 
integrated deflection for the intact (baseline) and damaged beams under quasi-static loading. To that end, it is shown that 
the static component of displacement from the dynamic moving mass experiment may be extracted very effectively using a 
robust smoothing technique and that this outperforms some comparable techniques. It is shown that by measuring displace-
ment at a modest number of points on the beam the new reconstructed signal is able to detect the location of the damage 
more accurately than methods that use only a single-point data. In particular, the technique is able to detect damage present 
simultaneously at multiple locations and can do so with a highly variable moving mass velocity. In order to construct an 
a posteriori baseline, the strain data from the same traverse could be used to recover the displacement-time history of the 
intact beam, which could enhance the method by enabling the baseline to be determined from the same experiment, further 
eliminating effects of experimental conditions if required. However, a Monte Carlo simulation is run to consider the effect 
of signal noise, showing that the proposed damage detection strategy locates damage even in the presence of noise of 50% 
in the measured signals ( SNR = 7 dB).

Keywords  Vehicle bridge interaction · Moving mass · Vibration · Damage detection · SHM · EMD · Residual IMF

1  Introduction

Signal reconstruction and sensor arrangement are recognised 
recently as new challenges when conducting subtle damage 
detection of structures [1, 2]. This paper employs vibration 
techniques to derive a model-free signal-processing based 
method for structural health monitoring (SHM) of bridges 
using the static component of Vehicle–Bridge Interaction 
(VBI) data without an a priori baseline. For this a new signal 
reconstruction technique is proposed using multiple meas-
urement points data on a bridge subjected to a moving mass.

Vibration techniques, as a category of damage detection 
methods, employ data recorded from a vibrating bridge 
structure subject to a variety of different excitation forces. In 
many such techniques ambient vibration data are used [3–5]. 
However, in the context of damage detection on bridge 

structures, sometimes a moving load or mass is applied to 
excite the bridge. As the main properties of the applied force 
such as magnitude and velocity can easily be controlled, this 
technique has received attention in the recent literature [6].

In most papers, a simply supported beam (bridge model) 
is studied as a test case. The response of the beam subjected 
to a moving load contains two terms. The first term, which 
depends directly on the velocity of the moving load, is usu-
ally referred to as the static component. The second term 
contains the response at the bridge’s natural frequencies and 
is referred to as the dynamic component. As such, structural 
health monitoring of bridge structures can be performed by 
studying either of the above parts individually or in combi-
nation [7, 8].

There are also some techniques that do not separate 
the response of the beam, i.e. they use raw signals. The 
main reason is that, as stated above, both the static and 
dynamic parts of the structural response contain informa-
tion about damage. Recently, Zhang et al. introduced a 
technique which exploits multi-type vibration measure-
ments to construct the phase trajectory of the vibration of 

 *	 Damien Holloway 
	 damien.holloway@utas.edu.au

1	 College of Sciences and Engineering, University 
of Tasmania, Hobart, TAS 7005, Australia

http://orcid.org/0000-0002-0436-5176
http://orcid.org/0000-0001-9537-2744
http://orcid.org/0000-0002-7703-6357
http://crossmark.crossref.org/dialog/?doi=10.1007/s13349-020-00414-3&domain=pdf


710	 Journal of Civil Structural Health Monitoring (2020) 10:709–728

123

the beam at some points on the beam [9]. In their proposed 
technique, it is assumed that the phase trajectory of the 
intact structure subjected to the equivalent moving load 
is available. Therefore, the Euclidean distance between 
these two curves after low-pass filtering is used to localise 
damage.

As far as exploiting the static part of the beam vibration 
data is concerned, it has been shown that a small velocity 
of the moving load can be used. As such, these techniques 
exploit a quasi-static moving load on the bridge to derive 
only the static response of the beam. Accordingly, invok-
ing the Maxwell–Betti principle of reciprocal deflection, the 
response at some point A of a beam subjected to a quasi-
static translating load is equal to the deflection of the beam 
at each load point when a static force is applied to A.

This property has been recently used by Sun et al. [10] 
to obtain the curvature of the beam. Yang et al. [11] had 
earlier shown that the curvature of the beam is sensitive to 
damage and, therefore, can be considered a good damage 
indicator. He et al. [6] also argue that the response of the 
bridge structure subjected to a quasi-static moving vehicle 
is approximately equal to displacement influence line (DIL). 
Therefore, they introduce a damage index based on the the 
area encircled by the DIL change. Ono et al. also conducted 
an analytical study on damage detection of a road bridge slab 
using displacement influence lines [12].

Wavelet transformation has been used for separation of 
the dynamic response of the beam for damage detection 
as well. He et al. argue that the moving load frequency 
(static) component of the response of the beam subjected to 
the moving load is preferred for damage localisation. The 
multi-scale discrete wavelet transform is used in their paper 
to separate the moving frequency component for damage 
localisation [7].

Some techniques exploit advanced signal decomposition 
algorithms to separate the static and dynamic parts. The 
most significant and widely used recent contribution to the 
field is empirical mode decomposition (EMD), first intro-
duced by Huang et al. [13]. This is a technique that interpo-
lates splines between the means of the peaks and troughs and 
recursively subtracts these curves (known as intrinsic mode 
functions, or IMFs) from the original signal.

It has been suggested that the IMFs with higher frequency 
content due to the structural response are more sensitive to 
the damage [14]. For instance, Roveri et al. exploited the 
EMD algorithm to separate the dynamic part and showed 
that the instantaneous frequency (IF) of the first (highest fre-
quency) IMF of the vibration response of the bridge shows 
a peak at the time instant when the load moves over the 
damage [15].

For real signals, however, the highest frequency IMFs 
generally contain mostly noise and, therefore, these IMFs 
should be ignored. But because the number of IMFs can vary 

depending on noise level it can be difficult to automate such 
a detection process.

In other research, OBrien et al. apply EMD to decompose 
the acceleration signal of the beam subjected to a moving 
load into its component [16], but the first IMF is removed 
from the acceleration signal to exclude the data from the 
natural frequency vibration of the beam, leaving the low 
frequency or static components. The authors define a dam-
age indicator based on the difference between the signals 
obtained from the intact and damage structure. It is hypoth-
esised that this subtraction can remove the effects of excita-
tion due to a rough road surface. This technique, however, 
requires baseline information measured on the undamaged 
structure, and assumes the effect of the road surface does 
not change. In other words, it deals with systematic noise, 
not random noise.

In baseline-free damage detection techniques, once the 
desired signal has been identified, there are two general 
trends for damage detection. A variety of techniques in both 
categories are proposed in the literature.

The first category of damage detection methods exploits 
signal processing techniques. These methods seek a peak or 
change in recorded vibration data representing local damage 
when the load is moving over the defective area. These tech-
niques are more widely applicable as they do not rely on any 
finite element model of the intact structure. This category 
has received attention recently due to its lesser reliance on 
information about the intact structure [14, 15, 17]; however, 
generally these require the dynamic response component.

The second category comprises model-based techniques, so 
called because they rely on a finite element model of the intact 
structure. These techniques can detect the severity and the loca-
tion of damage on structures more accurately, but at the expense 
of requiring detailed information about the structure. Model-
based techniques have also received a great deal of attention by 
researchers during the past few decades [18, 19].

The present work seeks to exploit the advantages of 
both categories in that no detailed model is required, but 
by assuming a statically determinate structure the static 
response of the intact structure can be inferred from the 
strains in the manner described in recent work by He 
et al. [20].

In He et al.’s baseline-free technique for damage detection 
on a simply supported bridge subject to a moving load [20], 
the authors use the fact that the simply supported beam is 
statically determinate. Therefore, under quasi-static load-
ing conditions the strain-time history of the damaged beam 
at an undamaged section is the same as the one from the 
intact beam. First, they obtain the deflection and strain time 
history of the beam subject to a moving load at one point 
on the beam. Then, the deflection time history of the intact 
beam is derived using information from the strain. In order 
to introduce a damage sensitive feature, they first show that 
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the deflection influence line (DIL) of the beam has an anal-
ogy to the static part of the vibration data of the beam sub-
ject to a quasi-static moving load [6]. Finally, the difference 
between the static parts of the deflection time history of the 
damaged beam and the intact beam, obtained from the strain 
time history of the beam, is used as a damage sensitive fea-
ture (DSF). In this and related studies He et al. use the dis-
crete wavelet transform (WT) to obtain the static part of the 
vibration data [6, 7, 20]. However, this technique relies on a 
low traverse velocity for the moving load.

Based on the above discussion, the following observa-
tions are made: 

1.	 the difference between the static part of the deflection 
time history of the damaged and intact beam subject to 
a moving load is a useful feature for damage localisation 
[7, 16].

2.	 the strain-time history of the beam can be used to obtain 
the static deflection-time history of the intact beam for 
a baseline free damage detection if the structure is stati-
cally determinate [20]. The advantage of this is that the 
deflection in the baseline beam is obtained after damage 
from the same experiment as the deflection in the defec-
tive beam; therefore, any errors arising from imperfect 
experimental conditions are cancelled.

3.	 Signal decomposition techniques such as EMD, ensem-
ble empirical mode decomposition (EEMD), variational 
mode decomposition (VMD) and so on can be used to 
decompose more complicated vibration data into its 
constitutive modes of oscillation, preserving all non-
linearity arising from damage [13]. In this respect it is 
superior to linear decomposition techniques (such as 
WT) used by [11], and can extract the static deflection 
better at higher moving load velocities while preserving 
some critical sharp features.

Although the above elements suggest a very promising strat-
egy, there are some concerns when using noisy measure-
ments. It is known that applying EMD to contaminated data 
will reduce the accuracy of the signal decomposition; hence 
some information about the desired part of the signal might 
be lost. Also it is shown in this paper that data from more 
than one observation point is beneficial in deriving informa-
tion about damage more rigorously when data are highly 
contaminated by noise. Therefore, in this paper, the authors 
further introduce a method based on multiple point measure-
ment on the beam. These measured signals are then com-
bined to construct a new signal to mitigate the effect of the 
noise. It is shown that the proposed method can be applied 
successfully for damage localisation, even in the presence 
of 50% noise in the vibration data ( SNR = 7).

The novelty of the present work lies in the unique com-
bination of the following existing individual elements 

discussed above: as global damage is sought, properties 
of statical determinacy can be exploited to simultaneously 
obtain deflections for both the damaged and undamaged 
bridge; the static component of the difference between 
these two signals is known to be valuable in detecting global 
damage, but this signal contains a sharp apex that must be 
preserved; the static component is easily extracted using 
a robust spline based smoothing technique (RST). A new 
integrated signal is proposed to combine multiple measure-
ments, to improve robustness while preserving the apex in 
the signal. Finally, the robustness is demonstrated with a 
combination of road roughness, additional random signal 
noise, and substantial and abrupt variations in the moving 
load velocity.

2 � The proposed damage detection 
procedure

In this section, a two-step damage detection strategy is pro-
posed using data from a quasi-static moving load on a sim-
ply supported beam. Although the deflection time history of 
the intact beam subject to the same experiment is assumed to 
be available as a baseline in this paper, this information can 
be constructed from strain recorded from the damaged beam 
subject to a moving load, based on the work of He et al. [20]. 
This is because for a statically determinate beam the strain 
under static loading is unaffected by damage except locally 
at the point of damage itself, so data recorded at the same 
time as the deflection can be used. Accordingly, the only 
required data are deflection ŝi(t) and strain 𝜖i(t) obtained 
from the damaged beam at multiple points i = 1… n . How-
ever, He et al. consider only measurements at one point. 
It will be shown that the accuracy of the method has a 
direct relationship to the number of measurement points on 
the beam if the data are combined in an efficient way as 
described in this paper.

2.1 � A new signal construction

In the first step, a new signal is constructed based on the 
obtained displacement data as follows:

Assume that si(t) and ŝi(t) are the time series obtained 
from the deflection time histories of, respectively, the intact 
and damaged beam at the ith node of the finite element 
model of the beam by normalising with respect to the abso-
lute value of the displacement of the beam due to the static 
applied force (F) applied at the location of the measurement 
( xM ), i.e.

(1)� =
Fx2

M
(L − xM)

2

36EIL
.
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Note that, in the above equation F, L, and EI represent, 
respectively, the magnitude of the moving force applied 
statically, length and the flexural rigidity of the beam.

Then, signals S(t) and Ŝ(t) are constructed as the trapezoi-
dal integration approximation to the area under the curve 
of the corresponding vibration data at each time step. Let 
us assume first that the data are measured at n equidistant 
points at spacing Δx along the damaged beam. Therefore,

and,

The use of multiple measurements in this manner improves 
robustness.

As the damaged beam is weakened and, therefore, more flex-
ible, the absolute value of the static component of the signal Ŝ(t) 
is larger in amplitude than that of S(t); hence the static compo-
nent of the normalised difference S̃(t) = 1

Δx (2n−2)
(Ŝ(t) − S(t)) 

will always be positive. Since the static component of S̃(t) will 

(2)S(t) =
Δx

2

(
s
1
(t) + 2

(
n−1∑

i=2

si(t)

)
+ sn(t)

)

(3)Ŝ(t) =
Δx

2

(
ŝ
1
(t) + 2

(
n−1∑

i=2

ŝi(t)

)
+ ŝn(t)

)
.

also be zero when the moving load is at either end of the beam, 
we hypothesise that there must be an extremum in the residual 
IMF of S̃(t) , which we propose coincides with the moving load 
passing the damage location.

After obtaining S(t) and Ŝ(t) , the difference signal 
S̃(t) = Ŝ(t) − S(t) is smoothed over the timescale of the trav-
erse using a robust discretised spline-based technique pro-
posed in Ref. [21] and briefly outlined in Sect. 2.3. Figure 1 
summarises the process of of the proposed damage detection 
algorithm.

2.2 � A rationale for the proposed technique

First, by the Maxwell–Betti reciprocity theorem, and ignor-
ing dynamic effects, the deflection at a sensor at abscissa 
xi due to a load P applied at abscissa xp is identical to the 
deflection at xp due to the same load applied at xi . Therefore, 
by measuring si(t) or ŝi(t) , and assuming that the loading can 
be treated as truly quasi static, we are effectively measuring 
the deflected shape of the beam for load P applied at the 
sensor location.

Next, by the principle of linear superposition the differ-
ence s̃i(t) = ŝi(t) − s(t)i is the same as the deflection caused 

Fig. 1   Diagram of the first 
step of the damage detection 
algorithm
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only by the relative rotation at the damage site, regardless 
of where the load is actually applied, all that needs to be 
known is the angle of relative rotation at the damage site 
caused by the load (giving rise to the term m(c, xi)∕Kr

 in 
Eq. 4 below), which depends only on the degree of damage 
and the bending moment at that point.

For a statically determinate beam a relative rotation at 
the damage site will induce no reactions or internal forces in 
the structure, hence no curvature in the structural members, 
so s̃i(t) consists only of straight lines with an abrupt change 
of slope at the damage site. Therefore, an extremum in s̃i(t) 
must exist at the damage site. Caddemi et al. [22] derive this 
result, which (adapted to the present notation) is

where c is the crack location, and the traversing load position 
xp has been represented as a function of time. Here m(c, xi) 
denotes the bending moment at the crack due to a unit vir-
tual force applied at the sensor location and K

r
 is the rota-

tional stiffness of the ‘hinge’ representing the crack, both of 
which are independent of load position. M̃(c, xp) represents 
the bending moment at the location of the crack due to the 
external force P applied to the beam at abscissa xp(t) , or 
conversely the bending moment at xp due to a load P at the 
crack site, and gives the ŝi(t) diagram its triangular shape.

This may be extended to multiple sensors (Fig. 2). By 
measuring si(t) and ŝi(t) at multiple locations as the load 
slowly traverses the beam, we are effectively measuring 
the static deflected profile of the beam for loads applied at 
each xi . Each such profile will be piecewise linear with an 
apex always at the damage site. The integral for example

(4)ŝi(t) =
1

K
r

M̃(c, xp(t)) m(c, xi),

(5)

S̃(xp) ≡ S̃(t) = Ŝ(t) − S(t) =
1

K
r

M̃(c, xp(t))�
xn

x
1

m(c, x) dx,

(with Ŝ(t) and S(t)) defined in Eqs. 2 and 3) represents the 
deflection due to a load uniformly distributed between x

1
 

and xn and will again always have an apex at the damage 
site when plotted as a function of time (or equivalently, xp ), 
regardless of the load or sensor locations.

Two advantages are achieved by combining measure-
ments in this way. First, as this involves an integral, sum 
or average, any signal noise or random measurement error 
present is reduced by a factor 1∕

√
n . And second, given 

that not all load positions will result in a large moment 
(hence relative rotation) at the damage site, this increases 
the chance that at least some of the sensor locations will 
respond strongly to the damage, which will be picked up by 
the aggregated result.

2.3 � A robust discretised spline based technique 
RST)

The proposed signal reconstruction assumes the loading 
may be treated as quasi static. A good approximation to this 
can be achieved by decomposing or filtering the signal to 
remove dynamic components. Techniques such as EMD, 
EEMD, VMD and WT have been mentioned in the intro-
duction and could be used. However, it was found that the 
robust discretised spline-based technique (RST) proposed 
in Ref. [21] was particularly effective. This section, there-
fore, briefly describes that technique, which is used to obtain 
the static part of the vibration data by smoothing the signal 
over the timescale of the traverse, thus eliminating effects 
of higher frequency vibrations. Other techniques are briefly 
outlined in Appendix 1 and have been compared with RST 
in Sects. 4.4 and 4.5.

RST seeks to balance the fidelity in data by minimising 
the goal function

Fig. 2   Area between the 
deflected shape of the intact and 
damaged beam. Dotted area rep-
resents Ws(xp) , whereas dashed 
area indicates the proposed 
value of the reconstructed signal 
when the mass is applied at xp
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where y and ŷ are, respectively, the original and smoothed 
signals. P(ŷ) represents a penalty term that reflects the 
roughness of the smoothed data. Finally, s is a smoothing 
parameter, a real positive scalar that controls the degree 
of smoothing, in which the bigger the s, the smoother the 
obtained signal ŷ . Since in this paper the static part of the 
vibration signal is sought, a relatively large value of 1010 is 
chosen for s.

3 � Simulation of the response of a beam 
subjected to a moving mass

3.1 � Assumptions

In this paper, without sacrificing loss of generality of out-
comes, we make a number of assumptions as follows: 

1.	 It is often argued [23] that since the vehicle mass is 
small compared to the mass of the bridge, two-way inter-
action between the mass and the bridge may usually be 
neglected. However, in this paper, in order to account 
for the road surface roughness, the more general case of 
two-way interaction has been considered via a coupled 
finite element model.

2.	 Simply supported beams are very commonly used 
in bridge structures [24] and many researchers have 
focused on the damage detection of a simply supported 
beam [6, 7, 20]. In a similar manner, this paper also 
focuses on damage detection of simply supported beams 
using deflection. Such would need to be the case if one 
were to exploit the property that the baseline deflection 
in the intact beam can be obtained a posteriori from the 
strain in the damaged beam.

3.	 Generally, there are two models used to simulate dam-
age in structures. The first category, which considers the 

(6)F(ŷ) = ||ŷ − y||2 + sP(ŷ), effect of the damage more locally, studies crack damage, 
which itself can be open or breathing. Accordingly, the 
crack can be modelled as a rotational spring [15, 17, 25]. 
However, more often than not, damage in structures are 
in the form of fatigue defects which can appear over a 
more extended area of the beam rather than localised. 
This form of defect can be modelled by reducing the 
effective modulus of elasticity of a portion of the beam 
[26]. Accordingly, in a FE model, the damage can be 
considered as a degradation of stiffness of whole ele-
ments by introducing a damage index � that varies from 
0 (no damage) to 1 (totally damaged). For open cracks 
the two methods become identical as the element length 
is reduced. Therefore, in this paper the latter model of 
damage, being simpler to implement, is used.

4.	 A completely general model of the beam would include 
both vertical and horizontal displacements as well as 
torsion. However, for a straight beam of solid or closed 
hollow section (i.e. warping of cross-sections due to tor-
sion is negligible) bent about principal axes, these three 
components are uncoupled. Therefore, if the mass trav-
erses the bridge centreline and/or the measurements are 
made on the centreline, torsion may be ignored, lateral 
deflections will be negligible under gravity loads, and it 
is sufficient to consider only vertical flexure in order to 
demonstrate the effectiveness of the proposed method. 
If these additional degrees of freedom are desired, the 
model proposed below may be adapted to model them 
using identical shape functions, and the total effects may 
be obtained by superposition.

3.2 � Two‑way finite element VBI model 
of a damaged beam considering road surface 
roughness

In this section, a finite element-based VBI model is described 
that considers two-way interaction between the bridge and 
mass (see Fig. 3). Accordingly, a suspension system with 

Fig. 3   Moving load with 
suspension system over a bridge 
with rough surface



715Journal of Civil Structural Health Monitoring (2020) 10:709–728	

123

stiffness kv and damping cv is considered for the moving mass 
mv . This model can also readily incorporate beam damage, 
road surface roughness, and structural damping and hence will 
be used for subsequent simulations presented in Sect. 4 follow-
ing a description of the proposed damage detection procedure.

Hermite cubic shape function for beam elements are used 
as follows for finite element modeling,

As such, the cubic Hermitian interpolation vector [N]c evalu-
ated at the contact point is constructed and used in the finite 
element model of the bridge–vehicle interaction as follows: 
[27],

where [mb] , [cb] , and [kb] represent, respectively, the mass, 
damping and stiffness matrices of the finite element model 
of the beam and, as mentioned above, mv , kv , and cv rep-
resent, respectively, the moving mass and its suspension 
system. Note that in the above equation � and ′ represent, 
respectively, the transpose of a matrix and derivative with 
respect to the position, while yv , {qb} and rc represent, 
respectively, the vertical displacement of the moving mass, 
the bridge beam element degrees of freedom, and the road 
surface roughness.

The beam damping in Eq. 8 is modelled as Rayleigh damp-
ing, i.e. of the form [c] = �[m] + �[k] . This enables natural 
frequencies to be determined, and the constants � and � were 
set to achieve the target beam damping ratio specified in 
Table 1 of �b = 5 % at the first two such frequencies.

The artificial road roughness rc was generated by the follow-
ing equation from [28], which in turn is based on ISO 8608:

where, the constant (2k × 10
−3) has units m 3∕2 ; hence rc 

has units m if Δn has units m −1 , and x denotes the variable 
abscissas on the road with respect to the reference point. 
Considering the length of the road profile as L, Δn =

1

L
 , 

n
max

=
1

B
 where B is the wavelength of the shortest spatial 

component of the roughness profile, and N =
n
max

Δn
 . Also, in 

(7)

N
1
= 1 − 3�2 + 2�3

N
2
= Le(� − 2�2 + �3)

N
3
= 3�2 − 2�3

N
4
= Le(−�

2 + �3).

(8)

[
mv 0

0 [mb]

]{
ÿv

{q̈b}

}
+

[
cv − cv{N}

𝜏
c

−cv{N}c [cb] + cv{N}c{N}
𝜏
c

]{
ẏv

{q̇b}

}

+

[
kv − cvV{N

�

}𝜏
c
− kv{N}

𝜏
c

−kv{N}c [kb] + cvV{N}c{N
�

}𝜏
c
+ kv{N}c{N}

𝜏
c

]{
yv

{qb}

}

=

{
cvVr

�

c
+ kvrc

−cvVr
�

c
{N}c − kvrc{N}c − mvg{N}c

}
,

(9)rc(x) =

N�

i=0

2
k × 10

−3 ×
√
Δn

� n
0

iΔn

�
cos(2�iΔnx + �i),

Eq. 9, the constant scalar k depends on the ISO road profile 
classification which takes an integers from 3 to 9, corre-
sponding to the profiles from class A to class H (in this 
paper k = 3 ). n

0
 is equal to 0.1 m −1 and �i is a random phase 

angle within the range of 0 to 2� with a uniform probabilistic 
distribution.

Equation 8, can be solved using the Newmark constant 
average acceleration method with � = 0.25 and � = 0.5 . 
In order to achieve a reasonable initial condition, it was 
assumed that the mass had been moving over a rough road 
with a length equal to the length of the bridge L before it 
arrived at the left-hand side of the bridge and continued 
moving on the bridge until it reached the right hand side. 
Therefore, a road profile of length of 2Lb was generated and 
used in simulations.

4 � Numerical results and discussion

In this section, the beam with properties given in Table 1 is 
investigated. This beam is identical to the one used in Ref. 
[27]. The finite element model of the VBI problem described 
in Sect. 3.2 is constructed and is solved using the Newmark 
constant average acceleration method via Matlab. The beam 
is divided into 35 plane beam elements with rotational and 
translational degrees of freedom at each node. Figure 4 
shows a randomly generated road roughness profile equal 
to the double length of the bridge, which is included in the 
model.

The results of the simulated VBI problem are investigated 
using the strategy proposed in Sect. 2 for damage detection. 
Several scenarios are considered.

First, a single fault at one of two possible points is 
detected. Road roughness is considered but no additional 
measurement noise is introduced. Next, the effect of sig-
nificant unsteadiness in the moving mass velocity is investi-
gated. Then, a multiple damage scenario is investigated and 

Table 1   VBI model constants

Quantity Value

Beam modulus of elasticity E 32.5 GPa
Beam density � 2500 kg/m3

Beam damping ratio �b 5%
Beam length Lb 35 m
Beam cross-section height h 2 m
Beam cross-section width w 1 m
Moving mass magnitude mv 1500 kg
Moving mass velocity V 5 m/s
Suspension stiffness kv 550 kN
Suspension damping �v 10%
Sampling frequency Sf 100 Hz
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finally, results obtained from a single noisy measurement 
are compared against results from the signal S̃(t) constructed 
from multiple sensors, as discussed in Sect. 2.1, which are 
also assumed to be noisy. The comparison considers the 
effect of the noise on the precision and reliability of dam-
age predictions through Monte Carlo simulations.

4.1 � Single fault scenario with constant moving load 
velocity

In this section, damage in either of elements 12 or 25 is 
investigated, individually, with damage severity of 40% and 
30% for either case, respectively (Fig. 5).

The first three natural frequencies of the intact and dam-
aged beam are listed in Table 2 in Hz for each scenario. 
The scenarios S

1
 and S

2
 correspond, respectively, to loss of 

stiffness of element 12 (40%) or element 25 (30%), while 
scenario S

3
 , which will be investigated in Sect. 4.5, has dam-

age simultaneously in both elements 12 (40%) and 25 (30%). 
Note that any beam with the same fLb∕V (where f represents 
the natural frequencies) will have the same response if time 
is scaled appropriately. Note also for this beam that the dam-
age has caused minimal change to the natural frequencies, 
so the dynamic component of the VBI data may on its own 
be of limited use for damage detection.

The location of the damage is found using the recon-
structed signal based on displacement data measured at 
translational DOFs of nodes 6, 11, 16, 21, and 26.

Consider first the scenario with road surface roughness 
but no signal noise. Figure 6 shows the constructed signals 
S(t) and Ŝ(t) obtained, respectively, from multiple measure-
ments on the intact and damaged beams according to Eqs. 2 
and 3.

Figure 6a, b shows the vibration data obtained when only 
element 12 is damaged with 40% loss of stiffness, and the 
corresponding smoothed signal S̃(t) . The location of the 
damage is expected to occur at an exteremum point (mini-
mum) in the graph. As can be seen in the figure, the trough 
of the obtained smoothed signal is very slightly to the right 
of the damaged element; therefore, there is a small delay in 
detection of the damaged element.

Now consider the case when element 25 is damaged 
with a lesser (30%) loss of stiffness. Figure 6c, d, shows the 
similar results obtained for this case. As can be seen from 
Fig. 6d, the location of the damage is shifted to the left in 
the graph.

These examples illustrate a more general result that there 
is always a delay in damage detection when the defective 
element is located in the first half-span of the beam, while on 
the other hand, there is always an anticipation of the damage 
detection when the defective element is located in the second 
half-span of the beam. The following hypothesis is examined 
to resolve this problem:

Hypothesis By reducing the speed of the moving load 
the defective element can be located more accurately. As 
such, the lower the velocity, the better the resolution of the 
damage localisation.

The above hypothesis is tested by reducing the velocity 
of the moving mass to 2 m/s (Fig. 7), and the results con-
firm that a better spatial resolution for damage localisation is 
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Fig. 4   Road roughness profile for the two times of the length of the 
beam ( 2Lb)

Fig. 5   The beam is divided into 35 elements and it is assumed that either element 12 or element 25 can be defective

Table 2   Natural frequencies (Hz) for different damage scenarios of 
the beam

Intact S
1

S
2

S
3

1st 2.68 2.64 2.65 2.62
2nd 10.70 10.59 10.59 10.44
3rd 24.08 24.08 24.06 24.05
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obtained. This highlights the importance of a slow-moving 
mass to best replicate quasi-static loading conditions.

This can also be discussed with regard to the fundamental 
Axioms for SHM by Farrar et al. [29]; in particular Axiom 
VII: “The size of damage that can be detected from changes 
in system dynamics is inversely proportional to the fre-
quency range of excitation”. As the present paper assumes 
statical determinacy in order to derive the intact structure’s 
deflections from strains measured on the damaged structure, 
it necessarily focuses on macro-level damage. In this case, 
as mentioned above, the natural frequencies alone contain 
little information about the damage, and we have argued 
in Sect. 2.2 that the static response will contain valuable 

information about the damage. Using a slower velocity of 
the moving mass results in lower frequency excitation of 
the system, enhancing the static component: it is shown 
in Appendix 2 that the static component is equivalent to 
the series of components at angular frequencies n�V∕Lb , 
n = 1, 2,… (or nV∕(2Lb) if comparing to Table 2). There-
fore, if these frequencies are significantly below the natural 
frequencies it will minimise the adverse masking effect of 
the natural vibrations. Axiom VII, on the other hand, implies 
that this is a trade-off, and the higher frequencies may still 
be useful in detecting local damage, which could represent 
the early stages of macro-level damage prior to it having a 
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Fig. 6   Reconstructed S(t) and Ŝ(t) based on measured displacement 
signals at nodes 6, 11, 16, 21, and 26 for undamaged and damaged 
beam (a, c), and their corresponding smoothed S̃(t) (b, d), when a 

damage occurs, respectively, at element 12 ( S
1
 ) (a, b) and 25 ( S

2
 ) (c, 

d) for the velocity of the moving load V = 5m/s
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global effect. Detection of smaller localised damage would 
however also require a more extensive network of sensors.

4.2 � Variation in the velocity of the moving load

In this part we evaluate the capability of the proposed dam-
age detection strategy when the velocity of the moving mass 
is varying on the bridge. We assume that we can update the 
deflection time history of the intact beam using strain data 
measured on the damaged beam based on the technique pro-
posed in Ref. [20].

It is hypothesised that as the quasi-static component of 
the loading can be isolated by the employed smoothing tech-
nique (RST), these components of deflections of the intact 
and damaged beam are functions of mass position only, not 
of its velocity. Since these are effectively measured simulta-
neously in the same experiment, any effect of varying mov-
ing mass velocity will not be present in S̃(t).

To that end, we perform simulations in which it is 
assumed that the velocity of the moving mass velocity 
switched randomly between values of 2, 2.5, and 1 m/s dur-
ing its traverse of the beam, as shown in Fig. 8. The resulting 
average velocity is 2.086 m/s. The damage scenario used is 
S
1
 , a 40% reduction of the stiffness at element 12.
As is obvious from Fig. 9, the variation of the mov-

ing mass velocity has not materially affected the damage 
location prediction. This is compelling evidence that the 
employed RST effectively isolates the static response.

4.3 � Noisy measurements

In order to investigate how noise can affect the results, the 
reliability of detection in the presence of noise, and how the 
proposed integrated signal can mitigate the effect of noise, 
a Monte Carlo simulation was run 1000 times for each of 
the signal combination listed in Table 3. In all cases it was 
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Fig. 7   Reconstructed S(t) and Ŝ(t) based on measured displacement 
signals at nodes 6, 11, 16, 21, and 26 for the undamaged and dam-
aged beam (a, c), and their corresponding smoothed S̃(t) (b, d), when 

a damage occurs, respectively, at element 12 ( S
1
 ) (a, b) and 25 ( S

2
 ) 

(c, d) for the velocity of the moving mass V = 2 m/s
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assumed that element 12 was damaged ( S
1
 ). Noise was added 

to the measured signals in addition to the random road surface 
roughness profile (Fig. 4), which was present in every case. A 
statistical measure of the precision of damage detection loca-
tion was sought, and to that end the following procedure was 
followed.

First, 50% noise is introduced to each signal (SNR= 7 dB) 
using the following equation [6],

where 𝛿 represents the vector of noisy measured translational 
DOF data, and � is the corresponding noise-free vector with 
standard deviation �(�) . � is the noise level in per cent ( = 50 

(10)𝛿 = 𝛿 +
𝜅

100
n
noise

𝜎(𝛿),

in this case) and n
noise

 is a vector with the same length as � of 
random independent variables following a standard normal 
distribution.

Using the measured noisy translational DOFs, the new 
signal is constructed as before according to Sect. 2.1. Then, 
the obtained signal S̃(t) is smoothed using the proposed RST 
for damaged detection. Finally, the extremum (minimum in 
this case) of the smoothed S̃(t) is considered as the loca-
tion of the damage. However, as such, the location of the 
damage is obtained as a real number between two integers 
corresponding to the right and left nodes of an element. 
For example, for the case of having element 12 damaged, 
a number between 12 and 13 is expected to be obtained. 
The procedure is repeated 1000 times for each combination 
of measured nodes and the results are presented in the box 
and whisker plot of Fig. 10. In this plot, the ‘box’ indicates 
the interquartile range and the median, while the ‘whisk-
ers’ show extreme values, excluding outliers which are indi-
cated (if they exist) by + and are defined as points outside 
approximately 2.7 standard deviations (99.3% coverage) for 
normally distributed data [30].
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Fig. 8   Plot of the velocity of the moving mass versus position along 
the beam span
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Fig. 9   Reconstructed S(t) and Ŝ(t) based on measured displacement signals at nodes 6, 11, 16, 21, and 26 for undamaged and damaged beam (a), 
and their corresponding smoothed S̃(t) (b), when 40% damage occurs at element 12 ( S

1
 ) for the variable velocity of the moving mass

Table 3   Combinations of measurement nodes used for damage detec-
tion either with constant or variable velocity of moving mass (refer to 
Fig. 5 for locations)

Key Signal combination Measured node(s) V

S Single 18 constant
C1 Combination 1 6, 11, 16, 21, 26 Constant
C2 Combination 2 15, 16, 17, 18, 19 Constant
C3a Combination 3a 17, 18, 19 Constant
C3b Combination 3b 17, 18, 19 Variable
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The five scenarios listed in Table 3 are considered. In the 
first case (S) a single measurement is used, and as can be seen 
from Fig. 10, the mean value obtained for the location of the 
damage is 18.35 with a large standard deviation of 11.10. 
Effectively the damage location was not able to be identified.

In the second case (C1), it is assumed that the transla-
tional DOFs corresponding to the nodes {6, 11, 16, 21, 26} 
are used to construct the new signal. However, as can be 
seen from the Fig. 5, the nodes are chosen so that there are 
five elements between each successive node numbers. This is 
done to investigate whether a sparse or dense location of the 
chosen nodes can affect the accuracy of the predicted dam-
age location. A mean damage location of 11.3 and standard 
deviation of 1.75 are obtained, which is substantially more 
accurate than using only a single measurement signal. In 
the third case (C2), the number of measured nodes is kept 
at five, except that the locations of the measurements are 
now adjacent, i.e. nodes {15, 16, 17, 18, 19} are measured. 
For this case, the results are still satisfactory as the mean and 
standard deviation are calculated, respectively, as 11.48 and 
1.43, differing little from the second case.

In the fourth case (C3a), the number of measured nodes 
is reduced to three nodes, {17, 18, 19} . In this case a mean 
damage location of 11.45 is obtained, which still shows ele-
ment 12 as the defective element. The standard deviation, 
at 1.93, is, however, negligibly worse than the two previous 
combinations, so the prediction is still reliable and consider-
ably better than the single measurement point case.

Finally, in order to see how the use of a variable velocity 
can affect the results the same combination of signals as 
C3a has been considered but with varying velocity of the 
moving load (C3b). In this case, the mean damage location 
and standard deviation from the Monte Carlo simulations 

are, respectively, obtained as 10.8 and 1.23. Accordingly, 
it can be seen that the location of the damage can be still 
pinpointed accurately.

As a result, it can be seen that the proposed signal con-
struction from only a few measured points can far better 
predict the location of the damage.

4.4 � Comparison of different methods for extracting 
the static component

Although we have shown that RST successfully extracts the 
static part of the newly constructed signal for damage detec-
tion, we here justify its use further by comparing results with 
those obtained using two orthogonal decomposition techniques 
for decomposing non-stationary non-linear signals into their 
oscillatory components, namely empirical mode decomposi-
tion (EMD) [13] and variational mode decomposition (VMD) 
[31]. These are described in Appendix 1 and are examples of a 
classic and a more advanced decomposition technique. In this 
comparison damage scenario S

1
 is considered, in which ele-

ment 12 is damaged with severity 40%. The signals are simu-
lated using a moving mass with V = 2 m/s for both damaged 
and undamaged beams and are contaminated with 50% meas-
urement noise. The location of the damage is sought using 
three different methods: EMD, VMD and RST.

In using each technique the following were considered: 

1.	 when using EMD, the last IMF (excluding the residual 
IMF) was used as the static part of the signal (Appen-
dix 1.1).

2.	 in the case of using VMD, a relatively large Lagrange 
multiplier � = 10

7 was used and three modes ( k = 3 ) are 
considered. The IMF with the lowest center frequency was 
chosen as the static part of the signal (Appendix 1.2).

3.	 when using RST, the same value for the smoothing 
parameter s = 10

10 was used as before.

In the results presented in Fig. 11 it can be seen that all 
the methods show a minimum point at the location of the 
damaged element 12. As such, the following are the pros and 
cons of using each of the proposed techniques: 

1.	 It can be seen in Fig. 11a, b that both RST and VMD 
techniques obtain almost the same curve for the static part 
of the signal S̃(t) considering the adjusted values for the 
corresponding parameters. However, it is critical to con-
sider that while RST only requires one parameter (s) to be 
adjusted, VMD needs several parameters to be set. The 
most important ones are the number of extracted modes 
in the decomposition, k, and the Lagrange multiplier, �.

2.	 It can be seen, however, from the Fig. 11c that the result 
obtained using EMD is significantly more smoothed 
than for the other two techniques. Moreover, regarding 
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Fig. 10   Box and whisker plots showing distributions of damage loca-
tion predictions for different sensor locations and combinations (see 
Table 3 for combinations)
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using EMD one does not need to specify the number of 
modes or any other parameters. The accuracy of location 
prediction is arguably slightly better, but the precision 
is significantly lower. Although EMD might be then 
considered a better technique to obtain the static part 
of the vibration data, it is found to be very limiting in 
terms of detection of multiple damage as shown further 
in a following section. It has also been criticised for a 
phenomenon known as ‘mode mixing’ [32].

4.5 � Multiple damage scenario using data 
only from damaged beam

In this section we assume that both elements 12 and 25 are 
damaged simultaneously (scenario S

3
).

It is obvious that in practical implementation it is very 
difficult, if not impossible, to keep the velocity of the mov-
ing mass constant in an experiment. Therefore, a slight ran-
dom oscillation in the velocity of the moving mass seems 
inevitable. However, this may significantly affect the results 
of the damage detection. To illustrate this point, the result 
of the damage detection using displacement data obtained 
from two different experiments conducted on the damaged 
and undamaged beam with different permutations of the ran-
dom mass velocity profile of Fig. 8 are presented in Fig. 12. 
It is obvious that all the methods fail to detect the correct 
locations of damage. Although it might be concluded from 
Fig. 12c that EMD is relatively successful in comparison 
with other techniques, it is further observed in Fig. 12f that 
the results become distorted in the presence of 50% noise 
in the simulated displacement signals. On the other hand, 
the results obtained from both RST and VMD are persistent 

when noise is added (Fig. 12d, e compared, respectively, to 
Fig. 12a, b).

It is desired, therefore, to obtain displacement data of the 
undamaged beam from the damaged beam using the same 
experiment. As mentioned in Sect. 1, this can be done fol-
lowing the method proposed by He et al. [20]. They use strain 
data measured on the damaged beam to update displacement 
data for an undamaged beam, eliminating the requirement of a 
baseline. Accordingly, a quasi-static moving mass experiment 
must be conducted to obtain reasonable results. The proposed 
method can be summarised as follows: 

1.	 It is known that the strain reaches its maximum when the 
mass reaches the location of the measured point. Also it is 
known that the strain influence line (SIL) of the beam at a 
measured point is identical in shape to the bending moment 
influence line (BIL) at that point. Therefore, the strain varies 
linearly from zero at the left support to its maximum value 
at the measurement point and similarly returns linearly to 
zero when the mass has traversed the beam all the way to 
the right-hand support. As such, considering a quasi-static 
approximation one can obtain the location of the moving 
mass at each time instant from the following: 

 where in Eq. 11, �M is the maximum value of the strain 
measured at xM.

2.	 Then x(t) is used in the following equation to obtain the 
displacement of the intact beam at the location of the 
measurement point: 

(11)x(t) =

{
�(t)

�M
xM if 0 ≤ t ≤ xM

V

L −
�(t)

�M
(L − xM) if

xM

V
≤ t ≤ L

V
,

(12)y(t) =

⎧
⎪
⎨
⎪
⎩

F(L−xM )

6EIL
x(t)(L2 − (L − xM)

2 − x2(t)) if 0 ≤ x(t) ≤ xM

F(L−xM )

6EIL

�
L

L−xM
(x(t) − xM)

3 + (L2 − (L − xM)
2)x(t) − x3(t)

�
if xM ≤ x(t) ≤ L.
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Fig. 11   Results of damage detection using the static component of the constructed signal S̃(t) using a the robust spline-based technique (RST), b 
VMD, and c EMD
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It is known that the strain is related to the curvature of the 
beam through � = c

d
2y

dx2
 where c is the distance between the 

gauge (bottom of the beam) and the neutral axis (effectively 
the centroidal axis in the absence of a significant axial 
force). Given that c = 1 m in this paper, using a five-point 
central difference stencil for the ith point (the point where 
the strain signal is to be simulated) we have,

where h is the length of elements, which is 1 m in this paper. 
As illustration, the strain data at three different points (at 
locations 10, 20 and 30 m from the left support of the beam) 
are simulated using Eq. 13 and are shown in Fig. 13 for a 
mass moving at 2 m/s.

As can be seen from Fig. 13, the maximum value of 
the strain signals occurs approximately at the location of 
the measurements. However, there is a slight offset due to 
the dynamic effect of the moving mass and the numeri-
cal calculation errors. In spite of the above shortcomings, 
the results obtained from Eqs. 11, 12 and 13 are used for 
damage detection based on simulated displacement sig-
nals at five nodes (6, 11, 16, 21, and 26) on the damaged 
beam. As such, the constructed signals S(t) and Ŝ(t) and the 

(13)

�i(t) ≈
−yi+2(t) + 16 yi+1(t) − 30 yi(t) + 16 yi−1(t) − yi−2(t)

12 h2
,

corresponding static part of the obtained S̃(t) are presented 
in Fig. 14 where no noise is added to simulated signals, 
and Fig. 15 where data are contaminated by 50% noise.
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Fig. 12   Results of damage detection for the case when both elements 12 and 25 are defective with their respective loss of stiffness of 30% and 
40%, using simulated data: a–c without the effect of noise; and d–f with 50% noise
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Fig. 13   Updated strain data for three different locations on the beam, 
i.e. 10, 20 and 30 m from the left support when the mass traverses the 
beam with velocity V = 2 m/s
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As foreshadowed in Sect. 2.2, the results for RST and 
VMD clearly show the sought feature of piecewise linearity 
with apexes near the damage sites, though some irregularity 
is present in the central section that masks the exact loca-
tion of damage a little. Interestingly, when using RST and 
VMD, the results are not sensitive to noise, reinforcing the 
findings of Sect. 4.3. It would seem that both techniques are 
good candidates for extracting the static component of the 
signal, but, as well as being a little smoother, RST has the 
not insignificant advantage mentioned in Sect. 4.4 that it 
only requires a single parameter to be tuned.

On the other hand, while these irregularities are not 
present in the EMD results, it fails to give any conclusive 
indication of damage. However, surprisingly, it is noted 
that EMD seems to produce better results in the presence 
of noise. The fact that better results may be achieved when 
signals are contaminated by noise is also mentioned for 

example in Refs. [33, 34]. However, it is unclear if this is a 
genuine effect, and further investigation of the phenomenon 
on the proposed damage detection strategy using EMD is 
suggested as the subject of future work.

5 � Conclusions and future work

In this paper we propose a technique that can be applied 
to localise damage using multiple noisy measurements of 
vibration data on a VBI system. Accordingly, a new signal 
is constructed from the measured signals. This signal is sub-
tracted from its counterpart representing a healthy structure, 
which itself can be obtained using strain data measured at 
the same locations, recorded during the same experiment 
on the damaged structure. As these can be obtained simul-
taneously from the same experiment, it means that precise 
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Fig. 14   Reconstructed S(t) and Ŝ(t) based on simulated displacement 
and strain signals at nodes 6, 11, 16, 21, and 26 from the damaged 
beam (a), and the results of damage detection using b RST, c VMD, 

and d EMD considering zero noise in simulated displacement data of 
the damaged beam
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control over or knowledge of the experimental conditions 
(such as the moving mass velocity) is not required.

Then, a robust discretised spline-based smoothing tech-
nique (RST) is used to obtain the static part of the vibration 
data. It has been demonstrated through several single and 
multiple damage scenarios that the smoothed signal S̃(t) 
shows a trough at the location of the damage. RST is com-
pared with EMD and VMD as a technique for obtaining 
the static part of the signal. It is found to be comparable to 
VMD, though requires one rather than multiple parameters 
to be tuned, and both were found to be superior to EMD.

An example of a moving mass with suspension travers-
ing a rough road is studied through simulations. As such, 
the mass and vehicle interaction with the road profile has 
been taken into account. The results show that by using the 
newly constructed signal, the damage is far more detect-
able. This has been demonstrated through 1000 Monte Carlo 

simulations of a single-point measurement experiment as 
well as different scenario with multiple point measurements.

The proposed technique has been applied to single and 
multiple damage cases. In order to distinguish between the 
undamaged and damaged structures, one needs to specify a 
threshold for the magnitude of the peak. This can be the sub-
ject of future work; however, one can easily deal with this 
using Monte Carlo simulations. The key remaining challenge 
will be to obtain a more general dimensionless threshold. 
The model used in this paper is a simple model of a beam 
subjected to a moving sprung mass, although some com-
plexities such as interaction between the mass and beam as 
well as road roughness effects have been properly considered 
in the simulations. The model could easily be extended to 
include lateral and torsional degrees of freedom, but as these 
are uncoupled from vertical deflections, and loading can eas-
ily be arranged not to significantly excite these degrees of 
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Fig. 15   Reconstructed S(t) and Ŝ(t) based on simulated displacement 
and strain signals at nodes 6, 11, 16, 21, and 26 from the damaged 
beam (a), and the results of damage detection using b RST, c VMD, 

and d EMD considering 50% noise in simulated displacement data 
for the damaged beam
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freedom, a more complete model is unlikely to change any 
of the conclusions. Further, studying the capability of the 
proposed technique through experimental validations can 
be the subject of future work.
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Appendix 1: Signal decomposition 
techniques

Empirical mode decomposition (EMD)

As mentioned in the main body of the paper, the static part 
of vibration data recorded at some point on the beam is used 
for damage detection. However, one can only measure the 
total response of the beam, which has both the static and 
dynamic parts in it. Therefore, a decomposition technique 
can be used to decompose the signal into its constructive 
components. The EMD algorithm has been shown to be very 
effective in decomposing non-stationary and nonlinear sig-
nals and, therefore, is recognised as an effective method for 
the purpose of this paper. EMD has been also used in other 
context of SHM by many researchers so far [35–39].

The EMD algorithm was first introduced by Huang et al. 
in order to decompose a signal into its oscillation modes, 
termed intrinsic mode functions (IMFs) [13]. IMFs are fun-
damentally different to the mode functions in traditional 
linear modal analysis in that they can be non-stationary, 
i.e. they can be modulated in both amplitude and frequency. 
However, in common with linear modal analysis, each IMF 
is narrow band and only involves one mode of oscillation.

Huang et al. [13] made some assumptions for a signal in 
order that the sifting process can be applied to it: 

1.	 the signal has at least two extrema (at least one maxi-
mum and one minimum);

2.	 the characteristic time scale is defined by the time lapse 
between the extrema;

3.	 in the case that the signal has no extrema but contains 
only inflection points, it can be differentiated several 
times until the extrema appear. Then, the results can be 
obtained by integration(s).

Considering the above preliminary discussions the EMD 
algorithm is applied to a signal X(t) as follows: 

1.	 First find all local maxima and interpolate a cubic spline 
curve through them; do the same for the minima.

2.	 Take the mean of the two curves (envelopes) obtained 
from the first step and call it m

1
.

3.	 Compute h
1
= X(t) − m

1
 and check if m

1
 complies with 

the definition of the IMF.
4.	 If not, repeat the steps 1 to 3 for h

1
 and compute m

11
 so 

that h
11

= h
1
− m

11
 . If still h

11
 is not an IMF, repeat steps 

1 to 3 to obtain h
1k = h

1k−1 − m
1k so that c

1
= h

1k is an 
IMF.

5.	 Obtain the first residual r
1
= X(t) − c

1
 and repeat steps 

1 to 5 for r
1
.

6.	 continue the sifting process until no IMF can be derived 
from rn . In this case, X(t) =

∑n

i=1
ci + rn.

Huang et al. introduced a termination rule for the above algo-
rithm by limiting SD, the standard deviation of two consecu-
tive sifting results, which is calculated as

The flowchart of the basic EMD algorithm applied to an 
arbitrary signal X(t) is shown in Fig. 16. Refinements and 
improvements to the EMD algorithm have been introduced 
by several researchers [40, 41]. In this paper the function 
emd, available in Matlab (2018a and later versions) is used.

Variational mode decomposition (VMD)

Like EMD, VMD seeks to decompose a real-valued signal X(t) 
into its component modes uk(t) , but based on a new definition 
of an IMF. In the previous section, the basic definition for an 
IMF in EMD is discussed. However, thereafter, the criteria 
for a mode to be considered as an IMF slightly changed [42, 
43]. Accordingly, in VMD an IMF is an amplitude-modulated-
frequency-modulated (AM-FM) sinusoid which has the fol-
lowing additional characteristics: 

1.	 the phase is a non-decreasing function;
2.	 the envelope is non-negative;
3.	 both the envelope and the instantaneous frequency vary 

much more slowly than the phase;

i.e. the IMF is written as

where the instantaneous frequency �k(t) = d�(t)∕dt ≥ 0 , 
and Ak(t) and �k(t) vary much more slowly than �k(t).

Generally, for a given signal X(t), VMD solves 
the following variational optimisation problem on k 
IMFs {uk} = {u

1
, u

2
,… , uk} with center frequencies 

{�k} = {u
1
, u

2
,… ,wk} ,

(14)SD =

T∑

t=0

|h
1(k−1)(t) − h

1k(t)|2

h2
1(k−1)

(t)
.

(15)uk(t) = Ak(t) cos(�k(t)),

(16)min
{uk} & {�k}

∑

k

‖‖‖‖
�t

(
�(t) +

j

�t
∗ uk(t)

)
e
−j�kt

‖‖‖‖

2

,
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where in the above equation, ∗ is the convolution operator 
and X(t) =

∑
k uk . However, the authors of the VMD paper 

add two further terms to the goal function of the optimisa-
tion problem of Eq. 16. These are a quadratic penalty at 
finite weight, and a Lagrangian multiplier to strictly enforce 
the constraint, which further guarantees the achievement 
of convergence in the presence of noise in the signal. The 
reader is referred to the original paper for further study [31].

A Matlab code can be found for VMD in Ref. [44]. How-
ever, it is essential to know that there are some parameters 
which must be tuned when decomposing a signal using 
VMD. The most important ones are the number of the modes 
k into which the user wishes to decompose the original sig-
nal and the Lagrangian multiplier � that determines how 
much noise is allowed in the decomposition process.

Appendix 2: Static and dynamic parts 
of the vibration of a beam subjected 
to a moving mass

A key component of the damage detection procedure pro-
posed in Sect. 2 is to obtain the static part of the vibra-
tion data. We, therefore, present the analytic solution for 
the response of an undamped simply-supported uniform 
beam of length L subjected to a moving load P = mvg , 
shown in Fig. 17. In this analytical model the static and 
dynamic components of response are mathematically dis-
crete expressions.

The beam is assumed to have a continuous cross section 
with flexural rigidity of EI and mass per unit length �A . 
The response of the beam to arbitrary force f(x, t) may be 
obtained by modal superposition as

in which �n(x) is the nth mode shape and y∗
n
(t) denotes the 

solution to the modal differential equation,

where in Eq. 18, �n is the natural frequency corresponding 
to mode �n(x) and

In the case of an intact simply-supported beam the nth fre-
quency and mode shape of the beam are, respectively, 
�n =

n2�2

L2

√
EI

�A
 and �n(x) = sin

(
n�

L
x
)

 . Accordingly, f ∗
n
(t) 

and b in Eqs. 19 and 20 are

(17)y(x, t) =

∞∑

n=1

�n(x) y
∗
n
(t),

(18)ÿ∗
n
(t) + 𝜔2

n
y∗
n
(t) =

1

𝜌Ab
f ∗
n
(t),

(19)f ∗
n
(t) =∫

L

0

�n(x)f (x, t) dx,

(20)b =∫
L

0

�2

n
(x) dx.

Fig. 16   Flowchart of the EMD algorithm

Fig. 17   Simply supported beam subjected to a moving load
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where the minus sign for the force in Eq. 21 reflects the fact 
that P is is pointing downwards in Fig, 17.

The modal differential equation 18 can, therefore, be 
solved subject to the initial conditions y∗

n
(0) = ẏ∗

n
(0) = 0 

and the response of the beam can be written in the form 
of Eq. 17. Following [45], the total response of the beam 
is then

in which

The first term in the last bracketed section of Eq. 23 contains 
the moving load pseudo-frequencies n�V

L
 and combines to 

give the static deflection component, while the second term 
contains the natural frequencies of the beam �n and is the 
dynamic part [10].
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