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Abstract
Time–frequency-based signal processing for efficient modal parameter identification is the theme of this paper. For this 
purpose, recently developed synchrosqueezed transformation is adopted along with sequential clustering to bypass heuristic 
intermittency required in traditional wavelet transform-based modal identification. Here, k-means algorithm is used to locate 
the energy content of the recorded response in different frequency scales, where synchrosqueezing offers better resolution. 
The rationale behind the use of the unsupervised learning lies in its ability to segregate the energy content of the signals 
without any requirement of prior training. Two validation exercises are presented to establish the performance of the proposed 
identification strategy. Finally, the response of a thin beam tested in the laboratory is used that has large number of active 
modes with many of them are closely spaced. Results presented in this paper clearly proves the efficiency of the proposed 
algorithm that can be adopted for modal identification for structural health monitoring and control.

Keywords Wavelet transformation · Synchrosqueezed transformation · k-means cluster · Modal identification · Generalized 
morse wavelet

1 Introduction

Rapid socio-economic development in the recent past has 
forced the infrastructures to perform under extreme con-
ditions, pushing their operational envelope to meet the 
ever-increasing demand. It requires continuous perfor-
mance evaluation to maintain the optimal output without 
any interruption. In this context, vibration-based condi-
tion assessment has advantages over other methods, as it 
gives quick overview of the structural health with excel-
lent accuracy. Doebling et al. [15] presented a review of the 
vibration-based parameter estimation and damage detection. 
These methods are broadly classified into two categories—
input–output-based methods and output-only methods. To 
implement the first technique, user needs to know the struc-
tural details, input excitation, and the response, while in the 
second case, only the recorded responses are required for 

system identification. Stochastic subspace identification 
(SSI) [25, 31], wavelet transformation (WT) [10, 11, 29], 
Hilbert–Huang transformation (HHT) [9, 17, 27], and blind 
source separation (BSS) [41–43] are widely used techniques 
among other output-only methods. Output-only techniques 
are easy and fast to implement for structural vibration con-
trol [5, 16, 19], retrofitting and restrengthening of structures 
[8, 33, 34], and other decision-making process.

SSI, HHT, and BSS have been extensively used for sys-
tem identification in the recent past. While HHT becomes 
more popular for its simplicity to implement and data inde-
pendence, it lacks strong mathematical foundation. In many 
cases, it is observed to provide spurious information, mode-
mixing [39] and demands strong user interface, often heuris-
tic in nature. Other methods (e.g., SSI and BSS) are based on 
either singular value decomposition or eigen value decom-
position. These mathematical frameworks help to segregate 
the components of any signal very fast. The main drawback 
of these methods is the little control over the decomposition 
level. These techniques often provide only strong compo-
nents present in the signal and, hence, is very difficult to 
study the frequencies that have lower energy contents.

Among all these methods, WT enjoys popularity for 
its robustness and better control over its parameters to get 
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object-oriented results. The main parameter in WT is the 
scale that decides the number of components into which 
the main signal is to be decomposed. With the increase of 
scale, an user can get finer details of the frequency con-
tents. Thus, to decompose a signal containing very high 
frequency, the number of scale in this integral transforma-
tion also needs to be very high. In this context, the relation 
between scale and frequency is given by

In above relation, a, fc , fps , and �f  represent scale, central 
frequency, pseudo-frequency, and sampling rate, respec-
tively. As shown in Fig.  1, scale a linearly varies with 
pseudo-frequency fps in the logarithmic scale. It clearly 
shows the typical dominant structural frequencies and their 
respective scales. For example, a cable-stayed bridge can 
have higher modes excited during its operation that demands 
a different set of scales besides its regular structural modes 
which are much lower. Besides fps , the sampling rate �f  is 
also a deciding factor in the wavelet transformation which 
remains unchanged during an experiment. Thus, to get a 
higher level of accuracy, an user needs to go for the higher 
number of scales which, in turn, invokes more computational 
time. Though computational time alone is not an issue in 
the inverse problem-based health monitoring but an equal 
division of frequency scale in the area, where frequencies 
are well apart produces a large amount of redundant data. 
Moreover, the participation of modal frequency may change 
depending upon many factors. Therefore, frequency track-
ing over a large range is a major challenge. It is also a major 
hurdle in case of real-time decision making and incorporat-
ing the result in close loop vibration control. This problem 
of frequency tracking over wider range also demands better 

(1)a =
fc

fps

1

�f

.

resolution than the original wavelet transformation for a data 
with a prefixed sampling rate.

Recently, synchrosqueezed transformation (SST) [12, 38] 
is introduced over WT. This new technique is capable to 
enhance the resolution between two scales. Therefore, this 
transformation offers better clarity in the frequency localiza-
tion. Due to this property, many researchers have [18, 22, 23, 
32, 36, 37, 40] applied it to separate out frequencies from 
a noisy signal, damage identification, frequency tracking, 
etc. Yang [40] and Thakur et al. [36] studied the efficiency 
of SST using a signal that contained different harmonic fre-
quencies. They found that SST-based algorithm can identify 
low-frequency components due to its enhance resolution. In 
another study by Li and Liang [22], SST is used to identify 
the harmonic components of gearbox vibrations and dam-
age, if any, by detecting the sifted harmonic components. 
In all these studies, SST showed impressive performance, 
though these applications are not very critical using WT, 
as finer scales could perform the same task. Wu et al. [38] 
showed mathematically that in spite of the improvement in 
resolution, SST fails to identify closely spaced frequencies if 
it is not designed with proper judgment. Their study showed 
that if the difference in frequency of the two closely spaced 
modes are below the sampling rate, SST also fails to sepa-
rate them and demands finer sampling of the original signal. 
Besides sampling rate, frequency tracking itself offers sev-
eral challenges as the response of a vibrating body contains 
dominant modes that may evolve with time, apart from the 
frequency content of the input excitation. In this context, it 
may be noted that spurious modes present in the transformed 
data also impose difficulty in modal identification.

1.1  Objective

The literature review presented above clearly shows the evolu-
tion of wavelet-based time–frequency analysis in the light of 

Fig. 1  Scales requirement for 
different frequency resolutions



273Journal of Civil Structural Health Monitoring (2019) 9:271–291 

123

system identification and damage detection. In this context, 
recent development of SST base time–frequency analysis of a 
signal has shown it potential for different engineering applica-
tions. This signal-processing tool offers better resolution in an 
adaptive framework which is similar to Hilbert–Huang trans-
formation. However, its potential in structural system identifi-
cation and health monitoring is yet to be fully explored. With 
this in view, following objectives are set for the present work:

• develop an efficient modal identification strategy using 
SST. The main contribution, in this context, is to apply 
this tool to extract large number of frequencies with signifi-
cant accuracy. Here, the major challenge is to separate the 
modal frequencies from other frequencies (e.g., excitation 
frequency and spurious modes) which are difficult using 
conventional wavelet transform. This will be demonstrated 
using numerical results (both synthetic and experimental).

• study the advantages and disadvantages of SST-based sig-
nal processing in the light of modal identification. Here, 
two main aspects are—(a) effect of resolution on the fre-
quency tracking and (b) choice of basis function on the 
quality of the end results.

• develop an automated strategy by combining the SST-
based signal processing with machine learning to avoid 
user intermittency. In this context, wavelet transformation-
based identification needs significant intermittency which 
brings in the parameter estimation.

All these issues will be discussed and the performance of the 
proposed algorithm will be demonstrated with the help of dif-
ferent examples in the following sections.

2  Review of WT and its synchrosqueezed 
version

In this section, a brief overview of the wavelet transform and 
its synchrosqueezed variant used for signal processing are pre-
sented. Reader may refer [12–14] for further details of these 
time–frequency-based signal-processing tools.

The continuous wavelet transform of a finite energy signal 
x(t) in �2

ℝ is given by

In the above equation, ∗ represents complex conjugate and 
�a,b(t) is the dilated and time localized version of the mother 
wavelet which is given by

(2)W�x(a, b) = ∫
+∞

−∞

1
√
�a�

x(t)�∗
�
t − b

a

�
dt.

(3)�a,b(t) =
1

√
�a�

�

�
t − b

a

�
a, b ∈ ℝ, a ≠ 0.

Parameter a in Eq. (3) stretches or dilates �(t) to control 
the frequency content, while parameter b centers it in and 
around t = b to extract the time localized features of the sig-
nal x(t). It may be noted that �(t) must satisfy admissibility 
criteria [14] which is not discussed here for brevity. Unlike 
Fourier transform, where the exponential function is used as 
a basis function, different bases are proposed in the litera-
ture for wavelet transformation. In this paper, three differ-
ent bases (i.e., complex Morlet, log-normal and generalized 
Morse) are considered to study their performance in param-
eter estimation. In this analysis, the signal is decomposed in 
logarithmic frequency levels as follows:

Here, j represents the index of the discretized frequency and 
ns is the number of scales in which the frequencies are segre-
gated. It depends upon the frequency range [f1, f2] over which 
the signal is decomposed which is given by

Parameter N is an integer whose value is greater than 1. 
The lower and upper bound of the frequency interval (i.e., 
f1 and f2 respectively) depends on the search domain of the 
specific problem. For example, the dominant natural fre-
quency of civil infrastructure normally remain within 0 to 
10 Hz. Therefore, such values of f1 and f2 can be adopted 
for modal identification of building and bridges. This discre-
tized frequency is equivalent to pseudo-frequency described 
in Eq. (1) which may be combined in the following form:

Apart from scales and pseudo-frequencies, different mother 
wavelets or bases are also prescribed for the different pur-
poses. In the following subsections, a brief overview of the 
three different mother wavelets are presented whose perfor-
mance in modal identification are proposed to be investi-
gated in this study.

2.1  Complex Morlet basis function

The complex Morlet wavelet basis function is expressed in 
analogy with the Gaussian window and is expressed as [18]

Here, f0 is the resolution parameter and Cf0
 is a normalizing 

constant. In this study, Cf0
 is considered to be unity.

(4)�j = 2�2(j−j0)∕ns .

(5)ns =
N log 2

log f2 − log f1
.

(6)�j = 2�fpsj = 2�
fc

�f

1

aj
.

(7)�(f ) =
Cf0√
2�

�
ei2�f0f − e−(2�f0)

2∕2
�
e−f

2∕2.
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2.2  Log‑normal basis function

The frequency resolution obtained from Morlet wavelet 
is uniform, while, in practice, resolution varies with the 
scale, where lower frequencies stay dense within a band, 
while higher frequencies are dispersed over a wider range. 
This, in turn, demands a large number of scales to cover 
the complete range of frequencies present in the response. 
Under this situation, a basis function whose frequency res-
olution follows logarithmic variation is expected to per-
form better. Hence, log-normal wavelet basis is developed 
which is given by [18]

where �0 is the resolution parameter.

2.3  Generalized Morse basis function

Although different wavelet bases are proposed in the lit-
erature for specific end use, recent research works show a 
trend to develop a unified basis that can be tuned for differ-
ent applications. One such wavelet basis is the generalized 
morse wavelet [13, 24, 30] which is given by

Here, ��,� is a normalizing constant and its value can be 
estimated as

In the above equation, � is the Euler’s number whose value 
is 2.7182 [24], U(�) is a unit Heaviside function. The resolu-
tion is controlled by � and � which are considered to be posi-
tive for all practical purpose. By tuning these two param-
eters, one can obtain the desired resolution that is achieved 
by other wavelet bases [24].

2.4  Synchrosqueezing and instantaneous 
frequency

Using continuous wavelet transformation along with a 
given basis function, the instantaneous frequency of a 
time signal can be tracked which is explained here. For 
this purpose, let us consider an amplitude modulated har-
monic signal of the form x(t) = F0e

−�t cos(�t) as this trend 
is commonly observed in the response of linear dynamic 
systems. Applying wavelet transform on this signal using 
Eq. (2), the coefficient can be expressed as

(8)𝜓(f ) = e−(2𝜋f0 log f )
2∕2, f > 0,

(9)��,� (�) = U(�)��,��
�e−�

�

.

(10)��,� = 2
��

�

�

�

.

(11)W�x(a, b) =
F0

√
a

4�
e−�t�∗(a�)eib�.

From this expression, the instantaneous frequency of the 
signal x(t) can be evaluated as

Above mathematical operation is known as synchrosqueez-
ing. This operation enhances the gradient of the wavelet 
coefficient near the instantaneous frequencies as it uses 
differential of the coefficient with respect to ‘b’. Thus it 
increases the resolution near the dominant frequencies pre-
sent in the signal. Furthermore, the energy of the time signal 
x(t) in the jth scale can be obtained as [11]

Here, it may be noted that the energy of the signal described 
above is localized in and around the harmonic frequen-
cies � . Therefore, the scale aj corresponding to � shows 
sharp energy concentration in the scalogram obtained from 
Eq. (13). Once the instantaneous frequency �int is identified, 
the response in the wavelet domain can be reconstructed in 
the following way [38]:

Here, the scale an should be selected, such that

An inverse wavelet transform in and around a particular scale 
(say an ) using Eq. (14) will produce a single tone time sig-
nal (i.e., mono-component). Theoretically, synchrosqueezing 
can separate out dominant frequencies present in the signal, 
if the separation of these frequencies are larger than �� [38]. 
In practice, �� is constant once the data is collected from 
the experiment. Therefore, if the sampling rate is more than 
the separation between the two closely spaced mode, SST 
fails to segregate even when the scales are increased [38].

This property of SST helps to improve the resolu-
tion of the signal significantly compared to scalogram 
obtained from wavelet transformation alone. Thus, iden-
tification of instantaneous frequency becomes more 
easier in SST than wavelet scalogram, where ridges and 
skeletons are used. This conventional use of ridge and 
skeleton demands significant intermittency (where the 
user needs to study each of them) and also produces 
spurious modes. As outlined in the objective, this 
obvious advantage of SST is planned to be utilized for 
modal identification which is described in the following 
section.

(12)�x(a, b) = −i(W�x(a, b))
−1 �

�b
W�x(a, b).

(13)

Exj =
1

2�C�

+∞

∫
−∞

[
W�x(aj, b)

2
]

a2
j

db where j = 1, 2,… , J.

(14)T(�int, b) = (��)−1
∑

W�x(an, b)a
−3∕2
n

(�a)n.

(15)an ∶ |�(an, b) − �int| ≤ ��∕2.
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3  Proposed synchrosqueezed clustering 
for modal identification

In this section, first the dynamics of a structural system is 
expressed in the wavelet domain. The equilibrium equation 
of a linear multi-degree of freedom system takes the follow-
ing form:

Here, [�] , [�] and [�] are the system matrices, i.e., mass, 
damping and stiffness respectively. The displacement vector 
is denoted by � and the upper dot represents derivative with 
respect to time. In the above equation, � is the generalized 
force vector. Applying WT on both sides of Eq. (16), it can 
be expressed in the wavelet domain as follows [6]:

Above expression shows that the dynamic equilibrium 
expressed in Eq. (16) is valid in ‘b’ domain for a given scale 
‘a’ that corresponds to a particular frequency. Moreover, it 
can be observed that coupling in the generalized coordinate 
[as in Eq. (16)] is also present in the wavelet domain. There-
fore, decoupling using modal coordinates are also applicable 
in the wavelet domain which is given by

where � is the mode shape vector obtained from the eigen 
analysis of mass and stiffness matrices. Using this orthogo-
nal decomposition, Eq. (17) in the wavelet domain can be 
expressed in the modal coordinates as

In the above equation, [�l] , [�l] , and [�l] are the modal 
mass, damping, and stiffness matrices, while 

{
W�P

q(a, b)
}
 is 

the modal load vector in the wavelet domain corresponding 
to scale ‘a’. Here, it may be observed that modal dynam-
ics in the wavelet domain follow the same mathematical 
framework as in the original time domain. Hence, convo-
lution integral can be adopted to evaluate the response in 
the wavelet domain corresponding to the scale factor ‘a’. 
Following this analogy, the response due to the modal force 
vector {W�P

q(a, b)} can be expressed as

(16)[�]{�̈(t)} + [�]{�̇(t)} + [�]{�(t)} = {�(t)}.

(17)
[�]

{
�2

�b2
W��(a, b)

}
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�

�b
W��(a, b)

}

+ [�]
{
W��(a, b)

}
=
{
W��(a, b)

}
.

(18)W��(a, b) =
∑

q

�
qW�u

q(a, b),

(19)
[�l]

{
�2

�b2
W�u

q(a, b)

}
+ [�l]

{
�

�b
W�u

q(a, b)
}

+ [�l]
{
W�u

q(a, b)
}
=
{
W�P

q(a, b)
}
.

(20)W�u
q

k
(a, b) =

b

∫
0

hk(b − �)W�P
q

k
(a, �) d�.

Here, hk(b − �) is the Impulse Response Function of the 
decoupled system in the qth mode. In the above equation, 
{W�P

q

k
(a, b)} can be considered as a pulse train where 

the total response is obtained by linear summation of the 
response due to the individual pulse acting at a time instant 
� . Therefore, the modal load vector can be expressed as 
follows:

Using Eq. (21) in Eq. (20), the acceleration response in the 
wavelet domain corresponding to a scale ‘a’ can be derived 
as follows:

where Ak = �k�n
2
k

√
4 − 3�2

k
 and �k = tan−1

2�k

√
1−�2

k

2�2
k
−1

 . In the 
above equation, mk , �dk and �k are the modal mass, natural 
frequency and modal damping ratio respectively. Using 
Eqs. (18) and (22), the global acceleration response in the 
wavelet domain corresponding to scale ‘a’ is evaluated as

where �k = �

2
− �k is the phase lag between the modal load 

and the response in the wavelet domain corresponding to 
scale ‘a’. Once the total response is obtained in the wavelet 
domain, the analytical signal can be reconstructed as

In the above mathematical expression, (⋅) represents Hil-
bert transform [7]. Here, superscript an represents the ana-
lytic signal. In Eq. (24), � = �dk(b − bi) + �k and i =

√
−1 . 

The energy content of the signal in different scales are evalu-
ated which is expressed in the following equation:

(21)W�P
q
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�(� − bi).
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Since the total response is expressed by linear summation of 
the modal responses [i.e., Eq. (18)], the energy content of the 
measured response is also localized in and around different 
frequencies (i.e., scales in wavelet domain) corresponding to 
structural modes and input forces. In traditional wavelet trans-
form-based identification, the wavelet scalograms of the meas-
ured responses are used to develop the ridges and skeletons. 
This algorithm is not discuss here to avoid repetition. Reader 
may refer [21, 35] for the details of this technique. However, 
the ridge-skeleton-based identification demand user intermit-
tency to locate the scales. Moreover, traditional modal identifi-
cation uses either broad banded excitation or ambient vibration 
which has inherent advantage as the output is featured with 
modal frequencies only. The use of these technique for non-
stationary forced excitation is often heuristic. Due to this rea-
son, present study aims to use advanced time–frequency analy-
sis (i.e., synchrosqueezed transformation) for efficient modal 
identification as stated in the objectives. This is achieved in 
two steps—synchrosqueezing for better resolution followed by 
machine learning for unbiased frequency localization.

Thus, the above analytic signal in Eq. (24) is used for SST 
to enhance the resolution of instantaneous amplitude and 
phase as explained in Eq. (12), that is

Here, it may be noted that above instantaneous frequency 
obtained from the analytic signal contains both real and 
imaginary parts. Thus, the modal frequency and damping 
ratio can be evaluated from the above expression which are 
given by 

 However, Eq. (26) provides instantaneous frequency corre-
sponding to every scale which may be either modal frequen-
cies or frequencies corresponding to the input force.

These frequencies are separated by exploiting the inher-
ent properties of modes (i.e., modal responses are in phase). 
Using Eq. (14) near �n , corresponding wavelet coefficients 
can be used to reconstruct the signal as follows:

Thus, by inverse wavelet transformation of T(�n, b) for each 
�n , response �̈q(t) can be generated in the time domain. To 
check whether the extracted mono-component (as per theory) 
response represents the modal frequency or not, phase portrait 
of the same signal obtained from different sensors are used. 
Here, it may be noted that instantaneous phase can also be 
found out by constructing the analytic signal as follows:

(26)

𝜔s = −i[W𝜓 �̈
an(a, b)]−1

𝜕

𝜕b
W𝜓 �̈

an(a, b) = 𝜔dk + i𝜂k𝜔nk.

(27a)�nk = abs(�s) =

√
�dk

2 + �2
k
�n

2
k

(27b)�k = tan
(
arg(�s)

)
.

(28)T(𝜔n, b) = (𝛥𝜔)−1
∑

W𝜓 �̈(an, b)a
−3∕2
n

(𝛥a)n.

Nevertheless, once the phase portrait of the signals from 
different sensors are obtained corresponding to the scales, 
where energies are localized, they are compared to check 
the unison (i.e., crossing zero or obtaining peaks at the same 
time) which is the typical behavior of modal vibration. In 
this context, synchrosqueezed wavelet scalogram with 
improved resolution helps to segregate energies in different 
scales as opposed to traditional ridge and skeleton of the 
wavelet coefficients obtained from free or ambient vibration 
analysis. In reality, measured responses are often transient 
due to arbitrary forcing functions contaminated with noise 
and other interference. Due to this reason, wavelet scalo-
gram often shows energy localization over different regions 
instead of specific scales and also suffers discontinuity in 
‘b’ domain. Hence, it is difficult to identify dominant fre-
quencies from the wavelet scalogram. The problem is more 
prominent, where large number of modes are available 
with closely spaced frequencies. To avoid these problems 
(i.e., user interface to decide the dominant frequencies that 
involves subjectivity leading to erroneous estimation), fur-
ther analysis of the synchrosqueezed wavelet coefficients are 
proposed in this paper. Here, two major improvisations are 
adopted—(a) apply machine learning over synchrosqueezed 
wavelet transform data to segregate them into different fre-
quency bins and (b) then extract phase portrait to locate 
modal frequencies as they are in unison which are explained 
below. The second step, in particular, is very helpful, where 
only limited clusters are searched as opposed to large as of 
ridge and skeleton in original wavelet-based identification.

3.1  k‑means clustering‑based frequency 
localization

As discussed above, energy concentration of a signal varies 
with time as the system vibrates under arbitrary excitation 
and suspectable to measurement noise. This change is dif-
ficult to arrest by visual inspection of ridge and skeleton 
obtained from the spectrogram of the WT or SST. Thus, 
clustering is adopted to identify the energy concentration 
in a signal in different scales. Here, popular partition-based 
stable k-means clustering algorithm is used to extract the 
underlying pattern of the energy localization from the spec-
trogram of SST analysis. The details of this algorithm may 
be found in Abonyi and Feil [2]. Here, only the relevant 
equations in the light of the present problem are explained. 
The k-means clustering of a data is defined as

(29)𝜃
q

k
= phase[�̈q(t) +(�̈q(t))].

(30)
 (x, v) =

c�

i=1

n�

k = 1

xk ∈ ci

‖xk − vi‖2.
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In the above equation, xk = |W𝜓 �̈(a, b)|2 . Here, n and c 
are the number of data and clusters respectively, where the 
center of the cluster is defined by vi . The individual weight 
index of each cluster is given by

Based on this weight index, it is possible to locate the energy 
concentration at same scales in the SST spectrogram and 
hence, the underlying dominant frequencies. To identify the 
optimum number of cluster c, gap value (GV) is estimated 
which is given by

In the above equation, Wc represents the pool within the clus-
ter dispersion which is evaluated as

Here, the number of data point in the ith cluster is repre-
sented by ni , whereas di is the sum of the pairwise distances 
for all points within that cluster. The optimal number of clus-
ter c is obtained in iterative manner. Thus, the clustering is 
started with initial number c (typically 1) and increase by 1 
in every successive iteration and the gap values are studied 
over a wider range of c. From this analysis, optimal c is iden-
tified as GV saturate after some iterations. In this context, 
it is relevant to explain the use of unsupervised learning in 
the proposed modal identification strategy over supervised 
learning. The reason behind the selection of k-means algo-
rithm (i.e., unsupervised learning) are

• to avoid bias associated with the training data used in super-
vised learning which will corresponding to a specific class 
of modal frequencies and non-stationary excitation used 
for training. In reality, there is no guarantee that the actual 
frequencies will be in the same pool used for training and 
similar non-stationary excitation will occur in testing.

• as the machine learning is used in this study to segregate 
the data in groups of dominant frequencies to avoid user 
intermittency, unsupervised learning is enough to carry 
out this task.

Using this technique, energy localization in different clus-
ters are identified and the signal corresponding to those 
clusters are obtained by inverse synchrosqueezed trans-
formation as explained in the previous section. These 

(31)
𝜆 =

n∑
i=1

�W𝜓 �̈(a, bi)�2

c∑
k=1

n∑

i = 1

xk ∈ ck

�W𝜓 �̈(a, bi)�2
.

(32)GVn(c) = En

{
logWc

}
− log

(
Wc

)
.

(33)Wc =

c∑

i=1

1

2ni
di.

signals are further used to identify the modal parameters, 
as explained in Sect. 2.

3.2  Algorithm of the proposed identification 
strategy

In this subsection, the algorithm of the sequential cluster-
ing of the synchrosqueezed wavelet transform coefficients, 
as explained in the previous sections is presented.
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4  Numerical results and discussion

In this section, the proposed algorithm is implemented for 
parameter identification using simulated and experimental 
data. In the first example, synthetic measurements of a 3 
degree of freedom (dof) system excited by white noise for 
three different cases are compared to validate the algorithm. 
In the second example, the acceleration response of a build-
ing is considered for two real seismic events. This build-
ing in IIT Guwahati campus serves as a testbed for seismic 
research. It is designated as BRNS building as it is spon-
sored by Board of Research in Nuclear Sciences (BRNS), 
Government of India. Finally, the response of a thin beam 
tested in the laboratory by Adhikari et al. [3] is used. In this 
example, a beam with additional point masses is consid-
ered whose dominant natural frequencies vary over a wider 
range. The proposed algorithm is applied to these examples 
to demonstrate its performance which are discussed below.

4.1  Validation using synthetic experiment

In this simulated case, a 3-dof hypothetical system [35] 
with white noise as support excitation is considered. 
Here, three cases are studied—(a) strong and separated 
modes; (b) two closely spaced strong modes; and (c) two 
closely spaced weak modes whose properties are shown 
in Table 1. It may be noted that all three systems are inde-
pendent, i.e., case II and case III are not derived from 
case I. They, in principle, represent three different eigen 
systems to validate the performance of the proposed algo-
rithm. Figure 2 shows the frequency response function 
(FRF) of the third dof for all three cases. From this figure, 
it may be noted that case II is the most challenging as the 
two frequencies (i.e., 2nd and 3rd) are very close to each 
other with almost similar energy content. Figure 3a shows 
the response of the 3rd dof due to simulated white noise 
excitation. Here, it should be noted that the same excita-
tion is used for all three cases. This simulated response 
is used for wavelet transformation with complex Morlet 
basis with 28 scales initially covering a frequency range 
of 0.001 to 10 Hz. The algorithm finally converges with 
2980 scales. Here, the frequencies identified in two suc-
cessive iteration are used to check the convergence, where 
the iteration is stopped if the absolute error is below the 
tolerance limit (say 10−2 , which remains same for the other 
examples). The scalogram of this WT is shown in Fig. 3b. 
It is extremely difficult to identify the frequencies using 
visual inspection of this scalogram, although different 
regions of scales containing the dominant frequencies can 
be detected. To improve it further, synchrosqueezing is 
applied on the WT coefficients and the scalogram is shown 
in Fig. 3c. From these figures, it is clear that the frequency 

localization has improved after SST, but it is still difficult 
to identify the frequencies by visual inspection or ridge 
and skeleton as proposed in the literature [23]. To alleviate 
these issue as stated in the objective, k-means clustering is 
applied on the SST coefficients. Clusters are formed on the 
basis of energy concentration which is equivalent to the 
square of the modulus of coefficients obtained from SST 
analysis as given in Eq. (25). For this purpose, optimum 
cluster number is determined using gap statistics as dis-
cussed in Eqs. (32) and (33). This is achieved in an itera-
tive manner over a realistic range (typically upto 15) with 
c = 1 as the initial number that is raised by one in every 
successive iteration. The gap values for every iteration 
is evaluated and are plotted in Fig. 4a. From this figure, 
optimal number of cluster can be identified as 4. Based 
on this analysis, 4 clusters are formed and the median 
of each cluster is considered as the identified frequency. 
These cluster are arranged as per cluster weights described 
in Eq. (31) which are shown in Fig. 4b. Here, it can be 
observed that 4 frequencies are identified from the median 
values of these clusters as opposed to 3 modal frequencies 

Table 1  Parameters of 3dof system

[M] [K] f (Hz) �

Case I ⎡
⎢
⎢⎣

10 0 0

0 10 0

0 0 10

⎤
⎥
⎥⎦

⎡
⎢
⎢⎣

1200 − 1200 0

−1200 2400 − 1200

0 − 1200 1200

⎤
⎥
⎥⎦

0.776 0.05

2.174 0.03
3.142 0.02

Case II ⎡
⎢
⎢⎣

10 0 0

0 40 0

0 0 30

⎤
⎥
⎥⎦

⎡
⎢
⎢⎣

1200 − 1200 0

−1200 2400 − 1200

0 − 1200 4800

⎤
⎥
⎥⎦

0.652 0.05

1.905 0.03
2.135 0.02

Case III ⎡
⎢
⎢⎣

10 0 0

0 10 0

0 0 10

⎤
⎥
⎥⎦

⎡
⎢
⎢⎣

4800 − 1200 0

−1200 2400 − 1200

0 − 1200 3600

⎤
⎥
⎥⎦

1.846 0.05

3.190 0.03
3.712 0.02

Fig. 2  Frequency response function (FRF) of 3dof system
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of the system. Now, to identify the mode, phase spectrum 
of the response corresponding to the median frequencies 
of the cluster are evaluated as per Eq. (29). Figure 5 shows 
the responses in the time domain obtained from Eq. (28) 
corresponding to each cluster median with ±2.5% width 
on the either side of this value. Figure 6 shows the phase 
difference, where 1st dof is considered as reference. It may 
be noted that response corresponding to first three clusters 
are mode as the phases are in unison, while the response in 
the fourth cluster shows randomness which is against the 
fundamental property of the mode. Based on this analysis, 
the identified frequencies are 0.801, 2.164 and 3.251 Hz 

in case I which are very close to their theoretical values 
as shown in Table 2. Once the frequencies are identified, 
modal responses are considered for the estimation of the 
damping ratio. However, it may be noted from Fig. 5 that 
time history corresponding to each cluster do not exhibit 
decay as these are forced responses. Hence, they are not 
directly used for damping estimation as the modal damp-
ing ratio is very sensitive and are best evaluated from the 
decay of the transient response. For this purpose, NExT 
[20] is applied over this modal responses prior to the 
damping estimation which is not discussed here as it is not 
the theme of this study. Once the free response is obtained 

(a) (c)

(c)

Fig. 3  Time histories and scalograms—a input and output; b WT scalograms for case I; c SST scalograms for case I

(a) (b)

Fig. 4  k-means clustering—a GV statistics and b clusters
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from NExT, Eq. (27b) is adopted to evaluate the critical 
modal damping ratio. The estimated modal damping ratio 
are 0.053, 0.03 and 0.02 respectively in case I which are 
very close to their respective theoretical values.   

Using similar steps as stated above, case II and case III 
are solved and the scalograms using WT and SST are shown 
in Figs. 7 and 8, respectively. The number of scales needed 
in case II and case III are 2980 and 4476 respectively. This 

Fig. 5  Reconstructed signals 
corresponding to median fre-
quencies

Fig. 6  Phase portrait of recon-
structed signals (subscript in 
legend represents dof)

Fig. 7  Scalograms—a wavelet coefficients in case II; b SST coefficients in case II
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shows that a large number of scales are required for closely 

spaced weak modes as in case III. However, visual inspec-
tion of the scalograms do not reveal the modal frequencies as 
usual. Hence, the scalograms with improved resolution (i.e., 
after SST) are used for clustering and the optimal clusters 
for both of them remain 4. These plots are not shown here 
to avoid repetition. In this context, it is relevant to explain 
why clustering is performed over SST coefficients and not 
directly over WT coefficients. WT coefficients being poor in 
resolution offers spurious modes and hence spurious clus-
ters as the energies are dispersed over different frequency 
bands instead of being localized in and around few scales as 
observed in the SST scalogram. Due to this reason, spuri-
ous modes are generated leading to inaccurate estimation 
of the modal frequencies as shown in Fig. 9 which shows 

Fig. 8  Scalograms—a wavelet coefficients in case III; b SST coefficients in case III

Fig. 9  Clusters from WT and SST analysis for case I

Table 2  Identified parameters of 
3dof system

Bold case has 7% error, all other cases have error between 0 and 5%

Case 1 Case 2 Case 3

Theoretical Identified Theoretical Identified Theoretical Identified

fn � fn � fn � fn � fn � fn �

0.776 0.05 0.801 0.053 0.652 0.05 0.675 0.049 1.846 0.05 1.937 0.049
2.174 0.03 2.164 0.030 1.905 0.03 2.029 0.029 3.190 0.03 3.173 0.030
3.142 0.02 3.251 0.020 2.135 0.02 2.133 0.021 3.712 0.02 3.663 0.020

Fig. 10  Details of BRNS building
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additional clusters obtained from wavelet transformation 
coefficients. Finally, instantaneous phases are compared as 
described in case I to identify the modal frequencies. Table 2 
shows the identified frequencies and modal damping ratio 
for all these cases. It can be observed that the estimated val-
ues are well within 5% of their respective theoretical values, 
except in one case, where the error is found to be 7% . This is 
in case II which is the most critical as the second and third 
frequencies are closely spaced with almost same energy 
content. Due to this reason, extraction of mono-component 
signals through SST is difficult which leads to higher esti-
mation error. As mentioned earlier, SST also fails to pin 
point scales (and respective frequencies) if the difference 
between them is close to or below �� (i.e., sampling rate). 
With these validation exercise, it may be concluded that the 
performance of the proposed algorithm is satisfactory and 
can be used for field implementation.  

4.2  Building under earthquake excitation

In this example, a full scale building in IIT Guwahati cam-
pus is used for experimental verification. Figure 10 shows 
the photograph of this building along with its structural 
dimensions. It can be noticed that there are two identical 
buildings on either side of the central staircase. Buildings are 
separated from the staircase so that they can act freely. The 
building on the right side has base isolators, while building 
on the left side is supported over isolated footings (i.e., fixed 
base) which is used in this study for modal identification. 
The sensor details of this building are provided in Mahato 
et al. [26]. Accelerations at the top floor are recorded during 
actual seismic events which are used here for identification. 

Figure 11 shows the top floor responses in X and Y direc-
tions which were recorded on 3rd September 2009. The 
first column of this figure shows the recorded earthquake 
ground motions in X and Y directions along with the build-
ing responses. Wavelet transformation of these responses are 
carried out as described earlier, with ns = 28 as the initial 
value. The middle column of Fig. 11 shows the scalogram 
of the responses using complex Morlet wavelet. The central 
frequency of this basis function is considered to be 3 Hz 
in this study and after convergence the number of scales is 
1904 to cover a frequency range of 0.001 to 30 Hz. It can 
be observed from Fig. 11 that frequencies are localized in 
different zones but their resolution is not very high to iden-
tify them clearly. Thus to improve the resolution further, 
synchrosqueezing is adopted which are shown in the third 
column of Fig. 11. Here, the clarity of the scalogram has 
improved, however, it also fails to locate the modal frequen-
cies directly as the relative magnitude of energy distribution 
is very low. Thus, k-means clustering is invoked to segre-
gate the frequencies based on their energy content which 
is shown in Fig. 13. In this context, the optimal number of 
clusters is estimated to be 7. Finally, the modes are identi-
fied using instantaneous phase portrait whose difference in 
two dof for the same mode are shown in Fig. 14. For this 
purpose, 1st and 4th dof are considered and the responses 
in 1st and 4th cluster are used for demonstration. Here, time 
domain responses are obtained by inverse transformation 
as described in the previous example and the instantaneous 
phases are evaluated using Eq. (29). The first row in Fig. 14 
shows the responses in 1st and 4th clusters, while the sec-
ond row shows their phase difference. From this figure, it 
can be concluded that 1st cluster corresponds to 1st mode 

(a) (b) (c)

(d) (e) (f)

Fig. 11  Earthquake responses and scalogram—a recorded motion on 
03/09/09 and top floor response in x-direction; b Wavelet coefficients 
of top floor response in x-direction; c synchrosqueezed transform 
coefficients of top floor response in x-direction; d recorded motion on 

03/09/09 and top floor response in y-direction; e Wavelet coefficients 
of top floor response in y-direction and f Synchrosqueezed transform 
coefficients of top floor response in y-direction
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(a)

(b) (c)

Fig. 12  a Equivalent strut model of the building, b Fourier amplitude spectrum of response on 03/09/09 and c Fourier amplitude spectrum of 
response on 21/09/09

(a) (b)

Fig. 13  k-means clustering—a median of clusters for response due to recorded earthquake on 03/09/09 and b median of clusters for response 
due to recorded earthquake on 21/09/09
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as the phase difference is zero in most of the time instant 
(except near zero crossing of the individual signals which 
are reflected in large spikes), while the 4th cluster is a spu-
rious mode. Using similar technique, other cluster are also 
verified to identify the modal frequencies. These identified 
frequencies are listed in Table 3.

In this table, the first column refers to discrete model, 
where infill walls are characterized by diagonal strut as 

shown in Fig. 12a. This model is created as per Indian 
Standard guidelines for reinforce concrete structures and the 
strut is model as proposed by Mondal and Jain [28] which is 
based on the static analysis of 2D frame with infills. There-
fore, the discrete model is the best possible representation 
of the field structure and not the exact one. However, the 
discrete model is tuned in such a way that it can replicate 
the fundamental modes obtained from fourier analysis as 

(a)

(c)

(b)

(d)

Fig. 14  Phase portrait for seismic event on 03/09/09—a response in 1st cluster; b response in 4th cluster; c phase difference in 1st cluster and d 
phase difference in 4th cluster

Table 3  Identified modal 
parameters of BRNS building 
from different seismic events

aObtained from equivalent strut model
bEstimated by Mahato et al. [26]

Natural fre-
quencya

Modal damp-
ingb

03/9/2009 21/9/2009

fn �(%) fn �(%)

fn �(%) Xdir Ydir Xdir Ydir

4.75 1.28 4.61 4.98 1.30 4.99 4.73 1.31
5.84 1.11 5.17 6.68 1.16 5.87 6.32 1.16
13.20 0.27 12.86 13.77 0.30 11.27 13.54 0.32
16.25 0.27 16.63 16.28 0.30 16.28 14.88 0.30
19.98 0.24 18.11 – 0.30 17.73 – 0.31
24.57 0.19 23.62 26.51 0.22 22.72 – 0.25

Fig. 15  Schematic diagram of 
experimental setup [3]
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closely as possible. Therefore, error estimation using these 
values are not carried out here as the exact benchmark is 
not available in this case. In absence of the actual bench-
mark values, only the consistency of the estimated modes 
are checked by the proposed algorithm and found to be in 
accordance with the value obtained from the discrete model 
and other identification strategy [26]. To study the behavior 
of the full scale building, recorded responses in two differ-
ent occasions are reported here. For this purpose, the seis-
mic events on 3rd Sept 2009 and 21st Sept 2009 are used. 
The peak ground acceleration of the major components at 
these two dates are 0.0138 g and 0.026 g respectively which 
is far below the level used to design the structure. Hence, 
there is no chance of damage caused by these two succes-
sive events. Moreover, the date of occurrence is so close that 
the structure does not experience any change in material 
properties due to weathering or other activities surrounding 
it. Figure 12b, c show the Fourier transform of the X and Y 
components of acceleration response at the top floor. These 
amplitude spectrum clearly shows the difference in funda-
mental frequencies which is due to the uncertainty asso-
ciated with the field experiments involving non-stationary 
excitation. Table 3 shows the identified modal parameters for 
these two seismic events. Although, the values differs from 
each other, but the estimation by the proposed algorithm 
are found to follow the trend in both these events. However, 
these deviations should not be attributed to the change in 

structural properties (i.e., damage) or under performance of 
the identification strategy. As the non-stationary input has 
frequencies close to structural frequencies, they are bound to 
interact. In this context, it may be noted that non-stationary 
excitation are not recommended for damage detection which 
is better estimated from the free response or the response 
due to broad banded excitation (if possible). In this context, 
author wish to clarify that the proposed algorithm is specifi-
cally used for the identification of the actual building from 
the seismic excitation not to locate possible damage but to 
pinpoint the dominant frequencies and its variations in dif-
ferent seismic events for the tuning of the passive controller 
which is not discussed here as it is beyond the scope of this 
work. Once, the frequencies are identified, modal damping is 
estimated using NExT as described in the previous example. 
Table 3 shows the identified modal damping of the BRNS 
building (Figs. 13, 14).  

4.3  Laboratory experiment

The final problem considered in this study is a thin beam 
with lumped masses at different locations. The test was 
carried out by Adhikari et al. [3] in the Bristol Laboratory 
for Advanced Dynamic Engineering and the data is freely 
available in the internet [1]. Figure 15 shows the schematic 
diagram of this beam. The beam is 1.2 m long and 2.05 mm-
thick whose both ends are fixed. Twelve discrete masses, 

(a) (b)

(c)

Fig. 16  Recorded time histories—a test-1, b test-2 and c test-3
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each weighing 2 g are placed on this beam whose locations 
can be changed for different tests. Table 4 summarizes these 
locations for different tests in this study. In total, all dis-
crete masses together contribute only 1.6% of the mass of the 
beam. Three accelerometers are placed at 23 cm, 50 cm and 
102 cm from the left end. As the locations of these discrete 
masses change, the frequencies of the beam also change. The 
beam is excited by impulse at the middle and the responses 
are recorded with a sampling rate of 16,384 Hz which are 
shown in Fig. 16. The data is recorded in FFT analyzer and 
the subsequent time domain data is generated by inverse 
fourier transformation after down sizing the sampling rate 

to 4096 Hz. The peak acceleration response in all sensors 
are very high. Here, it may be noted that the beam is very 
thin and the effective length is very high so that large num-
ber of frequencies can be excited. This thin beam is excited 
by impulse hammer which is reflected in large acceleration 
response so that response energy in the higher modes are 
significant. In this context, it may be noted that the pro-
posed algorithm is based on the frequency distribution in 
the scalogram and its phase spectrum. Hence, the proposed 
algorithm in this paper never uses the absolute amplitude 
of the response for modal identification. In this example, 
three different wavelet basis functions are used to study 

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 17  Scalograms obtained from WT (1st column) and SST (2nd column) of sensor 2 for test 1; a, b complex Morlet; c, d log-normal wavelet 
and e, f Morse wavelet
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their relative performance on the same problem. First, the 
complex Morlet basis is used with ns = 1024 , i.e., 210 . The 
iteration in the proposed algorithm is continued until the 
process is converged. It is found that complex Morlet basis 
converges with ns = 1255 which remain same for Morse 
basis, while log-normal basis converge with ns = 5020 . 
Figure 17 shows the scalogram of the wavelet coefficients 
obtained from the three different basis functions to demon-
strate their relative performances, covering the frequency 
range of 0.001 to 800 Hz. As expected, the frequencies are 
localized at different regions of these scales (i.e., they are 
segregated into different bands). It can be easily shown that 
even the ridges and skeletons at these scales fail to sepa-
rate out these frequencies. This, in turn, advocates for better 
frequency resolution of the scalograms. With this in view, 
synchrosqueezing of the original wavelet coefficients are 
carried out and the enhanced scalograms are also plotted in 
the second column of Fig. 17 which shows that resolution 
improves drastically due to synchrosqueezing. Here, only the 

scalograms of the response from sensor 2 in test 1 are shown 
to avoid repetition. However, these scalograms are not clear 
enough to distinctly identify the modal frequencies. Thus, 
k-means clustering-based machine learning is adopted as 
described in the proposed algorithm. Here, the optimal num-
ber of clusters are identified in a similar way as described 
in the algorithm which is found to be 15 for all three basis. 
Figure 18 shows the cluster weights corresponding to the 
median frequencies for three different tests. It may be noted 
that relative weights in each cluster indicate the energy asso-
ciated with that frequency. To avoid any false alarm (i.e., 
spurious modes), phase portraits are then obtained from 
the signals by inverse synchrosqueezing as described in 
Eq. (29). Figure 19 shows the difference in phase angles 
obtained from three different sensors. Here, only 2nd and 
4th clusters are used for demonstration purpose. The first 
row of Fig. 19 shows the time history corresponding to the 
median frequency of the 2nd and 4th cluster obtained from 
inverse synchrosqueezed transformation. The second row of 

(a)

(c)

(b)

Fig. 18  Median of the each cluster estimated from sensor 2 data a test-1, b test-2 and c test-3

Table 4  Mass locations for 
different tests (in cm)

Distance from left end in m

1 2 3 4 5 6 7 8 9 10 11 12

Test 1 0.25 0.30 0.38 0.39 0.47 0.63 0.69 0.73 0.74 0.80 0.94 0.98
Test 2 0.23 0.24 0.24 0.28 0.30 0.30 0.45 0.56 0.61 0.68 0.77 0.99
Test 3 0.29 0.30 0.30 0.41 0.46 0.48 0.56 0.56 0.67 0.77 0.77 0.78
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the same figure shows the instantaneous phase difference for 
all three sensors. As the responses are in mode, the phase 
difference is found to be in unison (i.e., attaining peaks and 
zero crossing simultaneously) in the second cluster indi-
cating it to be a modal frequency. Table 5 summarizes the 
modal frequencies obtained using the proposed algorithm. 
Altogether 14 modal frequencies are identified in each test 
with error well below 5% except in the 1st mode, where the 
error is 7% . Here, it may be noted that fexp in Table 5 for 
each test is obtained from FFT analyzer and not from the 
exact theoretical model. Thus, fexp reported in Table 5 also 
has measurement error. However, these values are preferred 
over theoretical values as these are observed during the 
experiment. Hence, the magnitude of error reported for the 
present algorithm is not absolute. Moreover, the relatively 
high error in mode 1 is due to weak energy concentration 

in the 1st mode and should not be attributed to the draw-
back of the proposed algorithm. The weakness of the 1st 
modal frequency is also reported by Adhikary and Phani 
[4]. The frequency response functions (FRF) are obtained 
from the identified modal parameters and are compared with 
the experimental observations as shown in Fig. 20. A close 
match in frequencies between them are observed indicating 
accurate estimation of these parameters. There is a differ-
ence in shape of the identified and experimental FRF which 
is attributed to the approximate damping ratio used in identi-
fied FRF. Here, it may be mentioned that an effort was made 
to identify the modal damping of this thin beam. However, 
being very flexible with ultra high modal frequencies, the 
estimation of viscous damping suffers large errors and hence 
an approximated value of modal damping is used as sug-
gested by Adhikari et al. [3]. Finally, the performance of 
different basis functions are investigated and the results are 
tabulated in Table 6. It can be observed from this table that 
choice of basis function does not affect the quality of estima-
tion in the proposed algorithm as the same frequencies are 
identified using three different bases. However, the number 
of scales are different for different basis functions. Here, 
only first five frequencies upto two decimal places are used 
for comparison. This is another advantage of the proposed 
algorithm which automatically adjust the scales to achieve 
the desire accuracy in estimation.

Based on these results, it can be inferred that modal 
frequencies are identified satisfactory without any prior 
knowledge of the system/input and any user intervention.

Table 5  Identified modal frequencies of thin beam

Bold cases have error between 5 and 7%. All other cases have error between 0 and 4%

Test 1 Test 2 Test 3

fexp fidf fexp fidf fexp fidf

Sensor 1 Sensor 2 Sensor 3 Sensor 1 Sensor 2 Sensor 3 Sensor 1 Sensor 2 Sensor 3

9.0 9.03 8.97 8.41 9.0 9.23 8.72 8.53 9.0 8.91 8.97 8.47
21.0 20.69 20.69 20.55 21.0 20.69 20.84 20.69 21.0 20.84 20.84 20.84
39.0 38.81 38.81 38.81 38.0 38.26 38.26 38.26 39.0 38.81 38.81 38.81
62.0 62.20 62.20 62.20 62.0 62.20 62.20 62.20 62.0 62.20 62.20 62.20
94.0 93.47 93.47 93.47 94.0 93.47 94.14 93.47 93.0 93.47 93.47 93.47
172.0 172.80 172.80 172.80 172.0 171.57 171.57 171.57 172.0 171.57 171.57 171.57
218.0 218.76 218.76 211.08 219.0 218.76 218.76 217.20 220.0 220.33 218.76 217.20
272.0 273.01 273.01 273.01 273.0 273.01 273.01 273.01 274.0 274.96 274.96 274.96
335.0 345.61 335.87 345.61 332.0 324.08 326.40 331.10 331.0 340.70 338.28 331.10
398.0 416.17 381.97 384.71 400.0 387.47 384.71 384.71 399.0 381.97 384.71 387.47
472.0 473.30 480.11 473.30 474.0 473.30 480.11 473.30 473.0 473.30 476.69 473.30
550.0 549.93 549.93 549.93 547.0 549.93 534.43 553.87 549.0 557.84 565.87 561.84
629.0 629.90 629.90 629.90 632.0 629.90 629.90 629.90 632.0 629.90 629.90 629.90
727.0 726.67 731.88 731.88 723.0 731.88 731.88 726.67 727.0 731.88 731.88 726.67

Table 6  Identified frequencies from sensor 1 in test 1 with different 
wavelet bases

fexp fidf complex 
Morlet ( ns)

fidf lognormal ( ns) fidf Morse ( ns)

1255 1255 5020 654 1255

9.00 8.23 8.23 8.23 8.23 8.23
21.00 20.99 20.99 20.99 20.99 20.99
39.00 38.92 38.92 38.92 38.92 38.92
63.00 62.79 – 62.79 – 62.79
94.00 93.74 93.74 93.74 93.74 93.74
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5  Conclusion

A combined synchrosqueezed wavelet transformation 
and unsupervised k-means clustering is used in this study 
to identify modal parameters. Here, the synchrosqueez-
ing offers better frequency resolution, while k-means 

clustering-based machine learning helps to segregate the 
frequency localization without any intermittency with the 
user. The proposed identification strategy is applied on dif-
ferent engineering problems to demonstrate its efficiency 
and accuracy. The major observations from this study are 
as follows:

(a)

(c)

(b)

(d)

Fig. 19  Phase portrait—a response in 2nd cluster; b response in 4th cluster; c phase difference in 2nd cluster and d phase difference in 4th clus-
ter

(a) (b)

(c)

Fig. 20  FRF at sensor location 2 for test-1
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• Wavelet transformation has proved to be an efficient 
tool for modal identification. However, wavelet coef-
ficients alone fail to pinpoint the modal frequency as 
shown in different scalograms and demand either user 
interface (which is often subjective) or additional math-
ematical improvisation for efficient frequency tracking. 
The second option is utilized in two steps here—(i) 
improving frequency resolution by synchrosqueezing 
and (ii) clustering-based identification of energy con-
centration in different scales.

• Synchrosqueezing operates over the wavelet coefficients 
to improve the clarity of the scalogram (i.e., better reso-
lution) and hence, it also bears the same characteristics 
of the wavelet scalogram except narrowing the frequency 
bands that contain signal energy.

• k-means clustering can efficiently identify the energy 
localization without any user intervention. However, 
this may provide frequencies that do not correspond to 
the modal vibration which, in the proposed technique, 
are detected using phase portrait. This involves inverse 
synchrosqueezed transformation of the coefficients in 
the clusters identified by the k-means algorithm. Once 
the modal frequencies are identified, modal damping 
ratio can also be traced using any standard algorithm 
(e.g., NExT).

• Different numerical applications demonstrated in this 
study prove that the proposed algorithm works effi-
ciently for wide range of problems. In particular, the 
second and third examples demonstrate that large num-
ber of modal frequencies often observed in the civil and 
mechanical vibrations can be effectively traced. These 
parameters can be efficiently identified by the proposed 
algorithm. In this context, it may be noted that different 
basis functions (e.g., complex Morlet, lognormal, gen-
eralized morse) offer the same quality of the end result. 
Hence, either of them can be adopted for frequency 
tracking.

In general, the proposed synchrosqueezed wavelet transfor-
mation-based clustering technique has proved to be an effec-
tive identification tool that can be adopted in vibration-based 
system identification. The numerical results clearly show its 
accuracy in different civil and mechanical problems. This 
algorithm can be easily adopted for damage detection and 
real-time frequency tracking for control problems which the 
authors wish to address in their future work.
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