
Vol.:(0123456789)

Journal of Civil Structural Health Monitoring (2020) 10:1–15 
https://doi.org/10.1007/s13349-019-00365-4

123

ORIGINAL PAPER

Computational platform for probabilistic optimum monitoring 
planning for effective and efficient service life management

Sunyong Kim1 · Dan M. Frangopol2

Received: 9 October 2019 / Accepted: 25 October 2019 / Published online: 14 November 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Over the past decades, significant advances have been accomplished in developing SHM techniques to detect the existing 
damages in deteriorating structures and maintenance techniques to extend the service life of these structures. The application 
of SHM can lead to more accurate damage detection. By using the information obtained from SHM, the uncertainties associ-
ated with structural performance assessment and prediction can be reduced. If the advanced SHM techniques are optimally 
integrated in life-cycle management, the efficiency and effectiveness of service life management of deteriorating structures 
can be maximized. In this paper, a computational platform for optimum monitoring planning based on multi-objective opti-
mization (MOPT) and decision making is presented. The main components integrated in this computational platform are 
(a) formulation of objectives for optimum monitoring planning; (b) MOPT and decision making for application of the best 
monitoring plan; and (c) updating the damage propagation and structural performance prediction. The objectives for optimum 
monitoring planning are formulated considering the availability of monitoring data, damage detection, maintenance, service 
life and life-cycle cost. Through the MOPT and decision making, the best monitoring plan is determined. The updating 
process integrates the information obtained from monitoring to improve the accuracy and reduce the uncertainty associated 
with the damage occurrence and propagation prediction and monitoring planning.

Keywords SHM · Monitoring planning · Uncertainty · Multi-objective optimization · Decision making · Computational 
platform · Life-cycle cost · Damage detection · Updating

1 Introduction

Structural health monitoring (SHM) has been treated as 
an effective diagnostic tool to detect damage promptly and 
prevent unexpected structural failure of civil infrastructure 
systems [5]. The SHM is generally applied for the purposes 
of accurate and reliable system identification, condition 
assessment, structural performance prediction, and service 
life management. Over the last few decades, significant 

advances have been accomplished in developing SHM 
including non-destructive inspection techniques [7, 11, 57]. 
Along with the demands to improve the accuracy and effi-
ciency in SHM, there have been significant developments of 
the next-generation SHM techniques using cameras, drones, 
robotic sensors, and smartphones [55]. These developments 
in the SHM techniques should lead to development of more 
accurate and reliable approaches to predict structural perfor-
mance and manage the service life of deteriorating structures 
using SHM data.

The life-cycle cost analysis of deteriorating structures is 
based on the structural performance prediction considering 
maintenance interventions. For this reason, the uncertainties 
associated with structural performance assessment and predic-
tion affect the uncertainties in the life-cycle cost analysis [18]. 
The reduction of the uncertainties associated with structural 
performance assessment and prediction can lead to timely 
and appropriate maintenance actions and, as a result, the life-
cycle cost of a deteriorating structure can be reduced [3, 19]. 
These uncertainties can be significantly reduced by using the 
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monitoring data in a rational way. The reduction in the life-
cycle cost corresponds to the benefit of SHM application [15]. 
The benefit produced from SHM applications can be maxi-
mized through the optimum monitoring planning [22–27, 52].

The monitoring planning should consider the effects of 
SHM on damage propagation and structural performance pre-
diction, maintenance actions and life-cycle cost. These effects 
have been investigated extensively during the last decade [16]. 
For instance, Liu et al. [38, 39], Kwon and Frangopol [33, 34], 
Kwon et al. [35] and Soliman et al. [54] presented the proba-
bilistic approaches to predict the fatigue damage and struc-
tural performance based on monitoring data. The integration 
of SHM in life-cycle management of deteriorating structures 
can be found in Okasha et al. [46], Orcesi et al. [49], Orcesi 
and Frangopol [50], and Okasha and Frangopol [45]. Based 
on these investigations, several probabilistic approaches to 
establish the optimum monitoring plans have been developed 
in Kim and Frangopol [24, 26, 27, 31], and Sabatino and 
Frangopol [52]. However, these developed approaches may 
be limited to specific conditions for external loads (e.g., traffic 
loads and sea loads), deterioration mechanisms (e.g., corrosion 
in a reinforced concrete and fatigue in a steel structure) and 
target structures (bridges and marine structures). Therefore, 
it is necessary to integrate the recently developed approaches 
in a computational platform for a general application to civil 
infrastructure.

This paper presents such an integrated computational 
platform for optimum monitoring planning considering use 
of SHM for damage propagation and structural performance 
prediction, maintenance actions and life-cycle cost. The 
main components of the overall platform are described with 
the detailed computational flowchart and the associated the-
oretical background. In addition, a summary of approaches 
and applications associated with the computational plat-
form for optimum monitoring planning is presented. The 
techniques used in the computational approach are based 
on probabilistic concepts and methods to rationally deal 
with the uncertainties associated with the monitoring data, 
damage occurrence and propagation prediction, and struc-
tural performance assessment and prediction. The presented 
computational platform can be applied to any deteriorating 
civil infrastructure such as bridges, buildings and nuclear 
power plants.

2  Computational platform for optimum 
monitoring planning

The presented computational platform for optimum moni-
toring planning consists of the three main components: (a) 
formulation of objectives for monitoring planning, (b) multi-
objective optimization (MOPT) and decision making and (c) 
use of monitoring data for updating the damage occurrence/

propagation and structural performance, as shown in Fig. 1. 
The optimum monitoring planning resulting from this com-
putational platform is associated with the optimum number 
of monitorings, monitoring starting times and monitoring 
durations. The formulations of objectives for optimum moni-
toring planning are based on availability of monitoring data, 
monitoring cost, damage detection delay, maintenance delay, 
reliability (i.e., probability of survival) or reliability index, 
service life extension and life-cycle cost. The formulated 
objectives are used for the MOPT, which results in the mul-
tiple Pareto optimal solutions. Through the decision-making 
process, the best solution is selected from the Pareto optimal 
solutions. The optimum number of monitorings, monitoring 
starting times and monitoring durations are represented by 
the best Pareto solution. The information collected during 
monitoring can be used to predict the damage propagation 
and structural performance under uncertainty and update 
the existing information. The next monitoring plan can be 
established from the MOPT and decision making with the 
updated information. The details of the computational plat-
form of Fig. 1 are described in the following sections of 
this paper.

3  Formulation of objectives for optimum 
monitoring planning

The monitoring plans can be established with and without 
enough initial information on damage occurrence and propa-
gation prediction. When the initial information is not enough 
to predict the damage occurrence and propagation reliably, 
the optimum monitoring planning can be based on the avail-
ability of monitoring data and cost. The associated MOPT 
considers two objectives: maximizing the expected average 
availability of monitoring data and minimizing the expected 
monitoring cost. If the damage occurrence and propagation 
can be predicted with enough initial information, the moni-
toring planning can be performed with multiple objectives 
including minimizing the expected damage detection delay, 
minimizing the expected maintenance delay, maximizing the 
reliability index, maximizing the expected service life exten-
sion and minimizing the expected life-cycle cost.

3.1  Objectives based on availability of monitoring 
data

The availability of monitoring data is defined as the prob-
ability that the structural performance prediction based on 
monitoring data will be effective during a non-monitoring 
time interval [24, 26, 52]. Considering the residual between 
the values from monitoring and performance prediction 
model, the availability of monitoring data is formulated. The 
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expected average availability of monitoring data during the 
non-monitoring tnd days E

(
Ā
)
 is expressed as [26] 

where tmd is the monitoring duration. E
(
Ā
)
 ranges from zero 

to one. An increase in the monitoring duration tmd and/or 
reduction of the non-monitoring duration tnd results in an 
increase in E

(
Ā
)
 as indicated in Eq. (1).

The total monitoring cost Cmon can be estimated as [24] 

where Cmon,o is the monitoring cost during the given moni-
toring period tmd,o; Nmon is the number of monitorings over 
a prescribed time; r is the discount rate of money. Larger 
E
(
Ā
)
 , which is associated with more reliable predic-

tion of structural performance, can be achieved by longer 

(1)E
(
Ā
)
=

tmd

tnd

[
1 − exp

(
tnd

tmd

)]
,

(2)Cmon =

(
tmd

tmd,o

⋅ Cmon,o

)
⋅

Nmon∑

i=1

(
1

(1 + r)(i−1)(tmd+tnd)

)
,

monitorings. However, it requires additional monitoring cost 
Cmon. Accordingly, the monitoring plan can be formulated 
as a bi-objective optimization based on the two conflicting 
objectives: maximizing E

(
Ā
)
 and minimizing Cmon.

The expected average availability E
(
Ā
)
 and the total 

monitoring cost Cmon can be integrated into the expected 
monetary loss (EML), which is formulated as [26]: 

where ai is the alternative representing the ith monitoring 
plan, Closs is the monetary loss when the monitoring data is 
not effective for future structural performance prediction, 
and Cmon,i and Ei

(
Ā
)
 are the total monitoring cost and the 

expected average availability of monitoring data associated 
with the alternative ai, respectively. The alternative a* lead-
ing to the minimum EML of Eq. (3) corresponds to the opti-
mum monitoring plan. Since the formulations of Eqs. (1), (2) 
and (3) consist of monitoring and non-monitoring durations, 
and monitoring cost, the monitoring planning based on the 

(3)EML
(
ai
)
= Cmon,i + Closs ⋅

(
1 − Ei

(
Ā
))
,

Start

Enough initial 
information 

for predicting damage 
occurrence and 
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No Formulation of objectives based on 
availability of monitoring data and 

monitoring cost
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Formulation of objectives for 
monitoring planning considering 

damage detection, maintenance, service 
life and cost (see Figure 3)

Multi-objective optimization 
and decision making process

(see Figure 4)

Application of optimum 
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required ?
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Application appropriate 
maintenance actions
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performance prediction
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Use of monitoring data for updating 
existing damage propagation and 

performance prediction

Fig. 1  Schematic of computational platform for optimum monitoring planning
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availability of monitoring data can be useful when the initial 
information to predict the damage occurrence and propaga-
tion is not enough.

3.2  Objectives with damage occurrence 
and propagation prediction

The damage occurrence and propagation prediction is the 
first phase of the formulations of objective functions con-
sidering damage detection, maintenance, service life and 
cost. Figure 2 shows the detailed computational procedure 
for prediction of damage propagation. To predict the struc-
tural performance of a deteriorating structure, the critical 

deterioration mechanisms (e.g., fatigue and corrosion) and 
locations affecting the structural performance need to be 
identified. The appropriate prediction models representing 
the critical deterioration mechanisms should be established. 
For a given time, the degree of damage under uncertainty 
can be expressed by the probability density function (PDF). 
The uncertainty associated with the time when the damage 
reaches a specific threshold of damage can be also repre-
sented by the PDF. For example, the fatigue crack size at can 
be estimated at time t as [28, 40]

(4)

at =
[
a
(2−m)∕2

0
+
(
2 − m

2

)
⋅ C ⋅ S

m

re
⋅ Y

m
⋅ �m∕2

⋅

(
Nan ⋅ t

)]
(

2

2−m

)

for m ≠ 2,

Fig. 2  Detailed computational 
procedure for damage propaga-
tion prediction under uncer-
tainty Identify critical damage processes and 

locations affecting structural performance

Establish damage propagation
prediction model

Loop in time
do t = t_start : t_interval : t_target

• t_start = starting time
• t_interval = predefined time interval
• t_target = target service life

Generate random variables for damage 
prediction using Monte Carlo simulation 

or Latin hypercube sampling

Estimate time-dependent variables and 
associated probabilistic parameters of 

the damage prediction model

Compute degree of damage at this time

t ≤ t_target

No

Compute PDF of degree of damage 
at each time
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Loop in degree of damage
do d = d_start : d_interval : d_target

• d_start = starting degree of damage
• d_period= predefined damage interval
• d_target = target degree of damage

Generate random variables for damage 
prediction using Monte Carlo simulation or 

Latin hypercube sampling

Estimate variables and associated probabilistic 
parameters of the damage prediction model 

according to the degree of damage

Compute time when damage reaches 
specific degree of damage

d ≤ d_target

No

Compute PDF of time at each degree of 
damage

Yes

Start

End
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where a0 is the initial crack size, Sre is the stress range, Y 
is the geometry constant, and Nan is the annual number of 
cycles. C and m are the material crack propagation param-
eters. Furthermore, the time t to reach at is predicted as [21, 
22]

By treating the parameters in Eqs. (4) and (5) as random 
variables, the PDF of the crack size for a given time and PDF 
of the time for a given crack size can be obtained as shown 
in Fig. 2. These PDFs are used to formulate the objective 
functions for optimum monitoring planning.

Figure 3 shows the computational procedure to formulate 
the objective functions: the expected damage detection delay 
E(tdel_d), expected maintenance delay E(tdel_m), reliability Ps 
(i.e., probability of survival) or reliability index β, expected 
service life extension E(texlife) and expected life-cycle cost 
Clife. The damage detection delay is formulated using the 
event tree considering the uncertainties associated with the 
damage occurrence and propagation, and damage detection. 
The expected damage detection delay E(tdel_d) for Nmon mon-
itorings is expressed as [18, 29, 30]

(5)t =
a
(2−m)∕2

N
− a

(2−m)∕2
o

(
2−m

2

)
⋅ C ⋅ Sm

re
⋅ Ym

⋅ �m∕2
⋅ Nan

for m ≠ 2.

where tms,i is the ith monitoring starting time; tmd is the mon-
itoring duration; and fT(t) is the PDF of the damage occur-
rence time t. The time tms,i−1 + tmd for i = 1 and tms,i for i = 
Nmon + 1 are zero and service life tlife, respectively.

The maintenance delay is the time interval between the 
damage occurrence and the maintenance application. The 
expected maintenance delay is formulated based on the 
probabilistic relation among the degree of damage and type 
of maintenance. For example, when one-time monitoring 
is applied for a deteriorating structure subjected to fatigue, 
the expected maintenance delay E(tdel_m) can be expressed 
as [31] 

(6)E
(
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)
=
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{
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}
,

(7)
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0
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P
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f
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]

+
�
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0
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P
(
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)
⋅
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)
f
T
(t)
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�
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tlife − t

)
f
T
(t)
]
,

Predict damage occurrence/propagation 
under uncertainty (Figure 2)

Start

Construct even tree considering all possible 
cases for damage to be detected or not 

detected for given number of monitorings

• Estimate damage detection delay for each branch of the 
event tree and occurrence probability 

• Formulate expected damage detection delay E(tdel_d)

• Predict time for damage to reach critical degree of damage 
under uncertainty

• Estimate damage detection-based failure criterion
• Formulate damage detection-based reliability Ps (or 

reliability index β)

• Consider relation between degree of damage and type 
of maintenance or repair to be applied

• Formulate expected maintenance delay E(tdel_m)

• Add effect of maintenance or repair on service life 
extension 

• Formulate expected service life extension E(texlife)
• Consider the relation among monitoring, maintenance (or 

repair), structural failure and life-cycle cost 
• Formulate expected life-cycle cost Clife

End

Fig. 3  Detailed computational procedure to formulate objective functions
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where a1 is the monitored crack size at time tms,1 + tmd, 
and ama is the critical crack size requiring maintenance. 
The monitoring plan can be optimized by minimizing the 
expected maintenance delay E(tdel_m) [18, 31].

The reliability can be estimated based on the relation 
between the damage detection delay tdel_d and time-based 
safety margin tmar. The time-based safety margin tmar is the 
time interval between damage occurrence time and time to 
reach the critical crack size resulting in the structural failure. 
The associated state function g(t) is defined as [18, 27]

By treating tdel_d and tmar as random variables, the reliability 
Ps is estimated as

The reliability index β associated with Ps is

where Φ−1(·) is the inverse of the standard normal cumula-
tive distribution function.

The service life can be extended by applying maintenance 
actions. According to the degree of damage detected by 
monitoring, the appropriate maintenance type can be deter-
mined. The service life extension is affected by the main-
tenance type applied to the damaged details. Therefore, the 
total service life extension texlife for fatigue-sensitive struc-
tures can be formulated as [18, 31]

where tlife,i−1 is the service life before the ith monitoring, ai 
is the crack size detected by the ith monitoring, ama,j is the 
jth maintenance type among Nma types and tex,j is the service 
life extension caused by the jth maintenance. Considering 
the uncertainties associated with the service life tlife,i−1 and 
service life extension tex,j in Eq. (11), the expected total ser-
vice life extension E(texlife) can be used as an objective func-
tion for optimum monitoring planning.

The expected life-cycle cost Clife for monitoring plan-
ning can be formulated including the effects of monitor-
ings, maintenance and structural failure on the life-cycle cost 
(see Fig. 3). The formulation of the expected life-cycle cost 
considering monitoring is [15] 

where Cfail is the failure cost. The maintenance cost Cma in 
Eq. (12) is estimated as [31] 

(8)g(�) = tmar − tdel_d.

(9)Ps = P(g(�) ≥ 0).

(10)� = �−1
(
Ps

)
,

(11)

texlife =

Nmon∑

i=1

[
P
(
tms,i + tmd ≤ tlife,i−1

)

⋅

(
Nma∑

j=1

P
(
ama,j ≤ ai < ama,j+1

)
⋅ tex,j

)]
,

(12)Clife = Cma + Cfail + Cmon,

Furthermore, the monitoring cost Cmon in Eq. (12) is com-
puted as [50] 

where Cmon_i is the initial monitoring cost to install the mon-
itoring system and Cmon_t is the monitoring cost to operate 
and maintain the monitoring system.

4  Multi‑objective optimization and decision 
making

The computational procedure for the MOPT and decision-
making process is illustrated in Fig. 4. When the two objec-
tives (i.e.,  OA1 = maximizing the expected average avail-
ability of monitoring data E

(
Ā
)
 , and  OA2 = minimizing the 

expected monitoring cost Cmon) are used for the MOPT, the 
design variables are the monitoring and non-monitoring 
durations, tmd and tnd, respectively. The time period for mon-
itoring planning and the monitoring cost for the prescribed 
time period are given. For example, the Pareto optimal solu-
tions of the MOPT based on two objectives,  OA1 and  OA2, 
are illustrated in Fig. 5a. The solutions  A1,  A2,  A3 and  A4 
in Fig. 5a are associated with E

(
Ā
)
 = 0.2, 0.4, 0.6 and 0.8, 

respectively. The solutions  A1,  A2,  A3 and  A4 represent the 
monitoring and prediction durations for a given time period, 
as shown in Fig. 5b. Detailed information can be found in 
Kim and Frangopol [22–26]. For MOPT formulated with 
the objectives considering damage occurrence and propaga-
tion prediction (i.e.,  OD1 = minimizing E(tdel_d),  OD2 = min-
imizing E(tdel_m),  OD3 = maximizing β,  OD4 = maximizing 
E(texlife), and  OD5 = minimizing Clife), the design variables 
are the monitoring starting time and monitoring duration. 
The number of monitorings, maintenance types and costs 
related to monitoring, maintenance and failure are given for 
the MOPT as shown in Fig. 4.

When the MOPT is applied, there are two decision alter-
natives to determine the best optimal solution for monitoring 
planning: decision making before and after solving MOPT 
as shown in Fig. 4. The decision making before MOPT pro-
vides the weights of objectives, which are computed using 
the subjective weight determination methods such as rating 
and paired comparison methods. These methods depend 
on the subjective preference of the decision maker without 
information on the Pareto optimal solution set [41]. With the 

(13)

Cma =

Nmon∑

i=1

[
P
(
tms,i + tmd ≤ tlife,i−1

)

⋅

(
Nma∑

j=1

P
(
ama,j ≤ ai < ama,j+1

)
⋅ Cma,j

)]
.

(14)Cmon =

Nmon∑

i=1

(
Cmon_i + Cmon_t ⋅ tmd

)
,



7Journal of Civil Structural Health Monitoring (2020) 10:1–15 

123

weights of the objectives, the multiple-objective functions 
are converted into a single-objective function as

(15)fcon =

Nobj∑

i=1

wi ⋅ f
norm
i

,

where fcon is the converted single-objective function; Nobj 
is the number of objective functions; wi is the weight fac-
tor of the ith objective function; and fi

norm is the ith nor-
malized objective function. Finally, the best optimal solu-
tion for monitoring planning can be obtained by solving a 

Formulate objectives for monitoring 
planning (Figure 3)

Start

Formulate multiple optimization problem
• Design variables: monitoring starting time and duration

• Given conditions: Number of monitorings, maintenance types
monitoring cost, maintenance cost, and failure cost

Consider all objectives 
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No

Converting multiple 
objectives into single 

objective?
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No

Compute Pareto optimal solution set using 
multi-optimization tool (e.g., GA)

Identify essential and redundant objectives 
using the dominance relation-based 

objective reduction approach

Determine weights of the essential objectives 
using objective weight determination methods 

(e.g., SD, CRITIC, and CCSD methods)

Select the best Pareto optimal solution 
using multiple attribute decision making

(e.g., SAW, TOPSIS and ELECTRE methods)

End

Compute a optimal solution using single 
optimization tool (e.g., constrained 

nonlinear minimization algorithm, GA)

Determine weights of objectives using 
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(e.g., rating and paired comparison methods)

Convert multiple objectives into 
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Objectives with damage occurrence and propagation prediction
• OD1 = minimizing the expected damage detection delay E(tdel_d)
• OD2 = minimizing the expected maintenance delay E(tdel_m)
• OD3 = maximizing the damage detection-based reliability Ps (or 

reliability index β)
• OD4 = maximizing the expected service life extension E(texlife)
• OD5 = Minimizing the expected life-cycle cost Clife

Objectives based on availability of monitoring data
• OA1 = maximizing the expected average availability of 

monitoring data ̅
• OA2 = minimizing the total monitoring cost Cmon
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• Design variables: monitoring and non-monitoring durations
• Given conditions:

Time period for monitoring planning, and monitoring cost 
for given time period

Fig. 4  Detailed computational procedure for multi-objective optimization and decision making process
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single-objective optimization problem associated with the 
converted objective function fcon.

In the decision making after MOPT, the Pareto optimal 
solution set is obtained without converting the multiple 
objectives into a single objective. Using the dominance 
relation-based objective reduction approach [4], the essential 
objectives are identified. The essential objective set ΩES is 
the set with the smallest number of objectives that can result 
in the same Pareto optimal solutions of MOPT with the ini-
tial objective set ΩIN. Figure 6 compares the Pareto optimal 
sets of ΩIN = {OD1,  OD2,  OD3,  OD4,  OD5} and ΩES = {OD2, 
 OD3,  OD4}, when the number of monitorings Nmon is equal 
to one, and the design variable is the first monitoring starting 
time tms,1. The Pareto solutions of ΩIN associated with five 
dimensions (equal to the number of objectives for MOPT) 
are projected on the 3D Cartesian coordinate system con-
sisting of E(tdel_m), β and E(texlife). As shown in Fig. 6, the 
Pareto optimal set of ΩIN is identical to the one of ΩES. As 
a result, the objectives  OD2,  OD3 and  OD4 are the essential 
objectives, and  OD1 and  OD5 are redundant. Since there is no 

effect of the redundant objectives  OD1 and  OD5 on the Pareto 
optimal solutions, the weights of  OD1 and  OD5 are zero.

The weights of the essential objectives are computed 
using the objective weight determination methods (e.g., 
the standard deviation (SD), criteria importance through 
the inter-criteria correlation (CRITIC), and correlation 
coefficient and standard deviation (CCSD) methods). The 
multiple attribute decision-making approaches (e.g., the 
simple additive weighting (SAW), the technique for order 
preference by similarity to ideal solution (TOPSIS), and 
the elimination and choice expressing the reality (ELEC-
TRE) methods) estimate the overall assessment values of 
the Pareto optimal solutions with the computed weights of 
the essential objectives. The best monitoring plan has the 
largest overall assessment values. Figure 7 shows the Pareto 
solutions and the three best solutions  ASD,  ACR and  ACS, 
which use SD, CRITIC and CCSD methods, respectively, to 
determine the weights of objectives. For the formulation of 
the MOPT associated with Fig. 7, the design variables are 
monitoring starting time and duration for the given number 
of monitoring Nmon = 2. The overall assessment values of 

Fig. 5  Pareto optimal solution 
set based on availability of mon-
itoring data: a Pareto optimal 
solution set, b monitoring plans 
associated with the representa-
tive solutions A1, A2, A3 and 
A4 (adapted from [25])
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the three solutions  ASD,  ACR and  ACS are estimated using 
the SAW method. The selected best Pareto optimal solution 
corresponds to the optimum monitoring plan. The details 
associated with Figs. 6 and 7 are described in Kim and Fran-
gopol [31].

5  Use of monitoring data for damage 
propagation and performance prediction

Figure 1 includes the use of monitoring data for (a) initial 
damage propagation and structural performance predic-
tion, and (b) updating the existing information on damage 
propagation and structural performance prediction after each 
monitoring. By using the information from monitoring (e.g., 
acceleration, strain, stress range and number of cycles under 
operational loadings) in an appropriate way, the accuracy of 
damage propagation and structural performance prediction 

can be improved effectively and, as a result, the monitoring 
planning computed from the presented computation platform 
becomes more reliable [19].

5.1  Use of monitoring data for initial damage 
propagation and structural performance 
prediction

When the initial information on damage propagation and 
structural performance prediction is not available, the moni-
toring plan can be optimized by maximizing the expected 
average availability of monitoring data and minimizing total 
monitoring cost as mentioned previously. The information 
obtained during the monitoring duration can be used to 
establish reliable damage propagation and structural per-
formance prediction models. Accordingly, during the last 
two decades, various approaches to integrate the monitoring 
data for initial damage propagation and structural perfor-
mance prediction have been developed [5, 13, 14, 14–18, 
43–48, 56, 58].

The monitoring system can provide direct and indirect 
information for structural managers to predict the criti-
cal damage propagation. Through the efficient statistical 
and probabilistic procedures with the monitored data, the 
probabilistic parameters to establish the damage propaga-
tion model can be determined. For example, the embedded 
corrosion rate sensor provides the instantaneous rate of 
corrosion of the steel, which can be used to predict the 
corrosion damage occurrence and propagation [42, 43]. 
Furthermore, when the strain gauges and load cells are 
installed on the fatigue critical locations of a steel struc-
ture, the monitoring data over long-term period (i.e., time-
history strain and stress) can be converted into the stress 
range and associated number of cycles. Finally, the proba-
bilistic parameters to predict the fatigue crack initiation 
and propagation can be obtained [7–10].

The reliability, one of the representative structural perfor-
mance indicators, is computed based on the state function. 
The general expression of the time-dependent state function 
is

where R and L are the random variables representing time-
dependent resistance and load effect, respectively. Consid-
ering the types of monitored data, loading conditions and 
deterioration mechanisms, the state function g(t) can be 
modified. In terms of the monitored stress induced by live 
load, the state function of Eq. (16) can be expressed as [36, 
37] 

(16)g(t) = R(t) −L(t),

(17)g(t) = �0(t) − (1 + e) × �(t),
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where σ0(t) is the predefined stress limit at time t; e is the 
measurement error in the monitored data; σ (t) is the moni-
tored stress at time t. σ0(t) is estimated as the maximum 
allowable stress under live loads. The measurement error e 
can be assumed to be normally distributed with mean and 
standard deviation of zero and σe, respectively. An increase 
in σe can lead to an increase in the probability of failure 
based on Eq. (17). Kwon and Frangopol [33, 34] and Kwon 
et al. [35] investigated the fatigue reliability assessment 
based on monitoring data for bridge and ship structures, 
where the state function is defined as

In Eq. (18), Δ is the Miner’s critical damage accumulation 
index, N is the number of cycles, A is the fatigue detail coef-
ficient, Sre is the effective stress range and m is the constant. 
The monitoring data can provide the probabilistic informa-
tion on the number of cycles N and the effective stress range 
Sre. Okasha et al. [46] estimated the reliability associated 
with the wave-induced bending moments of ship structures, 
where the state function is defined as

where M(t) is the resisting bending moment; Msw is the still 
water bending moment; Mw is the wave-induced bending 
moment; Md is the dynamic bending moment; kd is the cor-
relation factor between Mw and Md. εR, εSW and εW are the 
model uncertainty factors related to the resistance determi-
nation, still water bending moment prediction and wave-
induced bending moment prediction, respectively. Accord-
ing to Eqs. (9) and (10), the reliability Ps and reliability 
index β can be computed.

Through the approach provided in Kwon et al. [35], the aver-
age daily number of cycles Navg and the effective stress range 
Sre for a fatigue-sensitive structure can be estimated. Finally, 
the time-dependent reliability index for fatigue is predicted as 
shown in Fig. 8, where multiple locations (i.e., stations 4, 7, 10 
and 13) and operation rate of 50% (i.e., α = 50%) are considered. 
The computational process for the fatigue reliability evaluation 
is illustrated in Fig. 9. Additional investigations on the fatigue 
reliability prediction considering various sea states and fatigue 
critical locations are provided in Kwon et al. [35].

5.2  Use of monitoring data to update existing 
damage propagation and structural 
performance prediction

The monitoring data can be used to update the existing 
probabilistic parameters associated with the damage propa-
gation and structural performance prediction models. To 
incorporate the existing information with monitored data, 

(18)g(t) = Δ − (1 + e) ⋅
N

A
⋅ Sm

re
.

(19)g(t) = �R ⋅M(t) − �SW ⋅MSW − �W ⋅

(
MW + kdMd

)
,

the Bayesian theorem-based approaches have been devel-
oped. When the underlying random variable X is represented 
by the PDF fX(x), and the parameter θ involved in the PDF 
fX(x) is treated as a random variable, the parameter θ can 
be updated using the Bayesian theorem with the monitored 
data as follows [1]:

(20)f ��
�
(�) = k ⋅ L(�) ⋅ f �

�
(�),
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Fig. 8  Monitoring-based fatigue reliability analysis for ship structures 
(adapted from [35])
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where f ��
�
(�) is the updated PDF of the parameter θ, k is a 

normalizing constant, L(θ) is the likelihood function formu-
lated with the monitored data and f �

�
(�) is the initial PDF 

of the parameter θ. The likelihood function L(θ) with a set 
of the monitored data {x1, x2,…, xn} associated with X is 
expressed as

With the updated PDF f ��
�
(�) of the parameter θ, the updated 

PDF f ��
X
(x) of the underlying random variable X can be 

obtained as [6] 

When the two probabilistic parameters θ1 and θ2 for the PDF 
fX(x) are updated simultaneously, the updated joint PDF 
f ��
�
(�1, �2) of the parameters θ1 and θ2 can be computed as

The likelihood function L(θ1, θ2) in Eq. (23) is expressed as

The updated PDF f ��
X
(x) of the underlying random variable 

X is [59] 

The investigations by Okasha et al. [46, 48], Okasha and 
Frangopol [45] and Zhu and Frangopol [59] show the appli-
cations of monitored data for updating single or multiple 
parameters involved in the PDFs related to the resistance and 
load effect, and the effect of updating with monitored data 
on reliability prediction.

Furthermore, the parameters related to damage propa-
gation model can be updated by using the Markov chain 
Monte Carlo (MCMC) sampling techniques. It may be 
difficult to compute the updated distributions of random 
variables by using the Bayesian theorem, because the high 
dimensional distribution of a model parameter requires com-
plex integration. The MCMC techniques can generate the 
samples associated with the posterior distributions of the 
model parameters efficiently [20]. To generate the Markov 
chain, the cascaded Metropolis–Hastings sampling [23] and 
slice sampling methods [44] can be applied. The general 
description of the cascaded Metropolis–Hastings sampling 
algorithm in Hasting [23] and Rastogi et al. [51] is illus-
trated in Fig. 10. The required number of the samples for 
the cascaded Metropolis–Hastings sampling algorithm can 

(21)L(�) =

n∏

i=1

fX
(
xi|�

)
.

(22)f ��
X
(x) =

∫

∞

−∞

f
X
(x|� ) ⋅ f ��

�
(�)d�.

(23)f ��
�

(
�1, �2

)
= k ⋅ L

(
�1, �2

)
⋅ f �

�

(
�1, �2

)
.

(24)L(�1, �2) =

n∏

i=1

fX
(
xi
||�1, �2

)
.

(25)f ��
X
(x) =

∫

∞

−∞ ∫

∞

−∞

fX
(
x||�1, �2

)
⋅ f ��

�

(
�1, �2

)
d�1 ⋅ d�2.

be determined by the convergence analysis. The slice sam-
pling can be used to verify the convergence of the samples 
generated from the cascaded Metropolis–Hastings method 
[48]. In the investigations by Soliman and Frangopol [53], 
Rastogi et al. [51] and Kim et al. [32], the parameters for 
fatigue crack propagation prediction [e.g., initial crack size 
a0, crack growth coefficient C and stress range Sre in Eqs. (4) 
and (5)] are updated with detected fatigue cracks using the 
cascaded Metropolis–Hastings sampling and slice sampling 
methods. As a result, the fatigue crack prediction is updated 
for service life management of fatigue-sensitive structures. 
Figure 11 compares the updated and prior PDFs of the mate-
rial parameter C and stress range Sre, where the cascaded 
Metropolis–Hastings sampling algorithm is used with three 
detected fatigue crack sizes (i.e., adet = 1.5 mm, 2.3 mm and 
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Fig. 10  Flowchart of Cascaded Metropolis–Hastings sampling algo-
rithm
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3.0 mm). Based on the updated PDFs in Fig. 11, the PDFs 
of the time to reach the critical crack size after updating are 
obtained as shown in Fig. 12. The detailed information about 
Figs. 11 and 12 is available in Kim et al. [32].

6  Conclusions

This paper presented a computational platform for opti-
mum monitoring planning, which includes three main pro-
cesses: (a) formulation of objectives for optimum moni-
toring planning; (b) MOPT and decision making; and (c) 
updating the damage propagation and structural perfor-
mance prediction. The overall structure of the presented 
platform and the detailed interaction among these main 
processes were described with the associated theoreti-
cal backgrounds and several representative applications. 
Table 1 provides the summary of the approaches involved 
in the presented computational platform. Additional 

applications related to each approach are available in the 
associated references shown in Table 1. The following 
conclusions can be drawn:

• The presented computational platform is developed to 
establish the optimum monitoring plan for any type of 
civil infrastructure (e.g., bridges, buildings and nuclear 
power plants) under various loading effects and deterio-
ration mechanisms.

• To treat the uncertainties associated with loading effects 
and deterioration mechanisms, the damage occurrence 
and propagation and structural performance are predicted 
probabilistically. Accordingly, the optimization for moni-
toring planning was formulated based on the probabilistic 
concepts and approaches.

• Enhancement of the effectiveness of the presented com-
putational platform can be achieved through (a) appli-
cation of rational approaches to predict the damage 
occurrence and propagation, and structural performance 
deterioration; (b) accurate estimation of the interaction 
among the structural components and the structural sys-
tem; (c) appropriate installation and operation of SHM 
systems; and (d) accurate interpretation of monitoring 
data.

• The objectives used in the MOPT and decision mak-
ing are formulated considering structural performance 
deterioration process under normal loading effects 
and environmental conditions. However, the presented 
computational platform can be extended to include the 
risk-based optimum monitoring planning considering 
abnormal loadings induced by extreme events such as 
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earthquakes and hurricanes [2], and sensitivity analyses 
in a probabilistic context [12].

• The presented computational platform may be effec-
tive for optimum monitoring planning associated with 
a single type of SHM system. Recently, the advanced 
SHM technologies (e.g., optical fiber-based SHM sys-
tems, wireless sensing and networking techniques, cam-
era‐based SHM applications, global positioning system 
(GPS) techniques) have been developed and applied to 
various engineering structures. Considering monitoring 
data from multiple types of advanced SHM systems, 
optimum monitoring planning needs to be further inves-
tigated.
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