
Vol.:(0123456789)

Journal of Civil Structural Health Monitoring (2020) 10:183–195 
https://doi.org/10.1007/s13349-019-00375-2

123

ORIGINAL PAPER

Model‑free damage detection of a laboratory bridge using artificial 
neural networks

Aaron Ruffels1,2   · Ignacio Gonzalez1,3 · Raid Karoumi1 

Received: 9 June 2019 / Revised: 14 December 2019 / Accepted: 27 December 2019 / Published online: 4 February 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
This paper investigates a model-free damage detection method using a laboratory model of a steel arch bridge with a five-metre 
span. The efficiency of the algorithm was studied for various damage cases. The structure was excited with a rolling mass and 
seven accelerometers were used to record its response. An artificial neural network (ANN) was trained to predict the bridge 
accelerations based on data collected from the undamaged structure. Damage-sensitive features were defined as the root mean 
squared errors between the measured data and the ANN predictions. A baseline healthy state was established with which new 
data could be compared to. Outliers from the reference state were taken as an indication of damage. Two outlier detection 
methods were used: Mahalanobis distance and the Kolmogorov–Smirnov test. The method showed promising results and 
damage was successfully detected for four out of the five single damage cases. The gradual damage case was also detected, 
however, for some instances, greater damage did not result in an increase in the damage index. The Kolmogorov–Smirnov test 
performed best at detecting small single damage cases, while Mahalanobis distance was better at tracking gradual damage.

Keywords  Model-free · Damage detection · Structural health monitoring · Machine learning · Artificial neural network

1  Introduction

Bridges are a key component of a country’s transportation 
infrastructure and studies have shown that a strong link exists 
between transportation infrastructure and economic develop-
ment [1]. However, throughout the world bridges are age-
ing—for example in Europe nearly 66% of the existing railway 
bridges are more than 50 years old [2]. In addition to this, 
approximately 10% of all bridges in Europe are considered to 
be structurally deficient, while in the United States the percent-
age is even higher at 28% [3]. This poses a safety risk to the 
end users and may cause unnecessary delays in the transporta-
tion network. Therefore, to improve or maintain a high level 
of service, an effective bridge management system is required. 
Ideally, these systems would help to improve the lifespan of 
bridges through proper maintenance, thus resulting in lower 
life cycle costs as well as increased safety to the end user.

Important to bridge management is the ability to monitor 
a structure’s health. Structural health monitoring (SHM) is 
defined as the implementation of a damage identification 
strategy to engineering structures [3]. The development of 
techniques and algorithms to detect damage is currently a 
very active field of research in structural engineering [4].

The aim of this study was to use a small-scale, steel, truss 
bridge to expand upon the methods developed by Gonzalez 
and Karoumi [4], Neves et al. [5] and Chalouhi et al. [6]. 
These methods used artificial neural networks (ANN) to 
learn the baseline healthy state of a structure and then make 
predictions to determine whether new measured data came 
from the same state. ANNs are well suited to damage detec-
tion of bridges, as they can be trained using only healthy 
data. This is important because one cannot freely introduce 
damage to an operational bridge as would be required for 
fully supervised learning methods.

In this study, the model bridge was excited using a rolling 
mass and accelerations were recorded at seven nodes for each 
crossing of the mass. The scope of the study was limited to a 
single axle released from a constant drop height. The acceler-
ations as well as the velocity and temperature measurements 
were provided as inputs to an ANN. The ANN was trained 
from data recorded in the undamaged state. New unseen data, 
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also from the undamaged state, were then used to statisti-
cally characterise the healthy, baseline state of the structure. 
The characterisation was based on the root mean squared 
errors (RMSE) between the measured and predicted values 
of a time-delayed acceleration time series. Once the baseline 
state was established, unseen data from both the undamaged 
and damaged states were compared to this baseline state. 
Mahalanobis distance and Kolmogorov–Smirnov-based dam-
age index were used to detect outliers from the baseline state. 
These outliers were taken as an indication of damage.

This method was applied to six different damage cases. 
The first five damage cases were studied to determine 
whether the algorithm was capable of detecting damage for 
the given structure and type of excitation. The sixth damage 
case involved gradually increasing the damage to the struc-
ture. Using this case, the aim was to determine whether the 
algorithm could track gradual changes in the structural state.

1.1 � Literature review

Many different damage detection methods have been estab-
lished, however, these can commonly be classified into two 
categories: model-based, and model-free damage detection 
[4]. Model-based methods are those that require an accurate 
finite element model of the target structure to assess the level 
of damage. Model-free methods do not require a finite ele-
ment model but instead use techniques such as statistical 
regression, artificial intelligence or other signal processing 
procedures to make predictions from measured data.

Model-based and model-free methods are complemen-
tary approaches. Each method provides different insights 
into a structure’s health. ASCE [7] highlights the strengths 
and weaknesses of model-based and model-free damaged 
detection for various contexts. According to Laory et al. [8], 
model-based methods can help support decisions related to 
the long-term structural management such as estimation of 
reserve capacity and repair. On the other hand, model-free 
methods are better suited to continuous monitoring of struc-
tures, because they only involve tracking changes in time 
series signals. Farrar and Worden [9] have written exten-
sively on the application of machine learning and statistical 
pattern recognition techniques to SHM. Their book provides 
a summary of the field with applications ranging from civil 
infrastructure to telescopes and aircraft.

Some common model-free damage detection methods 
include: wavelet analysis, principal component analysis, 
extraction of vibration parameters and the use of artificial 
neural networks.

Wavelets are mathematical functions that decompose a 
signal into its individual frequency components. Moyo and 
Brownjohn [10] presented an application of wavelet analysis 
to identify events and changes in a bridge during its con-
struction. Strain data from the Singapore–Malaysia Second 

Link Bridge were used in the analysis. The study found that 
abrupt changes were easy to detect, however, the signal 
required de-noising to minimise the detection of false events.

Lee et al. [11] proposed a continuous relative wavelet 
entropy-based reference-free damage detection algorithm for 
truss bridge structures. The method did not require measure-
ments from a reference ‘healthy’ state. Comparisons instead 
were made by referring to damage signatures from other 
locations of the structure. Both a finite element model and a 
laboratory structure were used to test the method. Damage 
cases involved loosening bolts at various nodes. The pro-
posed method was able to identify the location of damage 
for single- and multi-damage scenarios as well as progres-
sive damage. However, the method required a sensor to be 
at the location of damage and no particular differences were 
observed when all sensors were located at healthy joints.

Principal component analysis (PCA) is used to reduce the 
dimensionality of a data set. Values described by n dimen-
sions are transformed to a new space with fewer dimensions 
described by linearly uncorrelated variables called principal 
components. Laory et al. [8] investigated a model-free data 
interpretation method which combines moving principal 
component analysis (MPCA) with four different regression 
analysis methods: robust regression analysis (RRA), mul-
tiple linear regression analysis, support vector regression 
and random forest. The methods were applied on three case 
studies. This involved two numerical studies on a railway 
truss bridge and a concrete frame, and a full-scale test on 
the Ricciolo Viaduct. A fixed-size window which moved 
along the measurement time series was used to extract the 
data and calculate its principal components. The correla-
tions between the principal components were chosen as 
damage-sensitive features and analysed using the various 
regression functions to detect damage in the structure. The 
minimum detectable damage for a numerical model of a 
railway truss bridge was approximately a 2% reduction in 
axial stiffness.

Moughty and Casas [12] investigated a number of dam-
age-sensitive features extracted directly from the accelera-
tion time series. These parameters included: RMS accel-
eration, cumulative absolute acceleration, Arias intensity, 
peak-to-peak acceleration and vibration intensity measured 
in Vibrars. Outlier detection methods such as Mahalanobis 
squared distance (MSD), PCA and singular value decompo-
sition (SVD) were used to detect changes in the data between 
progressive damage tests. Data were taken from the S101 
Bridge in Vienna, Austria. The results showed that vibration 
parameters associated with vibration energy—i.e. squared 
amplitude of vibration—performed best. These included the 
cumulative absolute acceleration, Arias intensity and the 
vibration intensity. Mahalanobis squared distance produced 
the highest indication of structural condition variation, while 
it was noted that the other methods also performed well.
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Wu et al. [13] and Pandey and Barai [14] were some of the 
first authors to apply neural networks to the field of damage 
detection for civil engineering structures. Both studies used 
a supervised learning approach. The algorithms could cor-
rectly predict damage extent and location. Wu et al. [13] used 
a frequency response spectrum as the input to train an ANN 
with a single hidden layer. Three output nodes were used, 
each corresponding to the percentage reduction of stiffness in 
a different member. On the other hand, Pandey and Barai [14] 
trained a neural network with the vertical displacement at each 
node. The output nodes then predicted the cross-sectional area 
of each member in a 21-bar truss structure. Two configura-
tions were used with one and two hidden layers, respectively.

Niu [15] and Niu and Qun [16] proposed a damage detec-
tion method using a time delay neural network. Niu used 
the same 21-bar truss structure as Pandey and Barai [14]. A 
comparison was made between a traditional neural network 
as studied by Pandey and Barai [14] and a neural network 
which was given both the original and a delayed signal as 
input. The time-delayed neural network took longer to train 
because it contained more input nodes, however, the perfor-
mance was better at identifying damage.

Gonzalez and Karoumi [4] developed a new method using 
a two-stage machine learning algorithm trained using vibra-
tion data (deck accelerations) and bridge weigh-in-motion 
(BWIM) data (load magnitude and position). The first stage 
of the algorithm used an artificial neural network to predict 
future accelerations given a number of previous accelera-
tions and the BWIM data. Thereafter, a Gaussian process 
was used to classify the prediction errors from the ANN to 
determine the probability of damage. A simply supported 
Euler–Bernoulli beam discretised into 30 finite elements was 
studied. A single damage case was investigated by apply-
ing a 30% stiffness reduction to one of the elements. This 
method showed very promising results. By setting the prob-
ability of correctly labelling damage at 90%, the false posi-
tive rate could then be calculated for different cases—the 
best case giving a 6% probability of false positives.

Neves et al. [5] and Chalouhi et al. [6] applied the method 
developed by Gonzalez and Karoumi [4] to two different 
cases. Neves et al. [5] used a three-dimensional finite ele-
ment model of a single-track railway bridge. The structure 
consisted of a concrete deck of constant thickness, two steel 
girder beams that support the deck and steel cross-bracing 
that connect the girders. Chalouhi et al. [6] applied the 
method to the San Michele Bridge in Northern Italy (con-
structed in 1889). The effect of temperature variations was 
also taken into account by including this information as an 
input to the ANN. Both studies showed promising results. 
Using a Gaussian process, the prediction errors of the ANN 
were classified according to train velocity. The reliability of 
the detection method was shown to increase with the number 
of tested train passages.

2 � Methods

2.1 � The bridge structure

The laboratory model used in this study was a steel arch 
truss bridge with a 5 m span, 1 m width and a height of 
1.741 m. The model was constructed from S235JR steel and 
all members were connected using M8 bolts.

This model was considered relevant for the current study 
due to its relative complexity. The structure included mem-
bers which were subjected to various stress states such as 
bending, tension and compression. Steel arch trusses are 
a common structural system used for bridges. These were 
very popular in the late nineteenth to mid-twentieth centu-
ries. However, some more recent examples include the New 
River Gorge Bridge completed in 1977 and the Chaotianmen 
Bridge completed in 2009 [17].

The bridge consisted of five different cross-section types 
as highlighted in Fig. 1. This included the arch, truss, main 
beam and two types of bracing—giving a total of 62 indi-
vidual members. The dimensions of the cross-sections are 
given in Table 1.

2.2 � Experimental setup

To implement the damage detection method, the following 
aspects were considered important: (1) the bridge should 
be excited in a realistic manner, (2) the sensors should be 
placed in such a way as to collect as much information as 
possible and (3) operational and environmental measures 
should be monitored such as temperature and velocity. Fig-
ures 2 and 3 show an overview of the experimental setup.

Fig. 1   Different cross-sections used for the bridge. Solid blue: arch, 
dashed blue: beam, gray: truss, dashed red: bracing A, solid red: brac-
ing B

Table 1   Member cross-section dimensions

Category Section Dim. (mm)

Arch Rectangular hollow 30 × 25 × 2
Beam Rectangular hollow 25 × 20 × 2
Truss Circular hollow 17.2 × 2
Bracing A Circular solid 6
Bracing B Circular solid 8
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2.2.1 � Method of excitation

Model-free damage detection is best suited to continuous 
structural monitoring as discussed by [7, 8]. Forced excita-
tion methods were not considered as these would usually 
require a bridge to be closed to traffic while the investigation 
is taking place. Thus, a suitable method of excitation should 
mimic that of the traffic or ambient loading.

A rolling mass was therefore chosen as the method of 
excitation. This loading case is more analogous to railway 
traffic than automobile or pedestrian traffic, because only a 
single vehicle is on the bridge at a time. If used on a real 
bridge, the ANN could be trained for a specific loading that 
is frequent—for example a passage of a certain commuter or 
freight train on the bridge. Given the weight of the mass was 
12.742 kg, a scaling factor was chosen so that the applied 
load corresponded to the weight of a typical single 20.4 
ton axle load, giving a length scaling factor of �

l
= 40 . The 

dimensions of the mass are shown in Fig. 4.
Realistic vehicles do not consist of a single axle. How-

ever, past studies which have used a single rolling mass to 
study the dynamic response of beams have obtained satis-
factory results (Bilello et al. [18] and Stancioiu et al. [19]). 
Therefore, the single rolling mass assumption was consid-
ered acceptable.

2.3 � Damage detection method

The proposed damage detection method made use of an arti-
ficial neural network (ANN) to predict the accelerations at 
various sensor locations. The prediction errors, which were 
defined as the difference between the predicted and meas-
ured accelerations, were used as damage-sensitive features. 
Two statistical outlier detection methods were then consid-
ered to distinguish between the damaged and undamaged 
data. Figure 5 shows a flow chart of how the damage detec-
tion method was implemented.

2.3.1 � Data acquisition and sensing

The variables given as an input to the damage detection 
algorithm included: bridge acceleration, vehicle velocity 

and surrounding air temperature. Table 2 gives an overview 
of the measurement equipment used. All data used in this 
study were stored in an online data repository [20].

2.3.1.1  Sensor placement  Some studies such as Niu and 
Qun [16] only considered the bottom chord nodes for 
measuring the structural response, while others—such as 
Laory et  al. [8]—included sensors along the top chord, 
bottom chord and vertical trusses. To ensure that as much 
information as possible was obtained from the chosen 

Deck (plywood)

Frame supporting the
ramp (2" x 2" timber)

Beam supporting deck
(2" x 2" timber)

Bridge (steel)

20
20

89
0

85
1

Rail (timber)Rolling mass

5000

17
41

1000

Side View
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Fig. 3   Bridge setup in the laboratory
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number of sensors, an optimisation algorithm was used. 
The algorithm described by Sun and Büyüköztürk [21] 
was chosen due to its relative simplicity as well having a 
number of clearly described case studies where the algo-
rithm was applied with successful results. The chosen sen-
sor layout was shown in Fig. 6 and the measurement direc-
tions for each sensor was summarized in Table 3.

2.3.1.2  Data measurements  The analysis of accelera-
tion time signals was a central part of the damage detec-
tion method. Accelerations were measured using seven 
SF1500S.A/SF1500SN.A, uni-axial accelerometers con-
nected to a Spider8 signal amplifier. The accelerometers 
were placed as described in Fig.  6. The sampling fre-
quency was set at 400 Hz and no filters were applied to the 
signal. Figure 7a shows an example of the the accelera-
tion time signal for a single run. Note that the mass only 
enters the bridge after approximately 9 s. The portion of 
the recorded signal retained for analysis is shown between 
the two cutoff points. This included measurements taken 
while the mass was on the bridge as well as approximately 
3 s of free vibrations.

The velocity was calculated from the voltage peaks as 
shown in Fig. 7b. These were obtained from the steel mass 
crossing pairs of copper strips placed at 1 m intervals.

The data were divided into a number of sets for training 
and testing as shown in Fig. 5. The data from the healthy 

Sensing

Accelerations Velocity Temperature

Healthy (234) Damaged (280)

Training Set (81) Reference Set (78) Unseen Testing Set (355)
(of which 75 healthy
and 280 damaged)

Train|Test|Validation
Proportion: (70:15:15)

ANN

Predict Accelerations

Damage Sensitive Features (DSF)
=

RMSE  (Predicted - Targets)

Reference
Healthy DSF

Unseen
Test DSF

Statistical
Comparison

Preprocessing (Data Cleaning and Partitioning)

Feature Extraction

Outlier Detection

Damage Index

Compare with Threshold/Significance Level

Inference: Healthy/Damaged

Train ANN

Fig. 5   Flow chart of the damage detection process followed, from 
data collection to determination of damage index

Table 2   Measurement equipment used

Equipment Unit Mfr. Model

Accelerometers m/s
2 Colibrys SF1500S.A

Signal amplifier – HBM Spider8
DAQ software – HBM Catman 4.6
Thermometer deg C Fluke 52 K/J

y

x
z
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S4

S2 S3

S6
S5 S7

Fig. 6   Chosen accelerometer layout

Table 3   Sensor measurement directions

Measurement direction Accelerometer

x (longitudinal) S1
y (vertical) S2, S3, S4, S5, S6
z (lateral) S7
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Fig. 7   Portion of acceleration and voltage signals retained for analysis
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state were divided randomly into three equally sized groups. 
One for training the ANN, another to use as a reference state 
for statistical comparison and the third was included in the 
unseen test set. All the data from the damaged state were 
also added to the unseen test set.

The data used to train the ANN were further subdivided 
into training, testing and validation sets in the following pro-
portions 70:15:15. The testing and validation sets help to 
avoid overfitting the data when training the ANN as some 
of the data was kept unseen. The ANN with the best perfor-
mance on the test set was retained.

2.3.2 � Feature extraction from ANN predictions

Artificial neural networks (ANNs) have been used exten-
sively in past damage detection studies [4–6, 14, 15, 22]. 
They are said to be universal approximators which can uni-
formly approximate any continuous function on a compact 
input domain to arbitrary accuracy provided the network 
has a sufficiently large number of hidden units [23, p. 230]. 
Thus, ANNs are suitable for the proposed damage detection 
method which attempts to predict acceleration signals.

In this study, an ANN was trained to curve fit accelera-
tion time series in the undamaged state for a single cross-
ing of the moving mass. To do this, the healthy data were 
arranged appropriately and given as an input to the ANN. 
Corresponding to each input is a target output—which also 
comes from the healthy data. The ANN was provided with 
many input–target pairs to learn the structure’s undamaged 
response as best as possible.

The data were arranged so that n accelerations (from m 
sensors) before acceleration p, and n accelerations (from m 
sensors) after acceleration p were given an an input to the 
ANN. The target was then to predict acceleration p for a 
particular sensor.

Expression 1 and 2 show an example of how the inputs 
and targets were arranged to predict the mid-accelerations. 
In this example, the number of sensors (m) is 7. The number 
of accelerations before and after acceleration p was set to 
n = 3 . The acceleration at time p was set as the target. Start-
ing from p = n + 1 , each acceleration in the acceleration time 
series is set as the target, while the surrounding n accelera-
tions before and after p are given as inputs. Here v and T rep-
resent the velocity and temperature for each particular run.

In this study, seven accelerometers were used so m = 7 , 
as in the example. However, the number of delays was set 
to 10 so n = 5 . A separate ANN was trained to predict the 
accelerations at each sensor. The same inputs were given 
to train each ANN, however, the targets varied as shown 
in Expression 2. A graphic example of the inputs and pre-
dicted target values is illustrated in Fig. 8a. This method of 
arranging the inputs and targets for training the ANN was 

found to give better performance than the prediction of next 
accelerations for most cases.

2.3.2.1  Evaluation of ANN performance  Using this method, 
a good fit could be obtained between the predicted accel-
erations and targets as shown in Fig. 8b. Nevertheless, the 
predictions were not perfect. Even in the healthy state, pre-
diction errors existed and contained some variability from 
one run to the next.

The performance of the predictions made by the network 
was calculated by determining the total deviation between 
the predicted and target values for an entire run. The root 
mean square error (RMSE) between each output–target was 
summed for a particular run to calculate the total prediction 
error for that run as shown in Eq. (3).

(1)Inputs =
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where for each instant i, target
i
 is the measured acceleration, 

output
i
 is the acceleration predicted by the ANN, and N is 

the total number of samples for a particular run. Compared 
to the simple mean absolute error, the RMSE magnifies and 
severely penalizes large errors [5] making this a more suit-
able choice of error function.

Once the network was trained, it was presented with new 
unseen data. This could consist either of healthy or damaged 
data. The ANN makes predictions assuming the structure 
will respond according to the relationships learned from the 
undamaged training data. The RMSEs between the predicted 
and target accelerations are therefore expected to increase 
when the structure is damaged. Thus, the RMSEs were 
deemed to be suitable damage-sensitive features.

Finally, to detect damage, the magnitude and/or the distri-
bution of the damage-sensitive features (i.e. RMSEs) could 
be compared. Outliers from the normal condition were 
flagged as damage as described in the following section.

2.3.3 � Outlier detection

Mahalanobis distance was used to calculate a damage index 
(DI) for each run. This measure has been widely used in past 
damage detection studies [24–27], as it is fairly simple and 
allows multivariate data to be reduced to a single damage 
index. A 95% threshold was applied over the healthy data. 
Anything above the threshold was considered to be damage. 
A requirement for using Mahalanobis distance is that the 
data should be normally distributed—or Gaussian. To ensure 
this, both Lilliefors and Anderson–Darling tests were used.

Mahalanobis distance was good at giving a damage 
index for each individual run. However, every now and 
then, healthy data were flagged as an outlier but thereafter 
returned to below the threshold.

Damage is expected to cause a permanent change to the 
structure and one would expect more than one point to indi-
cate abnormal behaviour if damage was present. Therefore, 
a statistical test comparing a moving window of ten points 
from the unknown data with a reference healthy distribution 
was used to detect changes to the structure which presented 
consistent indications of damage. The two-sample Kolmogo-
rov–Smirnov test was therefore chosen as the second DI, as 
it does not require any assumptions about the distribution 
of the data [28], samples of different sizes can be compared 
and smaller sample sizes are acceptable [29]. Furthermore, 
the test can detect differences in both the means as well as 
the variances between the two samples [30] while the t test 
is only capable of detecting differences in the means [31]. 
When using the Kolmogorov–Smirnov-based damage index, 

(3)RMSE =

�∑T

i=1
(output

i
− target

i
)2

N

the damage threshold was defined as the 0.05 significance 
level.

All tests were performed from a constant drop height 
resulting in a small variation in velocity. Therefore, a Gauss-
ian process was not required to characterise the damage-
sensitive features according to the velocity.

2.3.4 � Hyperparameter search

A hyperparameter search was conducted to determine a 
suitable network architecture for the ANN. Matlab provides 
a Bayesian optimisation approach, bayesopt, for this 
problem which is in line with recommendations from the 
literature [32]. bayesopt uses the ARD Matérn 5/2 ker-
nel function. The hyperparameters considered as well as the 
constraints of possible inputs are shown in Table 4.

The validation performance of the network was used as 
an objective function for the optimisation. Here the valida-
tion performance refers to minimising the error defined in 
Eq. (3) over the validation set (i.e. 15% of the training set 
as shown in Fig. 5). Figure 9 shows the objective function 

Fig. 9   Objective function model for the hyperparameter search

Table 4   Hyperparameters considered for optimisation

(*) Gradient descent backpropagation, (†) Bayesian regularisation 
backpropagation, (‡) Levenberg–Marquardt backpropagation

Hyperparameter Range of inputs considered

Transfer function Log-sigmoid (logsig)
Tan-sigmoid (tansig)
ReLU (poslin)

Training function traingdx(*)
trainbr (†)
trainlm (‡)

Network depth 1–6 hidden layers
Network width 5–40 neurons per hidden layer
Number of delays 1–14 delays in the input time signal
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model obtained from optimising the number of hidden lay-
ers as well as the number of neurons per layer for the ANN 
to predict mid-accelerations. Smaller values indicate better 
performance. From this figure, one can see that the perfor-
mance increases rapidly up to approximately 25 neurons per 
layer. There is also no significant increase in performance 
from using more layers for the given problem. The chosen 
parameters are indicated in Table 5.

3 � Damage cases investigated

Six damage cases were investigated. These were chosen to 
investigate various phenomena of interest. Table 6 gives a 
brief description of each damage case, while the correspond-
ing damage locations are shown in Fig. 10. For some cases, 
the selected members were influenced by the sensor loca-
tions. The reader is therefore referred to Fig. 6 for a diagram 
of the accelerometer locations.

D1 and D2 were selected to study the effect of damage in 
one of the main trusses. D1 was chosen at a location with a 
high density of sensors, while D2 was chosen at a location 
with a lower sensor density. This configuration was chosen 
to investigate the effect of sensor density on the detection 
capability of the algorithm. When investigating damaged 
joints, Lee et al. [11] found that a particular difference could 
not be detected if all sensors were placed at healthy joints 
using a continuous relative wavelet entropy method. The 
effect of sensor density on detection capability was therefore 
investigated for the proposed algorithm.

D4 was chosen to investigate damage to one of the sup-
porting members. This member was located at a densely 
instrumented portion of the structure and thus damage was 
expected to be easily detected at this location. Some ini-
tial cases which were easy to detect were included to help 
validate and improve the algorithm before considering more 
complex and subtle damage scenarios.

D3 and D5 were selected to study the damage detection 
capability of the algorithm for braces in the transverse direc-
tion. Many previous studies such as Pandey and Barai [14], 
Niu [15], Laory et al. [8], Niu and Qun [16] and Lee et al. 
[11] only investigated two-dimensional truss structures, 
while Neves et al. [5] investigated damage to the bracing 
of a concrete–steel composite railway bridge. It was there-
fore deemed of interest to include members in the transverse 
direction for this study.

D6(a to e) was selected to investigate damage in the main 
beam. Previous studies such as Laory et al. [8] have often 
focused on the bottom chords of truss structures. Neves et al. 
[5] recommended that the smallest detectable damage should 
be investigated to understand the limitations of the method 
proposed by Gonzalez and Karoumi [4]. This damage case 
was therefore divided into five different subcategories with 
different degrees of damage. This was chosen to simulate 
gradual damage as well as to help identify the smallest 
detectable damage.

4 � Damage detection

Damage cases 1–5 involved the removal of one member from 
the structure. The aim was therefore to identify a deviation in 
the structural behaviour from the reference healthy state. The 
results were presented for both Mahalanobis distance and 
Kolmogorov–Smirnov damage index using an ANN trained 
to predict mid-accelerations.

4.1 � Effect of sensor density on damage detection 
ability

Damage cases 1 and 2 were used to investigate the effect 
of sensor density on the ability of the algorithm to detect 

Table 5   Chosen ANN configurations (see Table  4 for abbreviation 
definitions)

Hidden layers Neurons/layer Delays Transfer 
function

Training 
function

1 40 10 poslin trainbr

Table 6   Description of damage cases investigated

(§) see Fig. 12

Case Member Description

D1 Truss Member removed
D2 Truss Member removed
D3 Bracing—deck Member removed
D4 Support Member removed
D5 Bracing—arch Member removed
D6a Beam 5 mm deep cut
D6b Beam 10 mm deep cut
D6c Beam 15 mm deep cut
D6d Beam 15 mm deep cut + widening(§)
D6e Beam 15 mm deep cut + widening(§)

D6(a to e)

D1

D5

D4

D3
 D2

Fig. 10   Members corresponding to the damage cases in Table 6
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damage. Both cases were identical from a structural point 
of view. However, damage case 1 was located in a densely 
instrumented portion of the structure with sensors placed on 
either end of the member. In contrast, damage case 2 had far 
fewer sensors in its vicinity.

The damage indices are presented graphically in Fig. 11, 
while the confusion matrices for each method are shown in 
Table 7.

Both cases were successfully identified as damage. How-
ever, the Mahalanobis distance DI indicated a much higher 
level of damage for damage case 1 as can be seen when 
comparing Fig. 11a, c. This shows that sensor density does 
impact the damage detection ability. Another observation is 
that the damage index is not proportional to the magnitude 
of damage but instead indicates the degree of discordance 
between the two data sets.

Some other damage detection methods have also encoun-
tered difficulties when trying to detect damage away from the 
measurement locations. For example, Lee et al. [11] found 
that if all sensors were located at a healthy joint, damage at 
neighbouring joints could not be detected.

The confusion matrices in Table  7 show that the 
Mahalanobis distance DI is more susceptible to type I errors 
(false positive detection), where healthy data are detected 
as damage. This is because a cutoff value was set at the 
95th percentile of the reference healthy data. The Kolmogo-
rov–Smirnov test is more robust to these errors, as this index 
relates to the likelihood of a ten-window set of runs belong-
ing to the same set as the reference healthy data.

For damage case 2, the Kolmogorov–Smirnov test gave 
a type II error (false negative detection). These errors are 
typically seen as more serious than type I errors as a dam-
aged run was detected as healthy. The run that was assigned 
as healthy was the first of the damaged runs to be presented 
to the algorithm. Because this damage index considers a 
10-point window, a single damaged run may not raise the 
alarm. However, after each successive damaged run is added 
to the window the index indicates damage with a greater and 
greather certainty.
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(a) Damage case 1, MD.
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(b) Damage case 1, K-S.
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(c) Damage case 2, MD.
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(d) Damage case 2, K-S.
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(e) Damage case 3, MD.

0 50 100 150
Run number

-100

-10-1

-10-2

K
ol

m
og

or
ov

-S
m

ir
no

v 
D

I
(f) Damage case 3, K-S
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(g) Damage case 4, MD.
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(h) Damage case 4, K-S.

0 50 100 150
Run number

0

10

20

30

40

M
ah

al
an

ob
is

 D
is

ta
nc

e

(i) Damage case 5, MD.
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(j) Damage case 5, K-S.

Fig. 11   Damage detection results. For the Mahalanobis distance 
(MD) damage index, the blue +’s represent the reference set, the blue 
x’s represent healthy data in the unseen set, while the red o’s repre-
sent damaged runs in the unseen set. The horizontal dash-dotted line 
indicates the 95th percentile of the reference set. For the Kolmogo-
rov–Smirnov (K–S) damage index, the dashed blue line represents a 
lower estimate of the index’s performance, while the solid blue line 
represents an upper estimate. The two estimates differ depending on 
the sequence the data are presented in. The dash-dotted line shows the 
0.05 significance level

▸
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4.2 � Effect of the damage location on detection 
ability

Damage cases 3, 4 and 5 were used to investigate how the 
algorithm performed for different damage locations. Graphs 
for each damage case are shown in Fig. 11, while the confu-
sion matrices are given in Table 7.

Damage case 3 could not be detected by either method. 
Almost all damaged runs lie below the 95% threshold for 
the Mahalanobis distance DIs in Fig. 11e and the Kolmogo-
rov–Smirnov DI does not cross the 0.05 significance level 
in Fig. 11f. The member removed for damage case 3 was 
located between the two main beams. One explanation for 
the poor damage detection performance was that the roll-
ing mass crossing the bridge (in its centre) did not provide 
adequate excitation in the lateral direction for a difference to 
be observed between the healthy and damaged states.

Damage case 4 was clearly detected with all damage lying 
above the 95% threshold in Fig. 11g. There was only one 
damage run which was detected as healthy in the Kolmogo-
rov–Smirnov confusion matrix for this case. However, as 
discussed in the previous section, the first damaged run is 
often not identified by the Kolmogorov–Smirnov-based DI. 
This is because more evidence is needed to ensure that there 
has been a significant change between the sample and refer-
ence distributions.

The member removed for damage case 5 was a lateral 
brace, similar to that in damage case 3. While damage case 
3 was not detected, there was a clear distinction between the 
healthy and damaged runs for this case. The main difference 
was that the brace in damage case 5 was located on the arch, 
above the deck. This portion of the structure was much more 
sensitive to vibrations. In fact, the first two mode shapes 
of the structure related to the lateral vibration of the arch. 
Damage case 5 was therefore more straightforward to detect, 
as it was located in a portion of the structure more sensitive 
to vibrations. Thus, these results indicate that for damage 
to be detected the effect of the damage should influence an 
important global mode of vibration.

The Kolmogorov–Smirnov-based DI outperformed the 
Mahalanobis distance DI in damage case 5 as can be seen 
when comparing the confusion matrices between Table 7i 
and j. The subtle change in the data did not result in all 
the damage runs lying above the 95% threshold in Fig. 11i. 
However, the Kolmogorov–Smirnov-based DI detects 
a significant change in the mean and is therefore able to 
detect the damage with more certainty. Figure 11j shows a 
sharp increase in the damage index as soon as the damage 
is introduced.

5 � Gradual damage detection

Damage case 6 was used to investigate the algorithm’s abil-
ity to detect gradual damage. This damage case was divided 
into five different levels, each with progressively more dam-
age as shown in Fig. 12.

The results for the gradual damage are shown in Fig. 13a 
for the Mahalanobis distance DI. The data from the first 5 
mm cut (case 6a) were not detected, and only 4 out of 29 
points crossed the 95% threshold. The Kolmogorov–Smirnov 
DI in Fig. 13b only crossed the 0.05 significance level after 
the moving window reached the last 10 runs from damage 
case 6a. While the cut was only 5 mm deep, it involved the 
removal of the entire top flange of one of the main beams 
and thus resulted in a 16% decrease in the moment of inertia 
of the girder. It should be noted that the girder was made up 
of two steel beams as well as the timber deck.

After the 10 mm cut, there was a sharp increase in both 
damage indices, while the 15 mm deep cut only caused a 

Table 7   Confusion matrices for damage cases 1–5 (note that only 
upper limit of the K–S DI was presented here)
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sight increase in the Kolmogorov–Smirnov DI. The widen-
ing of the cut did not cause any significant increase as can be 
seen in damage case 6d and instead a decrease in the damage 
index was observed. This could be because the tests for cases 
6a to 6c were carried out on a different day to 6d and 6e.

The Kolmogorov–Smirnov-based DI determines the likeli-
hood of the test sample coming from the same distribution as 
the reference healthy sample. The index increases rapidly until 
damage is detected. Depending on the size of the samples 
being compared, there is a limit to the index. After the damage 
is determined with the highest certainty possible for the given 
sample size, the DI remains constant. This was observed for 
the single damage cases in Fig. 11b, d and h in Sect. 4. Thus, 
the Kolmogorov–Smirnov test is good at detecting subtle 
changes to the damage index such as a consistent change of 
the mean. However, on the other hand, the Mahalanobis dis-
tance DI would be a better indicator of gradual damage as the 
distance continues to increase as damaged data move further 
and further from the reference healthy data sample.

6 � Conclusions and recommendations

The aim of this research was to apply the damage detec-
tion method studied by Gonzalez and Karoumi [4], Neves 
et al. [5] and Chalouhi et al. [6] to a laboratory model. This 

involved training an artificial neural network (ANN) on 
measured accelerations from the healthy structural state. A 
reference healthy state could then be established. By com-
paring new data with this reference healthy state, damage 
could be inferred. The objective was to apply this method to 
single and gradual damage detection.

The previous studies used a Gaussian process to classify 
the prediction errors with respect to vehicle speed. Since the 
drop height, and hence speed, of the rolling mass was kept 
constant this step was not required. Instead, two damage 
indices (DI) were investigated. This included Mahalanobis 
distance DI which has been previously been applied in a 
number of studies [24, 27, 33]. This method considered the 
distance between a measured result and the mean of a ref-
erence distribution. Another damage index was developed 
which made use of the Kolmogorov–Smirnov test. This test 
determines the likelihood that a test sample is from the same 
distribution as a reference sample. The benefit of comparing 
two samples is that the method is much less prone to type 

Damage case 6a
5 mm cut

Damage case 6b
10 mm cut

Damage case 6c
(15 mm cut)

Damage Case 6d
(15 mm cut + widened by 5 mm deep)
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Damage Case 6e
(15 mm cut + widened by 10 mm deep)
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16 % Stiffness reduction in girder 19 % Stiffness reduction in girder
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20 % Stiffness reduction in girder

Fig. 12   Gradual damage accumulation for damage case 6
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Fig. 13   Results from the prediction of mid-accelerations
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I errors or false positive detections (where healthy data are 
classified as damaged).

6.1 � Single damage detection

Five single damage cases were investigated. A significant 
distinction was made between the healthy and damaged data 
for four out of these five cases. The case which could not be 
detected involved the removal of a lateral brace between the 
two main beams. A possible reason for this case not being 
detected was that the member was located in a portion of the 
structure which was not excited by the rolling mass.

Greater sensor density improved the degree to which 
damage was detected. However, the algorithm was still able 
to detect the removal of a member even if no sensors were 
located at the end nodes of that member.

The Kolmogorov–Smirnov-based DI performed better 
than the Mahalanobis distance DI for cases with subtle dif-
ferences between the healthy and damaged runs. This was 
because the method could detect changes in the distribution 
of the data compared with the reference healthy sample. 
Thus, a small but consistent change in the mean could be 
detected with a high degree of certainty.

When choosing the hyperparameters, a number of ANNs 
were trained. It was found that an improvement in the ANNs 
prediction performance over the healthy data generally 
resulted in an improvement in the damage detection capa-
bility. However, after a certain performance was achieved 
the gains in damage detection capability followed a law of 
diminishing returns, especially with respect to the greater 
computational time required.

6.2 � Gradual damage detection

The gradual damage case investigated showed that it was 
possible to detect gradual changes. However, the damage 
index did not always progress as expected. For example, one 
of the cases where one would have expected an increase in 
the damage index, a decrease was instead observed. This 
was especially clear in Fig. 13b. Thus, further investigation 
into gradual damage detection is recommended. It was also 
concluded that Mahalanbis distance DI was better for track-
ing gradual damage as this DI would continue to increase as 
damage moved further and further from the reference state.

6.3 � Recommendations

In the same way that weather forecasters do not rely on a 
single model to make predictions of the weather, engineers 
monitoring structural health should apply multiple dam-
age detection algorithms across a range of damage-sensi-
tive features. Human input could be used to interpret the 
results based on each model’s strengths and weaknesses, 

their knowledge of the structure as well as the prevailing 
environmental conditions. Confidence in the overall detec-
tion system could be improved when a number of models 
converge to the same prediction.

6.3.1 � Applications for SHM on real structures

Based on the conclusions above the following comments 
could be made for applications of the method on real 
structures:

•	 Using an ANN to predict accelerations, damage can be 
detected especially if the damaged member is active in 
an important global mode of vibration.

•	 Damage can be detected by sensors away from the loca-
tion of damage.

•	 A damage index comparing statistical significance (such 
as the Kolmogorov–Smirnov test) performs better at dis-
tinguishing subtle damage than a discordancy measure 
such as Mahalanobis distance.

•	 An improvement in the ANN’s performance tends to 
improve the damage detection capability.

•	 A discordancy measure such as Mahalanobis distance is 
better at tracking gradual damage than a statistical sig-
nificance test such as the Kolmogorov–Smirnov test.

6.3.2 � Recommendations for future research

This study was conducted indoors with fairly constant tem-
peratures. Furthermore, there were only small differences in 
the speeds of the mass crossing the bridge. Further research 
could build on the work by Chalouhi et al. [6] to study the 
impact of operational and environmental variations. Alterna-
tively, the effect of excluding environmental variables such 
as temperature could also be investigated.

The first gradual damage case of a 5 mm cut was not 
identified. Therefore, improvements to detect more subtle 
damage could be investigated.

Real-world, continuous structural healthy monitoring 
systems generate vast amounts of data. The amount of com-
putational power required to analyse this data using ANNs 
should be investigated. For example, the minimum number 
of training runs to accurately characterise the structure’s 
behaviour under operational and environmental conditions 
could be evaluated. A more in-depth study on optimal hyper-
parameters could be conducted to assess training data from 
different structures.

Deep neural networks have made significant gains in 
image and speech recognition. There should therefore be an 
investigation into whether similar benefits can be obtained 
by applying deep neural networks to damage detection 
problems.
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