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Abstract
Damage in a structure can lead to changes in the structural properties such as stiffness and natural frequencies. The ratio of 
frequency changes in two modes is a function of the damage location. In this paper, vibration data and static displacement 
measurements are used to detect and quantify structural damages. A sensitivity analysis is performed to study how natural 
frequencies and static displacements change in the presence of a structural damage. An objective function representing 
an error is defined using the sensitivity equation and minimized using Cuckoo Search algorithm. The effectiveness of the 
technique is demonstrated with the help of cantilever beams and fixed–fixed beam in which different damage scenarios are 
simulated using ANSYS and analyzed to obtain the modal parameters. In addition, a laboratory tested space frame model 
has been used to demonstrate the proposed technique. Numerical results indicate that damages can be accurately detected 
and quantified in a relatively shorter computational time using the Cuckoo Search algorithm.
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1  Introduction

Mechanical, civil, and aerospace engineering communities 
have already identified structural health monitoring as a 
challenging problem. The ineffectiveness of visual exami-
nation and destructive testing in damage detection has 
been a major concern for the last few years. The aerospace 
industry is in need of new low-cost, nondestructive testing 
techniques for detecting damages in aerospace components. 
Consequently, in the last few decades, many researchers have 
reported various nondestructive damage detection methods.

In particular, damage detection based on structural 
response to vibration has gained popularity in recent years. 
The basic principle involved in such damage detection meth-
ods is to compare the behaviour of structures to vibration in 
the damaged and undamaged state [1].

Structural damages lead to changes in dynamic charac-
teristics of the structure such as natural frequencies, mode 
shapes, and modal damping. Since natural frequencies can 

be easily obtained from vibration response, damage detec-
tion by studying the change in natural frequency became 
a popular way to identifying and quantifying the damages 
[2]. Pandey, Biswas, and Samman [3] have investigated a 
parameter called as the curvature mode shape as a possible 
candidate for locating damage. Later, Artificial Neural Net-
work was used to solve the problem of damage detection [4, 
5] and yielded excellent results. Hou, Noori, and Amand [6] 
developed a wavelet-based approach for structural damage 
detection, wherein characteristics of the vibration signals 
under wavelet transformation were examined. Curadelli et al. 
[7] have extended the use of wavelet transform to detect 
structural damage by means of the instantaneous damp-
ing coefficient identification. Yet, another approach was to 
minimize an objective function, which is defined in terms of 
the discrepancy between vibration data identified by modal 
testing and those computed from analytical model [8–11]. 
Giuseppe Quaranta, Biagio Carboni, and Walter Lacarbon-
ara [12] have investigated the numerical issues involved in 
using modal curvature for damage detection and suggested 
a more affordable way for detecting damage with modal cur-
vature data.

In this paper, the change in natural frequency of the struc-
ture is used to locate and quantify the damage. A sensitivity 
analysis [13] is performed to compute the change in natural 
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frequencies due to the presence of damage. The sensitivity 
equation which defines the sensitivity of natural frequen-
cies of the system to small changes in stiffness is used in 
defining the objective function. The optimization algorithm 
used is the Cuckoo Search (CS) [14], which is a relatively 
new optimization algorithm and has shown great potential 
and simplicity when compared to well-developed algo-
rithms like Genetic Algorithm. Cuckoo Search algorithm is 
known for its easy implementation and faster convergence 
rate. The objective function compares the changes in vibra-
tion data measured before and after the damage with that 
of the analytical model. The analytical method used is the 
Finite-Element Method (FEM). The results are obtained in 
the form of Stiffness Reduction Factors (SRFs) of different 
elements of the structure. The results show that the dam-
aged elements can be detected with high accuracy and with 
relatively shorter computational time.

However, in the case of symmetrical structures, two 
or more damage sites will be predicted, depending on the 
degree of geometric and material symmetry [15]. The 
situation is investigated with the help of a symmetrical 
fixed–fixed beam. In such cases, to uniquely determine 
the damage location, displacement measurements or mode 
shape measurements have to be made. In this paper, in addi-
tion to natural frequencies, the structural response (vertical 
displacements) to a static load is considered to detect the 
damage in the case of symmetric fixed–fixed beam. Such 
measurements could be easily made in a real structure such 
as a Truss bridge where vehicle loads could be considered 
as a typical static load and displacements could be meas-
ured at various points. However, for minor damages, the 
stiffness reduction will be very low, and hence, change in 
displacements would be negligible. In such cases, both fre-
quency measurements and displacement measurements have 
to be used to detect the damage. Two criteria are consid-
ered for damage detection, namely, the frequency changes 
and a combination of frequency changes and displacement 
changes (or changes in acceleration–time response).

2 � Dynamic analysis

2.1 � Sensitivity equation

The equation of motion for undamped free vibration of a sys-
tem can be written in the form of an eigenvalue problem as:

Here, �� and �� are the stiffness and mass matrices for 
undamaged structure, respectively. ��� represents the mode 
shape vector for �i0 (eigenvalue) and �i0 = �2

i0
.

(1)(�� − �i0��)��� = 0 i = 1, 2, 3, 4… n.

If �� is the small change in the stiffness matrix due to the 
damage and ��i0 is the change in the eigenvalue, then neglect-
ing the change in mass matrix, Eq. (1) becomes:

Expanding Eq. (2) and neglecting second-order terms yield:

Using Eq. (1) in Eq. (3), we get:

Multiplying Eq. (4) throughout by ��
��

 gives:

The transpose of Eq. (1) gives:

Multiplying Eq. (6) by ����

Therefore, Eq. (5) reduces to:

Equation (8) can be rewritten as follows:

where:

Here, summation implies assembly. �ke is defined as the stiff-
ness reduction factor (SRF). [��] is the element stiffness 
matrix. From Eq. (9), it is evident that the change in natural 
frequency of the structure is a function of the change in stiff-
ness of the structure, which by itself is a function of stiffness 
reduction factors (SRFs) of elements. Hence, the change in 
natural frequency can be represented as function of SRFs of 
elements of the structure.

Furthermore, the relative change in the ith eigenvalue as 
a measure of damage, known as damage index (DI), can be 
expressed as follows:

(2)[�� + �� − (�i0 + ��i0)��](��� + ����) = 0.

(3)
����� +������ + ����� − �i0�����

− ��i0����� − �i0������ = 0

(4)������ + ����� − ��i0����� − �i0������ = 0.

(5)
���
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+ (���
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T��)���� = 0.

(6)���
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T
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,
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n
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(11)DI =
�i − �i0
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=

��i0

�i0
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3 � Static analysis

As discussed earlier, for symmetric structures, damage site 
cannot be uniquely determined [15]. In this case, structural 
response to a static load is considered to accurately detect dam-
age. This is based on the fact that, due to stiffness reduction, 
the structural response to a given load vector would be more 
in the damaged state when compared to the undamaged state. 
In this paper, the vertical displacement measurements are con-
sidered to detect the damages.

3.1 � Sensitivity equation

In dynamic analysis, a sensitivity equation which defines sen-
sitivity of natural frequency to small change in stiffness was 
derived. On similar terms, for static analysis, the sensitivity 
equation describes the sensitivity of displacement vector {x} 
to a small change in stiffness �� , under the action of a given 
static load vector �.

The equilibrium equation in the undamaged state can be 
written as follows:

In the damaged state, under the action of the same load vec-
tor � , Eq. (12) becomes:

Expanding Eq. (13) and using Eq. (12) in Eq. (13), we get:

Rearranging Eq. (14), we get:

�x is a column vector containing the change in the displace-
ment at various positions in the structure due to the occur-
rence of a damage. This expression is used in the formulation 
of objective function based on displacement measurements.

4 � Objective function

The objective function defines the error between vibration 
data obtained from analytical model computations and experi-
mental model testing. Objective function could be defined in 
three different ways depending on the static and vibration data 
available.

4.1 � Objective function based on frequency 
measurements

The objective function for the optimisation problem is defined 
as follows:

(12)� = ���.

(13)� = (�� + ��)(� + ��).

(14)���� + ��� + ���� = 0.

(15)�� = −(�� + ��)−1���.

where suffixes ‘AN’ and ‘EX’ represent analytical and 
experimental values, respectively. The objective function is 
a global error function which defines the error between the 
experimentally and analytically obtained frequency changes. 
The objective function based on relative change was first 
proposed by Hong Hao and Yong Xia [10]. Here, ‘ �i ’ rep-
resents the eigenvalue in the damaged state. In our case, 
least square error has been considered. The solution of this 
optimization problem is unique for asymmetric structures 
[15]. At least two modes of vibration must be considered for 
formulating the objective function.

Equation (16) can be rewritten as follows:

��i0 is obtained from Eq. (9). From Eqs. (9) and (17), it is 
evident that J is a function of all the stiffness reduction fac-
tors ( �ke ). Minimizing J gives the values of all the SRFs. 
The information contained in the mode shape vectors in the 
predamaged state is incorporated in the objective function. 
The analytical values of eigenvalues and mode shape vec-
tors in the predamaged condition are obtained by FEM. The 
optimisation is carried out using Cuckoo Search algorithm 
(CSA). The method does not require any accurate analytical 
modelling to detect damage. The incorporation of sensitiv-
ity equation in the objective function has also resulted in 
relatively lower computational time.

In the present study, numerical experiments are per-
formed with the help of ANSYS. Two examples of cantilever 
beams with different damage scenario have been considered.

4.2 � Objective function based on displacement 
measurements

Objective function for the optimisation problem based on 
displacement measurements can be defined in a similar way 
as follows:

where �xi represents the change in vertical displacement at 
the ith position and can be obtained from Eq. (15). The num-
ber of points in which displacement measurements has to 
be made is decided by the investigator. More displacement 
measurements must be made at those points where damage 
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√

√

√

√

nmodes
∑

i=1

(

[�i − �i0

�i0

]AN

−

[�i − �i0

�i0

]EX
)2

,

(17)J =

√

√

√

√

nmodes
∑

i=1

(

[��i0

�i0

]AN

−

[�i − �i0

�i0

]EX
)2

.

(18)J =

√

√

√

√

npoints
∑

i=1

(

[�xi

xi0

]AN

−

[xi − xi0

xi0

]EX
)2

,



140	 Journal of Civil Structural Health Monitoring (2019) 9:137–151

123

is suspected. However, the displacement changes tend to be 
very small in the case of minor damages. In such cases, the 
accuracy of damage detection might get reduced. In addi-
tion, huge static loads have to be applied in such cases. The 
analytical values of the displacement vector is obtained by 
FEM. In the previous case, ‘J’ is a function of all SRFs. ‘J’ 
could be minimized to obtain the SRFs.

4.3 � Objective function based on both frequency 
and displacement measurements

Objective function for the optimization problem based on both 
displacement and frequency measurements can be defined as 
√

J , where:

The relative accuracy in the measurement of natural fre-
quency and displacement will determine the weights Wi and 
Wj . The value of Wi and Wj can be chosen between 0 and 1. 
When the frequency data are more reliable, Wj is chosen 
higher than Wi and closer to 1. In most cases, the relative 
measurement error of frequency is about 1% [10], whereas 
the displacement or acceleration measurements are more 
contaminated with noise and it is customary to add 5–10% 
white noise to the analytically obtained displacement pro-
file to simulate field measurements [16]. For pursuing the 
damage detection procedure shown in Fig. 1, the parameters 
Wi and Wj have to be known before hand. This is achieved 
by developing the finite-element model of the structure to 
be assessed and simulating a suitable damage scenario. 
Adequate measurement noise is added to the frequencies 
and displacements obtained from the numerical model and 
the weights are determined, so that the damage is located 
accurately based on the procedure in Fig. 1. The computed 
weights could be used for assessing the health of the struc-
ture based on field measurements. This objective function 
should be used when dealing with symmetric structures, 
where frequency measurements alone are not sufficient to 
guarantee a unique solution to the optimisation problem 
[15].

4.4 � Objective function based on frequency data 
and acceleration–time history

If accelerometers are used to record the dynamic response of 
a structure subjected to an arbitrary excitation, the obtained 

(19)

J = Wi

npoint
∑

i=1

(

[�xi

xi0

]AN

−

[�xi

xi0

]EX
)2

+Wj

nmode
∑

j=1

(

[��i0

�i0

]AN

−

[��i0

�i0

]EX
)2

.

acceleration–time plot could be used to define an objective 
function as 

√

J , where:

where tij represents acceleration of ith location at jth time 
step. npoint refers to the number of measurement sites. W1 
and W2 are the weights as discussed previously. The general 
damage detection procedure is shown in Fig. 1.

5 � Overview of Cuckoo Search algorithm

Cuckoo Search is a relatively new metaheuristic optimization 
algorithm [14, 17]. The algorithm is based on the aggressive 
breed characteristics of cuckoo birds. This is incorporated 
in combination with Lévy flight behaviour of certain birds 
to get a simple and effective optimization algorithm. This is 
used in minimizing Eqs. (17), (18), (19), and (20).

(20)

J = W1
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,
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Function optimization 
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Static Analysis Displacement measurement

Frequency measurement

Fig. 1   Procedure for damage detection
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5.1 � Cuckoo breed characteristics

Cuckoos are well known for their breeding strategy. They 
lay their eggs in the nests of other host birds (particularly 
crows). If the host bird identifies the cuckoo’s egg, it may 
throw away the egg or abandon the nest. Some cuckoo spe-
cies belonging to the ‘Tapera’ genus have evolved, such that 
female parasitic cuckoos are often found to be extremely 
specialized in mimicking host eggs. Thus, it becomes very 
difficult for the host bird to detect the cuckoo’s egg.

5.2 � Lévy flight

A Lévy flight is a random walk in which the step lengths have 
a probability distribution. When defined as walks in space, the 
steps made are in random directions. However, this direction 
depends on the current position.

In nature, animals and birds search for food in a random 
or quasi-random manner. The path in which an animal moves 
becomes a random walk, because its next step is based on the 
current location. Hence, the direction that it chooses depends 
on a probability model which can be modelled mathematically. 
Thus, it is a type of random walk in which each successive 
move is chosen randomly and is uninfluenced by any previ-
ous moves. For example, consider a drunk person walking on 
a street. The likelihood of the person taking a step to the right 
is the same as that of the person taking a step to the left, with 
no memory of the previous routes. In a Lévy walk, most steps 
are taken within a small area; however, longer routes may be 
taken occasionally. A wide variety of animals, such as marine 
predators, birds, terrestrial mammals, and various insects 
exhibit Lévy-like patterns. Evidence of Lévy walks has also 
been found in the ways that people wander freely.

5.3 � Cuckoo Search algorithm

For simplicity in defining the CSA, the following idealised 
rules are considered:

1.	 Each cuckoo lays one egg at a time and dumps it in a 
randomly chosen nest.

2.	 The best nests with high-quality eggs (solutions) will 
carry over to the next generation.

3.	 The number of available host nests is fixed, and a 
host can discover an alien egg with a probability of 
pa ∈ [0, 1] . In this case, the host bird can either throw 
away the egg or build a completely new nest in a com-
pletely new location.

For a maximization problem, the fitness or quality of a solu-
tion can be taken to be directly proportional to the value of the 
objective function. For other types of problems, other fitnesses 
can be defined accordingly. For a minimization problem, for 

example, the inverse of the function value may be taken as the 
fitness of the function.

Each egg in a nest is taken to represent a solution. A cuckoo 
is taken to represent a new solution. The main aim of the pro-
gram is to discard the old solutions and accept potentially new 
and improved solutions.

When generating a new solution, xt+1 for a cuckoo i, Lévy 
flight is performed as:

where 𝛼 > 0 is the step size, which is related to the scales of 
the new problem of interest. In most cases, we can use � = 1 . 
The product ⊕ means entrywise multiplication.

Based on these steps, the pseudocode for CS algorithm 
can be written as [14]: 

begin

Objective function f (x), x= (x1, ....,xd)T

Generate initial population of n host nests xi(i= 1,
2, ....,n)

while (stop criterion)

Get a cuckoo randomly by Levy flights

Evaluate it’s quality/fitness Fi Eq. (17),
(18) or (19)

)

Choose a nest among n (say, j) randomly

if (Fi > Fj)

replace j by new solution

end

A fraction (pa) of worse nests are abandoned and
new ones are built

Keep the best solutions
(or nests with best quality solutions)

Rank the solutions and find the current best.

end while

Postprocess results and visualization

end

(21)xt+1
i

= xt
i
+ 𝛼 ⊕ Levy(𝜆),
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6 � Example 1: cantilever beam (a)

To demonstrate the proposed damage detection technique, a 
cantilever beam has been used as an example. The example 
problem is taken from an experimental study reported by 
Yang et al. [18]. The geometric and material properties of 
the beam are as follows:

Material: Aluminium
Length: 495.3 mm
Width: 25.4 mm
Depth: 6.35 mm
Young’s modulus: 7.1 × 1010 N/m2

Mass density: 2210 kg/m3.

The beam was damaged by a saw cut, as shown in Fig. 2b. 
The beam was modelled using 20 plane frame elements hav-
ing six degrees of freedom at each node. The natural fre-
quencies of the undamaged beam obtained by eigenvalue 
analysis are given in Table 1. The damage was induced in 
the ninth element.

The experimental values of natural frequency in the 
predamaged and damaged states as obtained by Yang et al. 
[18] are also provided in Table 1. Only the first six natural 
frequencies were used for damage detection. Since it is an 
unsymmetrical structure, natural frequency measurements 

are sufficient to detect the damage and mode shape measure-
ments are not made.

The objective function was created using the sensitivity 
equation and the error is minimized using CSA to obtain the 
SRF’s. For the comparison of results, the objective function 
defined by Hong and Hao [10] is also minimized using CSA 
and it was found that the results so obtained agreed well with 
the reported results in the reference, which was obtained 
using genetic algorithm.

The results are shown in Fig. 3. The number of nests was 
set to 25. The probability pa is set to 0.35. The process is 
iterated 65,000 times for good convergence.

The results show that the damage is correctly detected in 
element 9. Small magnitude of SRF is detected in the 2nd 
and 12th elements which may be due to noise in the fre-
quency measurements and nonlinearity caused due to severe 
damage [10]. The use of sensitivity equation in the objective 
function has improved the accuracy in damage detection. 
Figure 3 shows that the computed SRF in ninth element is 
three times the SRF of Element 12. Therefore, it can be 
concluded with a reasonable level of confidence that the 

Fig. 2   Configuration of the cantilever beam [10]

Table 1   Analytical and experimental natural frequencies (Yang et al. 
1985)

Mode Analytical values 
(Hz)

Experimental values (Hz)

Undamaged Damaged

1 23.70 19.53 19.00
2 148.53 122.05 115.85
3 415.88 339.26 332.36
4 815.00 661.73 646.91
5 1347.40 1085.22 1037.46
6 2013.20 1594.59 1591.36
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Fig. 3   SRF of the cantilever beam (in %)
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major damage is in element 9. The computational time is 
also significantly lower compared to the other methods. This 
is because the time required for eigenvalue analysis is saved 
in each iteration. The method also has the advantage that it 
does not require any accurate analytical modelling or finite-
element model updating. Algorithm detects very minor dam-
age in element 8 which is adjacent to the actual damage loca-
tion. This is due to the involvement of mode shape vector in 
the objective function and very severe damage in element 9 
(the section was actually weakened by 93.75% [18]).

6.1 � Number of modes and number of finite 
elements to be used for damage detection

Theoretically, the measurement of frequency changes in one 
pair of modes will yield a locus of possible damage sites 
[15]. Only an optimum number of modes are needed to be 
considered so as to transform the problem into a well-posed 
one, i.e., for unique determination of the damage location. 
In the above analysis, it is essential to use the first six natural 
frequencies to achieve a unique solution to the optimisation 
problem. Numerical experiment by considering only the first 
five natural frequencies leads to an ill-posed problem, i.e., a 
unique solution was not obtained. The noise in the frequency 
measurement is the major reason that caused the problem 
to be ill-posed. Since there is practical limit to the range of 
frequencies that a structure can be tested for, only the first 
few natural frequencies are used in all the demonstrations.

The effect of number of finite elements used for damage 
detection is demonstrated in Fig. 4. It can be observed from 
Fig. 4 that, irrespective of the finite-element mesh used, the 
damage is accurately detected. However, the magnitude of 
the detected SRF depends on the proximity of the damage 

to the adjacent finite element. It is to be understood that, 
when the number of elements used is 15, 18, 20, 23, or 27, 
the damage is located approximately in the middle of the 
finite element which leads to a reasonably good estimate 
of the damage magnitude as observed in Fig. 4. However, 
for other cases in Fig. 4, due to the proximity of damage 
to adjacent element, the damage magnitude gets distributed 
across elements leading to a lower detected SRF. Numerical 
experiments by varying the number of elements have to be 
done for accurately determining the damage magnitude or 
an objective function defined by Eq. (19) could be used. In 
the simulations presented here, the number of elements is 
fixed at 20 to demonstrate that accurate analytical modelling 
(finer mesh) is not required for efficient damage detection.

7 � Example 2: cantilever beam (b)

In this example, a cantilever beam with damages at multiple 
positions has been considered. The beam is simulated using 
ANSYS and the modal parameter obtained from ANSYS 
is used in place of the experimental values. The beam is 
shown in Fig. 5.

The geometric and material properties of the beam are 
as follows:

Material: Steel
Length: 600.0 mm
Width: 25.0 mm
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50
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90
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Number of elements

Fig. 4   Effect of number of finite elements on the identified SRF of 
element containing damage (in %) Fig. 5   Configuration of the cantilever beam (b)
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Depth: 7.00 mm
Young’s modulus: 2.0 × 1011 N/m2

Mass density: 7850 kg/m3.

Damage was simulated in the form of a crack of width 5 
mm, as shown in Fig. 5. The damage was induced in the 4th 
and 17th element. 40% and 60% reduction in cross-sectional 
area was provided in the 4th and 17th elements, respectively.

The values of natural frequency in the predamaged 
and damaged states as obtained by ANSYS analysis and 
obtained by analytical modelling are provided in Table 2. 
The beam was modelled using 20 plane frame elements 
having six degrees of freedom at each node. The first seven 
natural frequencies are used for damage detection.

The damage detection procedure was carried out and 
the results are shown in Fig. 6. The CSA parameters cho-
sen are the same as before. The process is iterated 65,000 
times for good convergence of results.

The results show that the damage is correctly detected 
in element 4 and element 17. Small magnitude of SRF 
is detected in the 14th element which may be due to the 
nonlinearity caused due to severe damage. The algorithm 
detects SRF of 24.59% and 58.38% in the 4th and 17th 
elements, respectively. The results show that the algorithm 
gives a good insight into the relative magnitude of dam-
ages at different position.

8 � Example 3: fixed–fixed beam

The special case of a symmetrical fixed–fixed beam is con-
sidered in this example. In this case, displacement meas-
urements have to be made for effective damage detection. 
The beam was simulated and analyzed in ANSYS. Both 
modal analysis and static analysis are done to obtain the 
natural frequencies and the static displacement values. 
A uniformly distributed load of magnitude 500 N/m is 
applied for displacement values. The geometric and mate-
rial properties of the beam are as follows:

Material: Aluminium
Length: 600.0 mm
Width: 25.0 mm
Depth: 6.00 mm
Young’s modulus: 7.1 × 1010 N/m2

Mass density: 2770 kg/m3.

Table 2   Analytical and ANSYS natural frequencies

Mode Analytical value 
(Hz)

ANSYS value (Hz)

Undamaged Damaged

1 15.85 15.89 15.63
2 99.36 99.55 98.82
3 278.21 278.55 272.19
4 545.21 545.40 522.85
5 901.37 900.53 862.26
6 1346.80 1343.47 1305.11
7 1881.70 1874.00 1873.95
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Fig. 6   SRF of the cantilever beam with multiple damage location (in 
%)

Fig. 7   Configuration of the fixed–fixed beam
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Damage was simulated in the form of a saw cut, as shown in 
Fig. 7. It was induced in the 12th element, the beam being 
modelled using 20 elements.

The natural frequency values are provided in Table 3. 
As before, the beam was modelled using plane frame ele-
ments. The first six natural frequencies along with displace-
ment values at five points on the beam are used for damage 
detection.

For damage detection, the objective function defined by 
Eqs. (17) or (19) can be used. The relative effectiveness of 
the two objective functions is examined. The CSA param-
eters are already defined in the previous section and the pro-
cess is iterated 65,000 times as before.

8.1 � Damage detection with frequency 
measurements

In this case, only the first seven natural frequency values 
are used for damage detection. Objective function defined 

by Eq. (17) is minimized in this case. The results are shown 
in Fig. 8.

The results show that damage is detected in 12th element 
and 9th element, whereas the actual damage is in 12th ele-
ment only. Perfect convergence in solution was not observed 
in this case. This is because, with symmetric structures, the 
damage cannot be uniquely located using frequency values 
[15]. From the observed result, it can be concluded that fre-
quency changes alone are not sufficient to detect the damage.

Damage detection considering only displacement changes 
is not demonstrated in this example. The procedure requires 
a large number of displacement measurements, since the 
displacement changes are negligible for small damages.

8.2 � Damage detection with both frequency 
and displacement measurements

A uniformly distributed load of magnitude 500 N/m is 
applied on the beam and the vertical displacement at five 
different positions on the beam (at 90 mm, 210 mm, 330 
mm, 450 mm, and 570 mm from left end of the beam) is 
obtained before and after the damage. The load is chosen so 
as to obtain a maximum displacement of 5.3 mm, which is 
of measurable order. The analysis could even be carried out 
using a suitable concentrated load.

The objective function defined by Eq. (19) is minimized 
in this case. The weights Wi and Wj are set to unity, since 
both frequencies and displacements are obtained with the 
same degrees of accuracy. The results are shown in Fig. 9.

The figure pinpoints the damage to the 12th element. 
Thus, by combining frequency and displacement measure-
ments in the analysis, the damage could be detected accu-
rately in the case of symmetric structures. A small damage 

Table 3   Analytical and ANSYS natural frequencies

Mode Analytical value 
(Hz)

ANSYS value (Hz)

Undamaged Damaged

1 86.70 87.02 86.38
2 239.09 239.70 238.80
3 468.74 469.48 465.98
4 774.94 775.22 767.73
5 1157.90 1156.50 1155.00
6 1617.80 1612.90 1593.30
7 2155.00 2143.80 2137.00
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Fig. 8   Identified SRF with frequency changes (in %)
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Fig. 9   Identified SRF with frequency and displacement changes (in 
%)
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detected in the fifth element may be due to nonlinear-
ity caused due to the damage. The computational time is 
reduced by invoking gauss elimination procedure on banded 
matrix to solve Eq. (15).

In most cases, the displacement changes tend to be very 
small, and hence, very sophisticated instruments are required 
for very accurate measurements. In such cases, the investiga-
tor is free to choose different weights Wi and Wj depending 
upon the relative accuracy in the measurements of frequen-
cies and displacements.

9 � Example 4: space frame model

The damage detection algorithm is applied to a three storey 
frame model shown in Fig. 10a.

Focus is laid on detecting the storey in which the dam-
age is present rather than identifying the structural element. 
Lumped mass modelling (LMM) is adopted as the analyti-
cal model to compute the natural frequencies and dynamic 
response. The geometric and material properties of the space 
frame are as follows:

Column properties

Material: Aluminium
Shear modulus: 26 × 109 N/m2

Young’s modulus: 7.1 × 1010 N/m2

Mass density: 2770 kg/m3

Length of column: 310.0 mm
Column-cross section: Trapezoid with dimensions:
Longer side: 25 mm
Shorter side: 20 mm
Thickness: 2.56 mm.

Plate properties

Material: Steel
Young’s modulus: 2.1 × 1011 N/m2

Shear modulus: 77 × 109 N/m2

Mass density: 7850 kg/m3

Dimension of Plate: 250 × 200 × 10 mm.

The Lumped mass model is shown in Fig. 10b. The model 
has three degrees of freedom and the shear building model 
is used to compute the global stiffness and mass matrix. 
The natural frequencies obtained by eigenvalue analy-
sis are given in Table 4. After constructing the damping 
matrix, Newmark-beta method is used to obtain the dynamic 
response to base excitation.

Uni-axial shake table experiment was conducted on the 
specimen with accelerometers attached at individual storey 
levels as shown in Fig. 10a. The recorded acceleration–time 
history and the natural frequency obtained through a sine 
sweep procedure (Table 4) are used as input to the damage 
detection algorithm.

For this particular problem, a two-stage damage detection 
procedure is carried out. In the first stage, the finite-element 
model is updated, so that the acceleration–time plot obtained 
experimentally and analytically has the same character in the 
undamaged state. The model is updated by applying suitable 
Stiffness reduction factor (SRF) for each storey. Stiffness 

(a) Configuration of the frame specimen

(b) Lumped mass model with mass lumped at each storey level

Fig. 10   Three storey frame specimen

Table 4   Analytical and experimental natural frequencies

Mode Analytical value (Hz) Experimental (Hz)

Original Updated Undamaged Damaged

1 2.08 1.63 1.6 1.55
2 5.82 5.32 5.4 5.35
3 8.39 6.94 – –
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Fig. 11   Acceleration–time plot for the top storey

Fig. 12   Acceleration–time plot for the middle storey

Fig. 13   Acceleration–time plot for the bottom storey

Fig. 14   Acceleration–time plot obtained analytically (undamaged 
state)
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reduction of 5%, 62%, and 2% has been obtained for the top, 
middle, and bottom storey, respectively, by minimizing an 
objective function based on direct comparison of frequencies 
in the undamaged state. The flexibility provided by the bolted 
connection is thus incorporated in the updated model. The 
updated natural frequency values are provided in Table 4.

Shake table experiment was conducted for sinusoidal 
wave of frequency 1.6 Hz and amplitude 1 mm. The accel-
eration–time plot for the damaged and undamaged state is 
also shown in Figs. 11, 12, and 13. From the plots, it can 
be inferred that damage has caused a shift in the system’s 
natural frequency, thereby lagging the response.

The acceleration–time plot obtained after model updating 
is shown in Fig. 14. The base excitation has a frequency of 
1.6 Hz and amplitude 1 mm. 2% damping is considered in 
the analytical model for computing the response.

In the second stage, the updated model is used for dam-
age detection. The objective function defined by Eq. (20) is 
minimized to obtain the SRF of the three storeys. To con-
trol the growth of error, only those time steps for which the 
acceleration in the intact and damaged state is either both 
positive or both negative is considered.

9.1 � Damage identification with changes 
in acceleration–time response

The acceleration of the three storeys between 2 s and 8 s 
with a time step of 0.3 s is considered for defining the objec-
tive function (npoint = 3). The response becomes steady 
after 9 s. In this case, W2 is zero.

The identified SRF are shown in Fig. 15. The figure shows 
that all the elements are detected as having damages. This may 
be attributed to the errors in measurement and noise. However, 
the middle storey is detected as having the most severe damage.

9.2 � Damage identification with both frequency 
changes and changes in acceleration time response

The frequency changes in the first two modes are also con-
sidered in addition to acceleration changes.
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Fig. 15   Identified SRF with acceleration changes
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(c)WeightW2 = 0.01

Fig. 16   Identified SRF considering both frequency changes and 
acceleration changes with different weights
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The relative contribution of frequency and acceleration 
to the objective function is considered as unity ( W1 = 1 ) and 
( W2 = 1, 0.1, 0.001), respectively.

The obtained SRF are shown in Fig. 16. It can be inferred 
that the damage is accurately detected in the middle storey 
when W2 = 0.01 . Therefore, the relative weights W1 and W2 
play a very major role in damage detection. In addition, since 
the error in frequency measurement are relatively less, it is 
more appropriate to make large number of frequency meas-
urements. The weights have to be chosen based on the rela-
tive accuracy in the measurements made. Thus, the proposed 
algorithm is capable of detecting a minor damage.

9.3 � Effect of damping ratio on damage detection

In the above detection, 2% damping ratio was considered 
for computing dynamic response. The procedure is repeated 
for 1.5% and 2.5% damping. Similar results were obtained, 
indicating that change in damping ratio has negligible effect 
on damage detection. This may be attributed to the peculiar 
nature of the objective function defined based on relative 
error.

9.4 � Effect of number of time steps on damage 
detection

In the above detection procedure, a total of 21 time steps 
were considered [ntime = 21 in Eq. (20)]. The procedure 
was repeated for different number of time steps between 2 s 
and 8s. The results obtained are shown in Fig. 17.

Figure 17 shows that the damaged storey could be accu-
rately located and is independent of the number of time steps 
considered. However the magnitude of the detected damage 
depends on the number of time steps considered. This is 
due to the error involved in instrumentation and faint noise 
in the data which causes the problem to be ill-conditioned. 
This problem may be tackled by including a regularization 
parameter in the objective function, which stabilizes the ill-
conditioned problem [19]. The proposed damage detection 
technique may find application in the health monitoring of 
buildings subjected to earthquake. The ground acceleration 
data could be obtained from an earthquake recording station 
and the sensors embedded in different structural members 
of the building could record the acceleration–time response. 
The initial portion of the response represents the healthy 
building and the occurrences of damage may be indicated by 
the jumps in the acceleration–time response. With the base 
excitation data and acceleration–time response available, 
one could detect the possible damage sites in a multi-storey 
building, after the earthquake has subsided.

To detect the exact column containing the damage, a 
more rigorous analysis is required. The structure may be 
modelled using space frame element [20]. Accelerometer 

readings on each of the columns could be used for dam-
age detection. However, the tremendous computational 
time poses a serious problem for damage detection of 
large structures. In such cases, frequency and mode shape 
measurements may be combined to solve the problem. It 
is theoretically possible to identify the mode shape from 
acceleration response. It is then possible to define an 
objective function based on the identified frequencies and 
mode shapes of the structure. With the damaged storey 
already identified, the number of parameters to be esti-
mated (SRF) in the objective function and, consequently, 
the computational time could be significantly reduced. Yet, 
another way would be to use the obtained mode shape 
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changes to detect the damage based on Modal Strain 
energy change [21].

The proposed damage identification technique with accel-
eration response may also find application in the damage 
detection of bridges. In this case, the vehicle force acts as 
the forcing function which can by obtained by solving the 
moving force identification problem [22]. Bridge dynamic 
response may be obtained from accelerometers attached at 
specific positions on the bridge. With the above data avail-
able and by employing an appropriate finite-element model 
for the vehicle–bridge interaction, it is possible to detect the 
damage in the bridge using the proposed technique.

10 � Conclusion

A method which detects structural damage accurately is 
demonstrated in this paper. The method which uses both 
static and dynamic responses for damage detection has many 
advantages compared to the existing methods. Based on the 
analysis done in this paper, the following conclusions can 
be drawn:

1. The sensitivity equation used in defining the objective 
function has significantly reduced the computational time 
when working with frequency data alone as demonstrated in 
Sect. 6. Cuckoo Search algorithm provided a faster conver-
gence rate compared to other algorithms like genetic algo-
rithm. The method did not require an accurate analytical 
modelling. Numerical results showed that the damage could 
be detected with reasonable degree of accuracy.

2. The proposed technique could even quantify the rela-
tive magnitude of damages at different positions as demon-
strated in Sect. 7.

3. By suitably combining the frequency data with static 
displacement data, a unique solution (Damage location) to 
the optimisation problem could be guaranteed as demon-
strated in Sect. 8.2.

4. Even a very small damage in one of the columns of a 
multi-storey frame structure could be detected with reason-
able degree of accuracy as demonstrated in Sect. 9.
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