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Abstract
This study introduces a simplified model for bridge–vehicle interaction for medium- to long-span bridges subject to random 
traffic loads. Previous studies have focused on calculating the exact response of the vehicle or the bridge based on an inter-
action force derived from the compatibility between two systems. This process requires multiple iterations per time step 
per vehicle until the compatibility is reached. When a network of vehicles is considered, the compatibility equation turns 
to a system of coupled equations which dramatically increases the complexity of the convergence process. In this study, we 
simplify the problem into two sub-problems that are decoupled: (a) a bridge subject to random excitation, and (b) individual 
sensing agents that are subjected to linear superposition of the bridge response and the road profile roughness. The study 
provides sufficient evidences to confirm that the proposed simulation approach is valid with minimal error when the bridge 
span is medium to long, and the spatio-temporal load pattern can be modeled as random white noise. The latter assumption 
is verified using a comparative study on a random traffic network. Quantitatively, the proposed approach is over 1000 times 
computationally more efficient when compared to the conventional approach for a 500 m long bridge, with response simula-
tion errors below 0.1%.

Keywords Mobile sensing · Numerical simulation · Vehicle-bridge interaction · Crowdsensing · Coupled system

1 Introduction

The problem of vehicle–bridge interaction (VBI) has been 
studied widely over recent years due to the broad applica-
tions spanning from fatigue analysis and bridge mobile 
sensing [1–5] to ride comfort and safety analysis [6, 7]. 
The complexity of the problem has resulted in a reliance 
on numerical modeling to evaluate research hypotheses 
[8–10]. Consequently, today various numerical tools for 

VBI modeling are available, yet the majority are geared 
towards problems concerning individual vehicle dynamics, 
e.g., interaction of a single vehicle with a simple bridge. 
Recent applications on vehicle fleets and crowdsensing 
methods [11, 12] have provided insight into the wealth of 
SHM information that can be produced by ubiquitous mobile 
sensors. Such large-scale analyses call for interaction simu-
lation methods that can incorporate vehicular networks and 
everyday traffic scenarios, and are computationally efficient.

1.1  Crowdsensing the built environment 
with mobile sensors

The growing adaptation of internet of things technologies 
and connected devices in smart cities suggest a new sensing 
paradigm in which new information is regularly gathered 
from the crowd, e.g., individual smartphones, vehicular 
sensor networks, etc. Calabrese et al. [13] proposed a real-
time data aggregation solution for constructing a dynamic 
urban map of large cities using crowdsourced smartphone 
data. Wang et al. [14] quantified traffic patterns and pro-
posed management applications based on large-scale mobile 
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phone data. Yu et al. [15] successfully utilized smartphone 
sensors for structural health monitoring application due to 
its availability and inexpensive data acquisition. Feng et al. 
[16] and Ozer et al. [17] also suggested novel applications in 
post-event bridge vibration analysis using stationary smart-
phones as sensors.

Crowdsensing inherently relies on mobile sensor net-
works, which is an emerging data acquisition technique in 
structural health monitoring (SHM). Historically, observa-
tions of structural dynamics have been based on measure-
ments collected by fixed sensor networks. Alternatively, 
Fig. 1 illustrates how a vehicle can act as a sensing agent 
amongst bridge traffic. In terms of System Identification 
(SID), Matarazzo and Pakzad [18] presented the STRIDE 
modal identification algorithm and verified that mobile 
sensor data was suitable for a comprehensive bridge modal 
identification (frequencies, damping ratios, and mode 
shapes). They proposed the truncated physical state-space 
model as an efficient approach for representing time-space 
observations from a mobile sensor network. Later, Mata-
razzo and Pakzad [19] presented an identification algorithm 
called STRIDEX to identify truncated physical model 
parameters, which enabled efficient and scalable modal 
identification using mobile sensors; the study showed that 
in an experimental case, one mobile sensor provided a mode 
shape density comparable to 120 fixed sensors. As a ver-
satile alternative for STRIDEX, Eshkevari et al. [10, 20] 
proposed the modal identification using matrix completion 
(MIMC) approach to consider vibration data collected by 
multiple mobile sensors with uncontrolled motions which 
successfully identified comprehensive bridge modal proper-
ties in different simulated applications.

The idea of smartphone data crowdsourcing for bridge 
system identification has been recently tested on real bridges. 

Matarazzo et al. [12] presented a real-world application of 
mobile sensors, in the form of smartphones in moving vehi-
cles. Significant indicators of the first three modal frequen-
cies of the Harvard Bridge were found by aggregating data 
from about forty bridge trips. This study shows promising 
results for the use of crowdsensing in bridge health monitor-
ing. Yet further development is needed, in particular, analyti-
cal and experimental studies on mobile sensing using data 
crowdsourcing, to attain the sophistication and robustness of 
the traditional modal identification methods based on fixed 
sensor data.

1.2  Vehicle–bridge interaction modeling

More practical approaches for bridge health monitoring such 
as crowdsensing require a computationally scalable numeri-
cal framework. A comprehensive literature review of com-
mon VBI simulation approaches is provided by González 
[21]. Initially, the vehicle–bridge interaction was modeled 
using 1D continuous beam models subject to simple mov-
ing loads [22] which is solvable in closed-form. By fur-
ther development of computers and increasing use of the 
finite element method, the problem was reframed as a multi 
degrees of freedom (MDOF) system for the bridge interact-
ing with simplified dynamical models of the vehicle. This 
approach has been broadly adopted for VBI modeling ever 
since, mostly for short- to mid-span bridges subject to a very 
limited number of vehicles with controlled motions. In this 
approach, once the models for the vehicle and the bridge 
are selected (based on required accuracy and fidelity), the 
dynamic equations of each component are separately built, 
in which the interaction forces between the vehicle and the 
bridge are coupled to the both sets of equations. Therefore, 

(a)

(b)

Fig. 1  Crowdsourcing framework: the sensing agent is one (or more) particular vehicle within a large pool of crossing vehicles. The problem is 
equivalent to a case in which the bridge is subject to ambient random load while being scanned by the sensing agent
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a numerical solver is required to solve the problem either 
iteratively or as a coupled system of equations.

The underlying principle of the approach, that is the 
interactive dynamic force acting between the vehicle and 
the bridge, has remained consistent throughout the litera-
ture. The uncoupled iterative algorithm is the most common 
method for VBI problems [4, 23–26]. Various versions of 
the algorithm have been developed based on the problem 
requirements, e.g., different vehicle models (such as single 
DOF, quarter-car, or half-car models) as well as different 
bridge models with different fidelity levels (such as 2D, 
3D, with or without material or geometrical nonlineari-
ties). However, in the majority of these studies, a short- to 
mid-span bridge have been considered. As mentioned in 
González [21], when the vehicle mass is negligible com-
pared to the bridge mass (which is the case for medium 
to long bridges) and a smooth pavement is assumed, the 
dynamic model of the vehicle can be replaced with a mov-
ing mass model that simplifies the simulation process. Road 
irregularities increase the contribution of vehicle dynamics 
to the interaction force, which emphasize on the importance 
of a fully coupled model.

In the uncoupled iterative approach, the bridge model is 
analyzed multiple times (once at the beginning, and at least 
once for each time step inside the compatibility convergence 
loop). In addition, as the bridge dimension grows, an accu-
rate bridge model requires more degrees of freedom, which 
increases the computational costs. A limited number of stud-
ies have considered long-span bridges along with a dense 
vehicle network for the simulation purpose. Camara et al. 
[7] recently modeled wind–bridge–vehicle interaction using 
the uncoupled iterative approach. The study could accurately 
model the system by adopting complex models for each 
component. The complexity of the approach implies that 
it requires great efforts to built such a high fidelity model, 
which may neither be a feasible nor cost effective solution 
for crowdsensing or other crude vehicle–bridge interacting 
scenarios. Moreover, bridge standards recommend lower 
dynamic factors for live loads in medium to long bridges 
compared to short bridges [27]; which means that the VBI 
interaction force is less dynamic and more similar to a con-
stant moving load. These challenges and specifications sug-
gest that it may not be required to use rigorous iterative solu-
tions for VBI simulation of medium to long bridges subject 
to high traffic loads. This study intends to demonstrate that a 
simplified simulation approach inspired by the conventional 
uncoupled iterative algorithm [21] is able to simulate VBI 
problems with high accuracy and dramatically less compu-
tational effort.

Figure 1 shows how the proposed notion is applicable 
in the VBI simulation. This figure demonstrates a scenario 
of interest in which the bridge is subject to a random traffic 
network. The objective is to simulate the system and finally 

calculate the collected response of the sensing agent. In a 
brute-force approach, the spatial coordinates and mechani-
cal properties of every single vehicle in the network are 
required to fully determine the complex model. Such an 
accurate information setting is quite impractical and unnec-
essary. Alternatively, one can simulate the collective loading 
effect of the vehicle network (the sensing agent excluded) 
by ambient random load (as shown in Fig. 1b). If the spatio-
temporal ambient random load is represented as matrix F0 , 
the conventional algorithm for simulating the VBI problem 
is as shown in Algorithm 1. 

In this algorithm, Mbrg,Cbrg,Kbrg and Mvcl,Cvcl,Kvcl char-
acterize mechanical properties of the bridge and the vehicle, 
respectively. rgh is a vector of roughness profile elevations at 
bridge DOFs. The algorithm performs the following steps: 

1. The bridge is subjected to random ambient load F0 at 
different physical locations.

2. A vehicle starts moving from one side of the bridge and 
at each time instance, the bridge response (displace-
ment) from the previous step in addition to the local 
roughness intensity (i.e., rgh(t)) is input to the vehicle 
system.

3. The vehicle response to the applied force from the 
previous step is then analyzed using a Matlab ordi-
nary differential equation (ODE) solver to calculate its 
displacement response ( yvcl in line 9 in Algorithm 1). 
Based on this response, the interacting force between 
the sensing vehicle and the bridge is calculated as: 
Ft = −Kvcl[2](yvcl(t) − wv) − Cvcl[2](y

�
vcl
(t) − wv�) 

(where [2] stands for the 2nd DOF of the vehicle, i.e., 
the tire). Note that if Ft < 0 , it is replaced with zero 
since it means that the vehicle has lost its contact.

4. The interaction force from the vehicle to the bridge Ft 
upgrades the original loading matrix F0 to produce F . 
At this point, the bridge is required to be analyzed again 



696 Journal of Civil Structural Health Monitoring (2020) 10:693–707

123

with the updated force matrix. Here, Newmark-� method 
is used for bridge dynamics analysis [28].

5. If the difference between the updated bridge displace-
ment and the one that was applied in Step 2 is higher 
than a predefined threshold, the process should be 
repeated from Step 2 onward by the updated bridge 
response. Otherwise, the vehicle moves to the next DOF 
on the bridge.

Step 5 in this process (i.e., the while loop in Algorithm 1) 
is expensive since it results in multiple full bridge analysis 
iterations within a time step. This is quite significant when 
the bridge is discretized with a large number of DOFs or is 
modeled with nonlinear elements. Figure 2 summarizes the 
approaches one can take for calculation of the sensing vehi-
cle’s measurement. In case (a), the brute-force approach is 
shown in which all the vehicles are coupled with the bridge.

1.3  Simplified method for VBI modeling

This study proposes a fast and accurate simulation approach 
for VBI problems in which: (1) the bridge span is medium 
to long and it is flexible, and (2) the vehicle network load is 
modeled as a random spatio-temporal load over the bridge 
span. The second condition refers to the ambient vibrations 
caused by a network of moving vehicles [29–32].

Figure 2b shows a simplified representation of Fig. 2a, 
in which the traffic network (the sensing agent excluded) 
is replaced with an applied ambient white noise loading 
while the sensing agent is still interacting with the bridge 
in a coupled fashion. While this approach is significantly 
computationally less expensive, the coupled system still 
requires iterations to reach the compatibility between the 
vehicle and the bridge at each time step. In this paper, 
we present an approach in which the compatibility 

(a)

(b)

(c)

Fig. 2  Simulation approaches: (a) a complex and coupled system of a 
vehicle network interacting with a bridge; (b) a coupled system of the 
sensing vehicle interacting with the bridge. The bridge is separately 
subject to an ambient load to capture the vehicle network load; (c) the 

proposed approach in which the bridge is only subjected to the ambi-
ent load. The response is then applied to an uncoupled model of the 
sensing vehicle to produce the vehicle output
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calculations between two interacting components are not 
iterative, as shown in Fig. 2c. In this approach, we posit 
that the dynamical effect of an individual sensing agent 
on the bridge response is negligible when the bridge is 
medium to long and the cumulative effect of other loads 
(the individual vehicle excluded) is significantly greater 
than a single vehicle. The approach is presented in 
Algorithm 2: 

In this algorithm, the bridge is only analyzed once at 
the beginning under F0 . The bridge response is then lin-
early superimposed with rgh and then applied to the vehi-
cle dynamical model. In fact, the approach is similar to the 
constant force method proposed by Gonzàlez [21]. How-
ever, in our approach the vehicle dynamics is incorporated in 
the vehicle response, which was not the case in the moving 
mass model. The approach has not been proposed or utilized 
previously; yet needs to be fully justified and evaluated. In 
the rest of this paper, we first propose a theoretical proof 
based on a simplified case of the coupled VBI problem. 
This part intends to demonstrate that bridge to vehicle mass 
and stiffness ratios are the keys to determine the coupling 
degree. In the next step, VBI responses of multiple bridges 
with different characteristics and vehicles are numerically 
simulated using coupled (i.e., conventional) and uncoupled 
(i.e., simplified) procedures and results are compared. Dis-
cussions and comparison of the numerical results are also 
supplemented in the last sections.

2  Theoretical approach

In this section, a closed-form theoretical proof for verifica-
tion of the simplified model is presented. Generally, vehi-
cle–bridge interaction is a complex model to be solved in 
closed-form; however, simplified models can be used for 
proof of concept [8, 22]. The objective here is to show that 
a coupled VBI system subject to external stochastic excita-
tions produces bridge and vehicle responses that are very 
close to the responses of an uncoupled system, especially 
if the bridge is long and heavy. For this purpose, the mass 

and spring system shown in Fig. 3 is considered in which 
the vehicle is located at the mid-span of the beam with no 
motion and in full interaction (no damping is considered for 
simplicity). The random spatio-temporal load of the bridge 
is also lumped into an effective point load that is applied to 
the bridge mass. In particular, the proof intends to show that 
the coupling of the bridge response xb to the vehicle interac-
tion decays as the bridge dimensions grow.

From Fig. 3, the beam is modeled as a unidirectional 
spring, while the vehicle is a single DOF system. The 
bridge spring represents the first modal stiffness of the 
beam. The bridge mass is lumped at the contact point of 
the two components. The setup constitutes a 2 DOF cou-
pled system with the equation of motion shown in Eq. (1). 
Using this simplified setup, both responses are calculated 
in closed-form:

where mb and mv are the bridge and vehicle masses, respec-
tively; also, kb and kv are the stiffnesses for two components. 
For further calculations, it is assumed that mb = �mv = �m 
and kb = �kv = �k in which � and � are bridge to vehicle 
mass and stiffness ratios, respectively, and 𝛼 > 𝛽 . There-
fore, using relative mass and stiffness ratios, Eq. (1) can be 
states as:

in which X = [xb;xv] contains the bridge and vehicle 
responses, respectively. In order to solve this equation for 
X, the first step is to decouple it by using modal transforma-
tion using eigenvalue analysis shown in Eq. (3).

By assuming m�
2

k
= � and dividing both sides by k2 we have:

(1)
[
mb 0

0 mv

] [
ẍb
ẍv

]
+

[
kb + kv − kv
−kv kv

] [
xb
xv

]
=

[
f (t)

0

]

(2)
[
𝛼m 0

0 m

]
Ẍ +

[
(1 + 𝛽)k − k

−k k

]
X =

[
f (t)

0

]

(3)
det

(
(� + 1)k − �m�2 − k

−k k − m�2

)

= ((� + 1)k − �m�2)(k − m�2) − k2 = 0

Fig. 3  Schematic of the coupled setup
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One can simply assume that � + � + 1 ≈ � + � since ratios 
are significantly large (especially the mass ratio � ) when 
considering commercial vehicles and mid- to long-span 
bridges. This helps further simplifications as shown in 
Eq. (5):

It is worth noting that from Eq. (5), one of the natural fre-
quencies is equal to the vehicle’s fundamental frequency. 
Once the eigenvalues are found, eigenvectors can be derived 
to allow for modal superposition. For brevity, this calcula-
tion is summarized and the final mode shapes are presented 
in Eq. (6).

In Eq. (1), f(t) is the applied load function, which is ulti-
mately assumed as an ambient white noise for a random 
traffic network (i.e., Gaussian white noise ∼ N(0, �2) ). In 
order to calculate the response of the system to such loads, 
one approach is to convert it to a sum of sinusoidal waves 
using Fourier transform. For a white noise, the spectral den-
sity function is a continuous function of a constant value 
(the value equals �2 ). Therefore, for simplicity, the response 
of the system subject to a single sinusoidal load is found 
in closed-form and then, the effect of different frequencies 
is evaluated by parametric study to determine whether the 
same conclusion is valid over the entire frequency band. 
Therefore, f (t) = Aesin(�et) is defined, in which Ae and �e 
are the sinusoidal amplitude and frequency, respectively. To 
convert the equation of motion shown in Eq. (1) to modal 
coordinates, we premultiply both sides by ΦT . The modal 
force vector and modal stiffness are then calculated as shown 
in Eq. (7):

(4)
(� + 1) − (� + 1)� − �� + ��2 − 1 = 0

� =
� + � ±

√
(� + � + 1)2 − 4��

2�

(5)

� =
� + � ±

√
(� + �)2 − 4��

2�
=

� + � ± (� − �)

2�

�1 = 1 ⇒ �1 =

�
k

m
= �v

�2 =
�

�
⇒ �2 =

�
�

�
�v

(6)Φ =

[
1

�−�+1

�−�

�

1 1

]
=

[
�11 �12

�21 �22

]

The steady-state responses of the single-degree of freedom 
systems subject to a harmonic load have the following form 
shown in Eq. (8):

in which � = �e∕�v . For a unit amplitude of the external 
load (i.e., Ae = 1 ) and by substitution of stiffness from 
Eq. (7) to (8), the harmonic amplitudes are calculated as 
follows:

Finally, by modal superposition of the two modal responses, 
the amplitude of the total harmonic vibration of the bridge 
is calculated as shown in Eq. (10):

(7)

ΦTF(t) =

�
1

𝛽−𝛼+1
1 −

𝛽

𝛼

1 1

�T �
Aesin(wet)

0

�

=

�
Ae

𝛽−𝛼+1
sin(wet)

Ae(𝛼−𝛽)

𝛼
sin(wet)

�

K̂ = ΦTKΦ =

�
k̂1 0

0 k̂2

�

=

⎡⎢⎢⎣

�
𝛼

(𝛽−𝛼+1)2
+

𝛼−𝛽−2

𝛽−𝛼+1

�
k 0

0
�
𝛽3+(1−2𝛼)𝛽2+𝛽𝛼2

𝛼2

�
k

⎤⎥⎥⎦
xb = 𝜙11q1 + 𝜙21q2

m̂1q̈1 + k̂1q1 =
Ae

𝛽 − 𝛼 + 1
sin(wet)

m̂2q̈2 + k̂2q2 =
Ae(𝛼 − 𝛽)

𝛼
sin(wet)

(8)

q1(t) =

Ae

𝛽−𝛼+1

k̂1

1

1 − 𝛾2
.sin(𝜔et)

q2(t) =

Ae(𝛼−𝛽)

𝛼

k̂2

1

1 −
𝛼

𝛽
𝛾2

.sin(𝜔et)

(9)
amp(q1) =

� − � + 1

(�2 − 1)(�2 − 2�� − 4� + �2 + 3� + 2)k

amp(q2) =
�(� − �)

(� − ��2)(�2 − 2�� + �2 + �)k

Fig. 4  Schematic of the uncoupled setup
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So far, the bridge response from the fully coupled setup is 
derived. In order to find the bridge response using the second 
approach (i.e., the simplified model), the setup shown in 
Fig. 4 is assumed. The bridge model is individually subject 
to the external load and responds to it. The response is then 
applied to an isolated vehicle model to produce the vehicle 
response. The closed-form solution for the bridge response 
in such an uncoupled setup is trivial and shown in Eq. (11). 

Once Eqs. (10) and (11) are derived, the parametric study 
can take place. Both equations are functions of � , � , and � . 
By plotting the response error between these two solutions 
for different ranges of these three parameters, the extent of 
the error in the simplified decoupled model can be investi-
gated. Intuitively, as the bridge size increases, the stiffness 
of the structure decreases (i.e., longer bridges are more flex-
ible), and the mass increases, resulting lower fundamental 
frequencies. The main objective is to observe the sensitiv-
ity of the error to the bridge size. Therefore, different mass 
and stiffness ratio pairs are plugged into both equations and 
errors are calculated. In addition, different loading frequen-
cies are also examined. The mass and stiffness ratios ( � and 
� ) used for this purpose range [50:10,000] and [500:10], 
respectively, modeling short (stiff) to long (flexible) bridges. 
Loading frequencies spread exponentially from 10−3 to 103 
Hz to envelope a sufficiently wide range of loading frequen-
cies. Figure 5 summarizes the outcomes of the parametric 
study. Note that the x axis corresponds to different mass and 
stiffness ratio pairs, which is normalized to better convey 
the qualitative aspect of the plot (i.e., 0 is the stiffest bridge 
while 1 stands for the most flexible one).

Figure 5 demonstrates that based on the closed-form 
solutions, what would be the extent of error in the simpli-
fied simulation method for different types of bridges. As the 
bridge size increases, the error between two methods decays 
substantially (e.g., below 0.1% error for long bridges). This 
supports the idea that an uncoupled simplified solution is 
accurate enough when the bridge length increases. The fig-
ure also shows that there is a range of bridges in which the 
error is not negligible (for relatively short bridges the error 

(10)

amp(xb) = �11 × amp(q1) + �21 × amp(q2)

=
1

k

[
1

(�2 − 1)(�2 − 2�� − 4� + �2 + 3� + 2)

+
(� − �)2

(� − ��2)(�2 − 2�� + �2 + �)

]

(11)

mbẍb + kbxb = Aesin(𝜔et)

xb =
Ae

kb
.

1

1 −
𝜔e

𝜔b

2
.sin(𝜔et)

amp(xb) =
1

k(𝛽 + 𝛼𝛾2)

can be up to 50% when the loading frequency resonates with 
the natural frequency of the vehicle). Also notice that the 
same trend occurs for different loading frequencies, with 
maximum error near the vehicle resonance frequency.

In this part, using our simplified model we showed that 
the uncoupled simulation approach yields accurate results 
when compared to the fully coupled approach, especially 
when the bridge size grows. In the next sections, the results 
from more detailed numerical simulations of the vehi-
cle–bridge interaction are presented in order to incorporate 
other aspects of the VBI problems, such as vehicle motions 
and road roughness profile.

3  Numerical analysis

In this section, the VBI problem is modeled numerically 
in MATLAB using the conventional approach (Algo-
rithm 1), and the results are compared with the signals from 
the simplified simulation approach (Algorithm 2). In this 
numerical case study, six bridges with different span lengths 
are modeled in SAP2000 and two simulation approaches 
are implemented. The exact numerical approach for mod-
eling the bridge response interacting with a moving vehicle 
(roughness included) is adopted from Gonzàlez et al. [26] 
as presented in Algorithm 1.

The bridge setup is shown in Fig. 6. The span varies 
from 15 m (a very short and stiff bridge) to 500 m (a long 
and flexible bridge), with mechanical properties shown 
in Table 1. The bridge is 3D modeled in SAP2000 using 

Fig. 5  Results of the theoretical approach: parametric study shows 
the extent of error for different bridge types and loading frequencies 
when using the simplified bridge–vehicle simulation approach
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prismatic beams with box cross-sections. Note that the con-
sidered single-span simply-supported bridge is the use case 
for the majority of numerical studies in the VBI community 
[25, 33]. Since one of the objectives of our paper is to pro-
pose a simplified numerical approach for VBI analysis to 
be used in the VBI community, the same geometry and 
boundary conditions are considered in the first numerical 
case study. The reason for 3D modeling of the bridge is to 
have a physical sense of the dimensions of the deck sec-
tion and better visualization. The modeling process is as 
follows: the bridge geometry and material are defined in 
the SAP model. The stiffness and mass matrices of the SAP 
model are then exported to a MATLAB script within which 
bridge dynamic analyses as well as vehicle–bridge interac-
tions are held. The accuracy of the bridge models is verified 
by examining bridge natural frequencies. The fundamental 
modes in shorter bridges are vertical (longitudinal) while 
for very long spans, torsional modes dominate. Note that the 
torsional modes are not within the scope of this study and 
are excluded from modal analyses. In this case study, bridges 
are all simply-supported; nonetheless, a different geometry 
is evaluated in Sect. 5. The structural behavior is assumed 
linear elastic for consistency with the operational modal 
analysis. The study does not take large deformations and 
nonlinearities into account based on the fact that the method 
is being proposed for numerical simulation of bridges under 
operational mode. In particular, no material nonlinearity is 

expected here. In terms of geometry nonlinearity, we expect 
that it may be effective for very long bridges.

In this study, bridge models are deterministic and no 
uncertainty for material and geometry is included. In fact, 
the study is focused on studying the extent of bridge–vehi-
cle interaction with respect to bridge dimensions and traffic 
level. Ni et al. [34] showed that by incorporating uncertain-
ties in bridge modeling, the modal properties are changed, 
however, this variation is dramatically lower for the funda-
mental modes compared to higher ones. In addition, Yang 
and Lin [35] showed that in a vehicle–bridge interaction 
scenario, the bridge response is highly dominated by the 
first natural mode. Considering these, uncertainty propa-
gation analysis is neglected in this study. Road roughness 
profile is adapted according to ISO standard for a road class 
’A’ [36] which is the case for a well maintained highway 
road condition. At each time instance, the bridge model is 
analyzed dynamically using Newmark-� method by process-
ing matrices imported from SAP2000. For the vehicle, first 
a quarter-car model is adopted with the properties shown 
in Table 2. This vehicle simulates suspension properties 
of a commercial vehicle with high damping and low natu-
ral frequency (which are critical factors for a comfortable 
ride [37]). The second vehicle is a quarter-car model of a 
heavy truck adopted from [38, 39] with properties shown 
in Table 3. The second vehicle is selected to investigate 
the approximation error of using the simplified method for 
heavy sensing agents when the weight is not negligible.  

For a fair comparison, the vehicle’s speed is kept constant 
among all bridge spans (10 m/s). Finally, the traffic load is 
modeled as a random ambient load uniformly applied over 
the span with the amplitude proportional to the number of 

Fig. 6  Schematic of the  simulated model: roughness profile is also 
included

Table 1  Bridge spans and cross-
section dimensions

Span length (m) 15 m 30 m 50 m 100 m 200 m 500 m

Outside depth (m) 0.60 1.10 1.60 2.40 3.00 5.00
Outside width (m) 0.30 0.50 1.30 2.00 2.50 4.00
Flange thickness (m) 0.04 0.05 0.10 0.15 0.15 0.50
Web thickness (m) 0.02 0.03 0.05 0.10 0.10 0.25
Fundamental freq. (Hz) 8.03 3.63 2.05 0.75 0.24 0.06

Table 2  Commercial vehicle properties

Property name Value Units

Unsprung mass 69.9 kg
Sprung mass 466.0 kg
Tire damping 0.0 Ns/m
Suspension damping 2796.0 Ns/m
Tire stiffness 3043.0 N/m
Suspension stiffness 290.3 N/m
Fundamental frequency 1.2 Hz
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vehicles. In particular, for n vehicles, a random and sparse 
matrix is generated in which the sum of forces in each row 
(i.e., for each time instance) is equal to n × 2000 × g N, 
assuming 2000 kg for the average weight of a commercial 
vehicle and g is the gravity acceleration. Four traffic levels 
are considered for each span length with n = 0, 10, 20, 50 
( n = 0 models an isolated bridge and n = 50 models a bridge 
with 50 vehicles moving while being scanned by the sensing 
agent). The bridge is modeled as a MDF system with 0.1 m 
spatial discretization (e.g., 15 m long bridge is modeled with 
150 DOFs). The 0.1 m discretization is selected based on a 
trade-off between computation time and maximum avoid-
ance for displacement interpolation when the vehicle’s 
location falls inside a bridge segment. 0.1 m-long bridge 
segmentation yields exact vehicle displacement calculation 
when vehicles’ speed is set to 10 m/s. For vehicles moving 
faster than this speed, discretization of vehicle’s time and 
space coordinates results in some gaps in locations of con-
secutive time steps. This gap causes a simplification in the 
vehicle’s initial condition (particularly the initial speed) cal-
culation. However, in this study the damping of the unsprung 

mass is set to zero which disconnects the vehicle’s dynamic 
analysis to its initial speed. For simulating responses using 
the decoupled model, Algorithm 2 is adopted: the random 
traffic load is firstly applied to the bridge with no consid-
eration for the sensing vehicle. The bridge responses at the 
vehicle locations are then aligned in space and applied to 
the model of the sensing vehicle. The vehicle processes the 
input through its dynamical model (shown in Tables 2, 3) 
and produces the vehicle response. 

The performance of the simplified model is evaluated in 
terms of the bridge response as well as the vehicle response. 
From Sect. 2 it is expected that the simplified model yields 
more accurate response estimations as the length of the 
bridge span increases. In the conventional simulation 
approach, the acceptance threshold for the bridge response 
convergence is set to 1.5 × 10−12 m. For each bridge span 
and traffic level pairs, bridge and vehicle response signals 
are simulated using two approaches (in total 24 runs for each 
vehicle); and the errors between two signals are measured in 
time and frequency domains using the mean squared error 
(MSE). For more consistency, the responses are scaled by 
the absolute maximum values of the displacement signals 
found from the conventional method.

Simulated displacement signals for two spans (15 m 
and 200 m) are shown in Figs. 7 and 8. For both vehicle 
types, the bridge response differs noticeably between the 
conventional and simplified VBI simulations in the 15 m 
bridge. However, as expected from Sect. 2, as the bridge 
length increases, the discrepancy between two simulation 
approaches shrinks in bridge response estimation. The MSE 
values versus bridge length are also presented in Figs. 9 and 
10 for the commercial vehicle and Figs. 11 and 12 for the 
heavy truck to further quantify this observation. Figures 9 

Table 3  Heavy truck properties

Property name Value Units

Unsprung mass 700.0 kg
Sprung mass 17,300.0 kg
Tire damping 0.0 Ns/m
Suspension damping 1.0 × 104 Ns/m
Tire stiffness 1.75 × 106 N/m
Suspension stiffness 4.0 × 105 N/m
Fundamental frequency 0.69 Hz

(a) (b)

Fig. 7  Bridge displacement simulation results for the commercial vehicle
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and 11 (error in the bridge response simulations) show a 
strictly decreasing MSE value as the bridge length increases. 
In addition, in both cases, as the traffic level increases (i.e., 
from n = 0 to n = 50 ), the estimation error reduces. This 
is more evident in the commercial vehicle. Note that the 
same patterns are deduced from the frequency representa-
tion plots. 

Figures 9 and 11 show the extent of error for simulat-
ing stationary sensors’ data that are attached to the bridge. 
However, what a mobile sensing agent records while cross-
ing the bridge is not the bridge pure vibrations, but the 
vehicle response to it. Therefore, Figs. 10 and 12 show 

the accuracy of the vehicle response subject to the bridge 
motion when comparing the simplified model with the 
conventional approach. In this case, two sensing agents 
(i.e., the commercial vehicle versus the heavy truck) react 
differently. For the commercial vehicle, the responses are 
relatively insensitive to the span and the traffic level and 
errors are consistently low for all cases. However, from 
Fig. 12, the truck response is simulated less accurately 
when the bridge span grows from 15 to 100 m (for longer 
bridges, a decaying error trend is observed again). In par-
ticular, the frequency estimation error for the heavy vehi-
cle crossing a 100 m long bridge is quite noticeable when 

(a) (b)

Fig. 8  Bridge displacement simulation results for the heavy truck

(a) (b)

Fig. 9  Bridge response comparison for the commercial vehicle in terms of the MSE: the trends show more accurate simulation results as bridge 
span and/or traffic volume increase
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using the simplified model. From Table 3, the fundamental 
frequency of the truck is 0.69 Hz which is near resonance 
for the 100 m long bridge (from Table 1, f = 0.75 Hz). 
Moreover, the vehicle weight is significant, which results 
in higher interaction forces applied to the bridge and the 
vehicle itself. In fact, this case highlights that when the 
bridge and the sensing vehicle have near resonance fre-
quencies, the simplified model works more accurately 
when the vehicle is lightweight. To validate this, the 
properties from Table 3 are downscaled by a factor of 5 
(i.e., the same natural frequency while being lighter) and 
simulation for 100 m long bridge is repeated. The MSE 
value for n = 50 reduced from 1.19 × 10−4 to 5.46 × 10−6. 

4  Computational cost evaluation

The main objective of the simplified model is to improve 
the computational performance of simulations while having 
a minimal impact on the accuracy of the results. In Fig. 13 
the computational runtimes for the commercial vehicle 
simulation case are compared between two methods (the 
heavy vehicle yields a very similar plot as well). The figure 
demonstrates that while the runtime increases linearly in the 
simplified model, it grows exponentially when using the con-
ventional approach for longer bridges. For instance, using a 
single Intel Core i5 CPU, the entire VBI simulation process 

(a) (b)

Fig. 10  Vehicle response comparison for the commercial vehicle in terms of the MSE: the trends show invariance to the span and the traffic level

(a) (b)

Fig. 11  Bridge response comparison for the heavy truck in terms of the MSE: the trends show more accurate simulation results as the bridge 
span and/or the traffic volume increase
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for the 500 m long bridge takes 1.8 sec using the simplified 
model, while the same process takes nearly 2250.0 sec using 
the conventional method (more than 1000 × slower). This 
dramatic runtime difference is resulted by the inner itera-
tions of the conventional approach (see Algorithm 1) that 
guarantee the compatibility. Within this iteration, the entire 
bridge model has to be analyzed repeatedly for the modified 
interaction force as long as the stopping criterion is not met, 
which is computationally very expensive. This is a bottle-
neck for the numerical computation, especially when the 

bridge length increases or models with higher fidelity is of 
interest (i.e., MDF model grows in size). Alternatively, the 
simplified model fully decouples the bridge model from the 
vehicle systems, which yields a one-time bridge analysis (see 
Algorithm 2). This significant speedup enables to perform 
VBI simulations for medium- to long-span bridges with fine 
spatial discretization, which is required for numerical studies 
on crowdsensing-based bridge health monitoring.

5  Fully coupled vehicle network simulation

In this section, a fully coupled network of vehicles is ana-
lyzed to verify the followings: (1) the premise of ambient 
white noise on behalf of a random traffic load is valid and (2) 
the simplified method yields accurate results for bridges with 
different geometries. Regarding that, a continuous bridge 
with four 50 m-long spans with elastic steel material is mod-
eled and shown in Fig. 14 (beam cross-section is shown as 
well). The bridge length is discretized with 0.1 m grids, 
resulting a 2001 DOF system. The roughness profile is intro-
duced with the same setup as before. In this case, instead of 
applying a spatio-temporal random load to model random 
traffic loads, the bridge is subjected to different levels of 
traffic loads caused by actual vehicle trajectories (as shown 
in Fig. 2a). All vehicles are interacting with the bridge in 
the same fashion as given in Algorithm 1. In summary, the 
convergence loop continues until all vehicles have reached 
acceptable displacement errors.

In these analyses, each vehicle in the network has certain 
speed and mechanical properties. The mechanical properties 

(a) (b)

Fig. 12  Vehicle response comparison for the heavy truck in terms of the MSE: the trends show that the error peaks when the bridge and the 
vehicle have close fundamental frequency values

Fig. 13  Runtime comparison between the conventional and simpli-
fied  simulation methods: the conventional approach is computation-
ally > 1000 × slower than the simplified model in a 500 m bridge 
with no significant gain in the accuracy of response estimations
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are randomly selected with a lognormal distribution. The 
mean values for each property are set to the values given in 
Table 2 for the commercial vehicle. Standard deviation � is 
also set to 0.35 for all components of the property table. The 
map of vehicle network trajectories for two levels of traffic 
is shown in Fig. 15. In this figure, each column contains 
momentary response of the bridge at all DOFs. Each trajec-
tory is represented by a line in the spatio-temporal response 
matrix. Different slopes show different directions and speeds 
(e.g., close to horizontal trajectories show very low speed 
vehicles while nearly vertical ones show very fast bridge 
crossings). The programmed random trajectory generator 
allows for fixed vehicles as well.

The first objective is to show the spatio-temporal load 
determined by the vehicle network and bridge interaction has 
statistical characteristics of a 2D white noise. The resulted 
loading matrix for a random traffic case (with 200 random 
vehicle trajectories) is derived from the coupled dynamic 
analysis and its Fourier transform is shown in Fig. 16 along 
with the frequency representation of a white noise loading 
matrix. By comparison, both plots show uniform contents 
everywhere with no coherent frequency peaks. This implies 

that a realistic loading scenario with deterministic vehicle 
motions has the similar effect to a random white noise.

In the next step, a mobile sensing agent is added to the 
traffic networks and the bridge interaction is considered with 
(1) conventional (Algorithm 1) and (2) simplified (Algo-
rithm 2) approaches and results are compared. Three dif-
ferent speeds for the sensing agent are considered: 10 m/s, 
20 m/s, and 30 m/s. The MSE error between vehicle and 
bridge response estimations of the simplified and conven-
tional approach is calculated and plotted in Fig. 17. In all 
three speed cases, the error significantly drops when the 
network includes higher number of vehicles. This figure 
confirms that even in a realistic simulation of a traffic net-
work, the simplified approach yields accurate estimations for 
the majority of cases (i.e., when the network is sufficiently 
crowded). Regarding the sensing agent’s speed effect, except 
for a slightly higher errors for higher speeds, other variations 

Fig. 14  Geometry of  the four-span continuous bridge and its  cross-
section

Fig. 15  Random vehicles trajec-
tory in the time-space matrix. 
Each solid line represents a 
single vehicle’s motion over the 
bridge. Vehicles have different 
speeds and directions and all are 
fully interacting with the bridge. 
Two levels of traffic are shown

Fig. 16  Frequency representations of spatio-temporal loads applied 
to the bridge. (a) the white noise spatio-temporal load considered in 
analyses in Sect. 3. b the actual load resulted from a traffic network 
of random vehicles with full consideration for the vehicle–bridge 
interaction. Similarity between two representations confirms the 
white random nature of traffic load
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are not conclusive. By comparing these plots with Figs. 9 
and 10, the trends are consistent. The variations in the mag-
nitude of the MSEs can be explained due to different bridge 
boundary conditions and more realistic loading pattern.

6  Conclusions

In this paper, a modified simulation algorithm was proposed 
for vehicle–bridge interaction (VBI) problems concerning 
medium- to long-span bridges with random traffic excitation. 
The primary deliverable of this study to the SHM community 
is to enable a fast and accurate numerical analysis method that 
can be used in different bridge infrastructure management lev-
els, such as (1) evaluation of crowdsensing-based methods for 
bridge modal identification and (2) probabilistic and life-cycle 
analysis of bridges subjected to vehicle networks under various 
uncertainties (e.g., road profile, vehicle dynamics, traffic level, 
and environmental variations). Our main contribution is the 
result that as the bridge flexibility increases (longer spans), the 
degree of coupling between the vehicle and the bridge reduces 
notably. Conventional VBI simulation algorithms require itera-
tions within each time step in order to reach a desired level 
of compatibility between the vehicle and the bridge, which is 
computationally expensive. We show that the proposed sim-
ple and decoupled model is efficient for simulations of the vehi-
cle–bridge interacting systems in such cases, with an accuracy 
that increases with bridge flexibility. In particular, the theo-
retical analysis showed that the response of a coupled continu-
ous beam and vehicle setup subject to a random load becomes 
more independent to the vehicle dynamics as the bridge mass 
grows and the stiffness reduces. Therefore, for longer or flexible 
bridges, the dynamics are practically independent. Moreover, 
the numerical simulation validated that the bridge size and traf-
fic load intensity both affect the accuracy of the bridge vibration 
estimations when using the simplified model. For commercial 

vehicles, the simplified method yields accurate response estima-
tions. In the case of a heavy vehicle with a natural frequency 
near the bridge’s fundamental frequency, e.g., heavy vehicles 
and flexible bridges, the error associated with the simplified 
model is noticeable. In terms of the computational cost, a com-
parative study showed that the cost of the conventional model 
behaves exponentially while the cost of the simplified model 
is linear. For instance, in a 500 m bridge the simplified method 
was able to reduce the simulation runtime by order of 1000 
while simulating responses with errors below 0.1% compared 
to the exact responses. Finally, using a numerical analysis, the 
study demonstrated that the collective loading effect of a real-
istic random traffic network has similar statistical charactristics 
to a spatio-temporal random white noise.
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