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Abstract
This paper presents a framework for automated damage detection using a continuous stream of structural health monitoring

data. The study utilized measured strains from an optimized sensor set deployed on a double track, steel, railway, truss

bridge. Stringer–floor beam connection deterioration, a common deficiency, was the focus of this study; however, the

proposed methodology could be used to assess the condition of a wide range of structural elements and details. The

framework utilized Proper Orthogonal Modes (POMs) as damage features and Artificial Neural Networks (ANNs) as an

automated approach to infer damage location and intensity from the POMs. POM variations, which are traditionally input

(load) dependent, were ultimately utilized as damage indicators. Input variability necessitated implementing ANNs to help

decouple POM changes due to load variations from those caused by deficiencies, changes that would render the proposed

framework input independent, a significant advancement. To develop an automated and efficient output-only damage

detection framework, data cleansing and preparation were conducted prior to ANN training. Damage ‘‘scenarios’’ were

artificially introduced into select output (strain) datasets recorded while monitoring train passes across the selected bridge.

This information, in turn, was used to train ANNs using MATLABs Neural Net Toolbox. Trained ANNs were tested

against monitored loading events and artificial damage scenarios. Applicability of the proposed, output-only framework

was investigated via studies of the bridge under operational conditions. To account for the effects of potential deficiencies

at the stringer–floor beam connections, measured signal amplitudes were artificially decreased at select locations. It was

concluded that the proposed framework could successfully detect artificial deficiencies imposed on measured signals under

operational conditions.
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1 Introduction

Aging infrastructure, increased traffic load and frequency,

and climate change motivate monitoring the condition of

our built environment using autonomous, continuous and

quantitative methods. Bridges, a key link in our trans-

portation infrastructure network, are largely assessed in the

US via visual inspection. This approach takes place at

prescribed frequencies and is costly, possibly unsafe, and

subject to human interpretation [1]. Automated procedures

to identify damage to bridges and other structures have

been investigated for some time and are typically referred

to as Structural Health Monitoring (SHM) [2]. An ensem-

ble of sensors provides raw data that form the ‘‘front end’’

of a SHM system. A signal-processing layer then extracts

information on structure condition and damage identifica-

tion techniques are applied to extract useful information

from the data. Subsequent information is incorporated into

structural analysis and probabilistic models to assess the

state of the structure and develop an updated health and

service life prognosis [3].

Normally, a structural deficiency leads to degradation of

material properties or variations in geometry and, there-

fore, results in changes in system dynamic properties. In a

vibration-based damage detection framework, properties

such as modal curvature [4], Eigenmodes [5–7], and modal

strain energy [8, 9] are sensitive to the aforementioned

deficiencies. The classic approach for vibration-based

damage detection is accomplished in two phases, modal
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identification and model updating, where an optimization

procedure is employed to find values for damage indices

that minimize a discrepancy function. Vibration signatures

are also combined with Machine Learning tools for iden-

tification of local deficiencies using fault detection methods

[10–12]. He et al. [10] used induced vibrations from trains

passing across a coupled FEM model of simply supported,

single span bridge and Genetic Algorithm to detect damage

location and intensity. Loads coupled to the bridge model

were from a single bullet train car and, as a result, did not

simulate most train loading configurations. Variations in

train axle loads were also not included. Kim et al. [11]

investigated recorded accelerations, temperature and vehi-

cle weights collected using a long-term SHM system

deployed on a steel multi-girder bridge to detect deficien-

cies. Their methodology included: employing autoregres-

sive model coefficients to extract damage-sensitive features

from recorded accelerations; considering environmental

and vehicle weights via regression analysis of damage

sensitive features; and making decisions about bridge

health based on differences between observed and pre-

dicted damage-sensitive features using Bayesian hypothe-

ses testing with a 95% confidence interval [11]. The

proposed framework was based on input measurement and

the damage detection scheme was not intended to pinpoint

damage location. It was concluded that using Bayesian

regression that incorporated environmental and vehicle

loading yielded more accurate results when compared

against cases where these items were excluded [11]. Bel-

lino et al. [12] used Principle Component Analysis to

eliminate site condition effects, such as train mass and

velocity, on structural frequencies so that frequency

changes would be purely due to damage. The study

included laboratory testing of a single moving mass on a

short cantilever beam subjected to damage to verify the

methodology and the proposed method was able to detect

damage and differentiate between various damage levels

[12].

A major challenge associated with using identified

modal properties for damage detection under operational

conditions is that environmental conditions (i.e., tempera-

ture, moisture, wind) may drastically affect identification

results [13, 14]. Additionally, most operational modal

analysis (OMA) algorithms assume that ambient excita-

tions are stationary, white noise. In many cases, this

assumption may be violated and, consequently, modal

properties would not be consistently identified. Research is

in progress that focuses on alleviating issues caused by

these non-stationary external inputs [15, 16].

Another major drawback of conventional modal-based

damage detection methods is their sensitivity to modeling

errors. In an attempt to address this issue, full-scale,

dynamic tests of a seven-story reinforced concrete building

were completed to examine uncertainties in common

damage detection methods [17]. Findings indicated that

level of confidence in damage identification results was a

function of the level of uncertainty in identified modal

parameter choices when designing the monitoring schemes

(e.g., spatial density of measurements) along with model-

ing errors (e.g., mesh size) [5, 18]. Based on these findings,

it can be inferred that, for reliable structural health moni-

toring to occur, there is a need for high signal–noise ratios,

precise modeling, and stationary external excitations.

However, the stationarity condition is often violated,

highly accurate models demand time and expertise, and

high signal–noise ratios are usually not achievable using

reasonably priced sensors.

Several issues have motivated research on data-driven

methods for SHM. These include: efficacy of automatic

damage feature extraction under operational conditions; the

‘‘curse of dimensionality’’ when dealing with relatively

large parameter sets; how to accurately account for

unknown and non-stationary external excitations; and

inaccuracies associated with using global damage features

to pinpoint local deficiencies [2]. An objective stemming

from these issues could be succinctly stated as developing

SHMs that correctly detect statistically significant damage

feature variations via analysis of sensor data [19].

Researchers are attempting to address this output-only,

damage feature detection need. One study implemented a

continuous monitoring system on a highway bridge and

used a combination of Statistical Process Control (SPC)

and Gaussian Process Regression (GPR) for centralized

damage identification based on novelty detection [20].

GPR was used to mitigate vehicle–bridge interaction and

environmental effects to isolate damage and a relatively

long window of measurements was used for determining

the SPC threshold. A second study utilized laboratory

fatigue tests of a wind turbine blade and adopted multi-

variate numerical analysis methods such as Radial Basis

Functions, Principal Component Analysis, and Artificial

Neural Networks (ANNs) to detect damage via measure-

ment of system response to harmonic excitations [21]. Yet,

another study developed a novel impact localization

method using Proper Orthogonal Decomposition (POD)

[22]. Acoustic emission measurements were also used to

evaluate structural condition and self-healing performance

of textile reinforced cements [23]. The effectiveness of

SHM schemes based on statistical damage features versus

those based on modal parameters was examined via a

second study of a wind turbine blade. It was concluded that

statistical-based methods better identified induced damage,

even at low damage levels [24]. Kim and Eun performed

simulated experiments on a beam to study damage detec-

tion capabilities of an algorithm based on POD of the

structure’s Frequency Response Function (FRF). It was
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concluded that using POMs of FRFs in specific frequency

ranges could effectively identify incurred damage [25].

Most health monitoring systems are centered on mea-

suring strains, accelerations, displacements, or a combi-

nation of these items. While acceleration measurements are

suited for monitoring global behavior of structural systems,

strain measurements provide a unique understanding of

local behavior of the system. Recent research has focused

on the use of specific types of strain sensors to not only

evaluate their effectiveness in the field but also to examine

their efficacy for detecting damage in a SHM application

[26] and their use continues to be studied [27, 28]. Glisic

et al. compared damage detection capabilities of the two

main FO techniques, one based on fiber Bragg gratings and

the other on Brillouin optical time-domain analysis. The

former technique enables long gage lengths and the latter

allows for distributed sensing. It was concluded that both

strain sensing techniques are suitable for damage detection

via their application to full-scale reinforced concrete

structures [29]. Tondreau and Deraemaeker developed a

method to locate structural damage based on local modal

filters applied to dynamic strain measurements and per-

formed lab experiments to validate their method using a

dense array of strain sensors installed on a steel beam [30].

Reported output-only damage detection methods are

dependent on stationary, external, system excitations and

require high signal–noise ratios for accurate detection. To

address these apparent interdependencies, the authors

developed a framework for detecting damage under

operational conditions using POD and Artificial Neural

Networks (ANNs) [26, 31]. A supervised learning

scheme was proposed for output-only classification of

structural response to minimize POM variations that

belong to each defined damage class and load intensity.

Additionally, a regression analysis was performed using

ANNs to quantify the relationship between identified

POMs and damage severity and location. Summarized

herein is an extension of the experimental validation of

this technique to include the effects of system nonlin-

earities, measurement errors, local impacts induced by

vehicle–structure interaction, and other operational load

aspects that potentially could affect performance. A

railway bridge was adopted and instrumented as the full-

scale test bed. The relatively large ratio of passing train

axle loads to the bridge weight rendered system matrices

time-varying. Moreover, train loads varied significantly

and were highly non-stationary. To validate the accuracy

of the method, measured signals from operational train

loads were fed into a damage detection algorithm. Arti-

ficial, ‘‘high-noise’’ signals were used within the damage

detection algorithm to assess its robustness. It was

observed that the method was able to expand damage

detection capabilities under new, unknown train loads

and was robust enough to accurately address noisy

measurements.

2 Studied bridge and implemented
monitoring system

To explore the efficacy of the coupled POD and ANN

methodology, an in-service, steel, truss, double track,

railway bridge in central Nebraska was monitored. The

bridge was instrumented using strain transducers and

measured response was continuously transferred to a data

acquisition system that was accessed remotely. This section

describes the bridge span under study and the monitoring

system.

2.1 Studied bridge

The selected bridge is a simply supported, through-truss

that spans 44.7 m. This truss is comprised of six panels

with floor beams spaced longitudinally at 7.45 m. The truss

span contains riveted and built-up members including: end

posts; top chords; verticals; diagonals; and, in the first two

panels adjacent to supporting piers, bottom chords. Mid-

span bottom chords and diagonals are composed of eyebars

of varying thickness.

Two types of built-up, I-sections are used for the floor

beams, each having differing numbers and sizes of web

plates, angles, and cover plates. One built-up, stringer cross

section is provided and consists of an I-section with a web

plate and angles for the flanges. Bottom laterals and laterals

between stringers are single angles of varying dimensions.

Top laterals and end portals are trussed elements contain-

ing double angles, single angles and lacing bars. Elevation

and plan views of the bridge span are shown in Fig. 1. In

general, steel bridges can be subjected to a wide variety of

deficiencies caused by corrosion, fatigue cracks, scour and

other items [32]. For the bridge under study, main struc-

tural deficiencies included stringer–floor beam connection

deterioration, deterioration of the stringer and bottom lat-

eral connections and members, and frozen roller supports

[33]. While all of these deficiencies can be of concern to

the bridge owner, as stated earlier, fatigue of stringer–floor

beam connections is of primary concern for many riveted,

steel, truss railway bridges as connection failure can lead to

partial collapse of the structure, potential safety concerns

for employees and citizens and expensive traffic disrup-

tions [32, 34, 35]. Therefore, while other SHM configura-

tions were utilized on the selected bridge, the SHM system

reported herein was designed to focus on potential defi-

ciencies at the stringer–floor beam connections. It should

be noted that proposed method can be used to detect other

deficiencies using differing sensor configurations [33].
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2.2 Monitoring system

A total of 24 strain transducers, manufactured by Bridge

Diagnostics, Inc. (BDI), were deployed on the bridge to

measure structural response under train passage and 20 of

those instruments were installed at stringer ends as shown

in Fig. 2. Sensors were installed on the stringer bottom

flanges. Selected instrument locations were based on rec-

ommendations by the bridge owner and preliminary FEM

models. A sensitivity analysis using an FE model of the

bridge, completed in a previous study, showed that while

the sensor network reported herein furnished excellent

sensitivity to critical damage scenarios at the connections,

a sparser instrumentation plan using 12 sensors located at

midspan of the stringers provided enough response sensi-

tivity for effective detection of stiffness degradation at non-

instrumented stringer–floor beam connections [33].

The monitoring system consists of a BDI data logger, a

wireless base station and wireless nodes, with each node

being connected to 4 strain sensors using cables as shown

in Fig. 3. The system was powered using six 24-volt bat-

teries that were recharged by two solar panels, also shown

in Fig. 3. Example sensor installations on stringer bottom

flanges near floor beam connections are shown in Fig. 4.

Data were collected remotely with the system set to

activate and record strains at a sampling rate of 50 Hz

when a train crossed the bridge. It was understood by the

authors that measured strains and associated POMs would

likely be affected by environmental conditions. Those

effects are being examined in a follow-up study.

3 Feature extraction and data cleansing

The current study considered 1 week of train ‘‘events,’’

which totaled 363 recorded passages. Live loads associated

with these datasets varied with respect to speed, number of

axles, and axle load magnitudes. The proposed methodol-

ogy is discussed in the subsections that follow and sum-

marized in a flowchart in Fig. 19.

3.1 POD for feature extraction using POMs

POMs are known to contain information on structural

deficiencies and have been widely used for model reduc-

tion [36], impact localization [22], and damage detection in

mechanical systems [37, 38]. POMs are used to graphically

highlight data having the most variation for a given number

of events. Therefore, for the current study, POMs were

dependent on recorded strain magnitude and duration,

Fig. 1 Truss span plan and

elevation

Fig. 2 Stringer instrumented

locations
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which are a function of train configuration and speed. To

minimize POM variations, strain signals included in

snapshot matrices used for POM extraction needed to be of

similar magnitude and features, and data reduction and

cleansing were necessary prior to mode extraction.

Therefore, data windowing, load location identification and

peak picking were performed. MATLAB algorithms were

implemented or developed to render this process autono-

mous and involved steps are described in the sections that

follow.

3.2 Windowing recorded events

The first step was elimination of time intervals having

negligible live load strains, typically before and after train

passage. The MATLAB find algorithm was applied to

window the recorded strains at Location 3 in Fig. 2,

selected since that sensor was positioned at midspan under

a train rail and, as a result, would be quite sensitive to live

load effects. Time steps involving strain changes greater

than 7.5 le were selected as the first filter through an

offline trial and error process. Subsequently, all time steps

having magnitudes less than 7.5 le at the start and end of

each event were eliminated. Two representative recorded

signals at Locations 3 and 18 are shown in Fig. 5 before

and after windowing.

3.3 Determining load location

The second step focused on developing automated classi-

fication of recorded signals based on the track upon which

the train crossed the bridge. Initial field testing and model

results indicated that stringer end bottom flange strains

would be in compression if that stringer was underneath the

loaded track and in tension if the other track was loaded

[33]. Means for recorded strains at Locations 1–10,

underneath Track 2, were calculated and if values exceeded

zero, the train was classified as being located on Track 1,

with the opposite sign indicating the train was located on

Track 2. This classification showed that 187 of 363 trains

traversed the bridge on Track 1. Windowed strain signals at

Fig. 3 Deployed monitoring system: a BDI node; b solar panels

Fig. 4 Installed strain sensors (circled)

(a)

(b)

Fig. 5 Signal windowing: a original; b windowed
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Location 3 and 18 for a train on Track 1 and on Track 2 are

shown in Fig. 6.

3.4 Automated peak picking

The third step focused on automatically selecting a con-

stant number of peaks in each recorded event dataset so

that POM variations due to train load disparities were

minimized. A lower bound threshold of 50 le for recorded

strain peaks was established based on average strains

recorded at Location 3 when Track 1 was loaded or the

corresponding location (Location 18) when Track 2 was

loaded. The MATLAB findpeaks function was used to

select the first 40 peaks having strains greater than 50 le at

Locations 3 or 18, with 40 peaks being selected to ensure

that the snapshot matrices included enough samples for

stable POM calculation. The developed code excluded the

first five peaks, corresponding to four train cars, to elimi-

nate transient response developed from the locomotives.

After automated peak peaking was performed, 74 events

were filtered, 15 for trains on Track 1 and the remainder for

trains on Track 2. Representative final strain events used to

develop POMs for trains on Tracks 1 and 2 at Locations 3

and 18 are shown in Fig. 7. Figure 7a is for a case where

the train is located on Track 1, while Fig. 7b is for the train

located on Track 2.

4 ANN training

4.1 Theoretical background

Regression and classification models can be constructed

based on a linear combination of predetermined nonlinear

basis functions u (x) [39]:

y ðx;wÞ ¼ f
XM

j¼1

wjujðxÞ
" #

; ð1Þ

where f [r] is a nonlinear activation and classification

function, which, for regression situations, equals the iden-

tity matrix. One neural network development approach is to

assume predetermined nonlinear basis functions are them-

selves parametric functions of inputs, where coefficients of

the linear combinations are adaptive parameters that should

be determined for each specific problem. A two-layer,

feed-forward neural network was adopted for the current

study, as it has been proven that this architecture can

approximate arbitrary nonlinear functions [40, 41]. The

relationship between input and the jth component of the

output of such network is given by [39]:

ykðx;wÞ ¼ r
XM

j¼1

w
ð2Þ
kj h

XD

i¼1

w
ð1Þ
ji xi þ w

ð1Þ
j0

 !
þ w

ð2Þ
k0

" #
; ð2Þ

where y 2 RK is the output vector; x 2 RD is the input of

the neural network; M denotes the number of neurons in

the hidden layer; w
ð2Þ
kj and w

ð2Þ
k0 represent weights and biases

of the output layer; and w
ð1Þ
ji and w

ð1Þ
j0 stand for weights and

biases of the hidden layer.

The process of obtaining weights and biases of above-

mentioned relationship between input and output from a set

of data is called supervised training of ANN. Consider a

given set of training data including input vectors {xk},

where k = 1, 2,…, N and their corresponding target values

{tk}. Training of the network is performed by minimizing

discrepancies between target and computed output. When

dealing with regression, the most common objective

function is the least mean squared error [42]:

Ed ¼
XN

k¼1

tk � ykðxk;wÞk k2; ð3Þ

where d refers to data. For training a feed-forward ANN,

the weights and biases (thresholds) are calculated in batch

(a)

(b)

Fig. 6 Load location: a Track 1; b Track 2

(a)

(b)

Fig. 7 Peak picking: a Track 1; b Track 2
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mode and the Levenberg–Marquardt (LM) algorithm is

often adopted for optimization [43]. In general, one of the

issues with LM is its inability to identify global minimums

of the objective function. To alleviate this issue, one might

need to utilize the algorithm several times with different

initializations for the parameters or use soft computing

methods, such as simulated annealing or genetic algorithms

[44]. With regard to use of LM for calculating ANN

weights, until the late 1990s, it was believed that classic

gradient descent algorithms would be ‘‘trapped’’ at poor

local minima locations [45]. Additional research indicated

that poor local minima were not detrimental for large

ANNs and that a suboptimal set of weights could furnish a

near optimal network performance [45]. For ANNs having

more than one hidden layer, error back propagation in the

LM algorithm is often used to determine objective function

gradients and to optimize corresponding weights [45].

One of the most striking properties of ANNs is network

generalization, which means that, once the network is

appropriately trained for a set of input and output data, it

will make accurate predictions given arbitrary inputs.

During the training process, however, the network might

not distinguish between noise and hidden structure of the

data. This issue is referred to as network overfitting. To

alleviate this issue, Bayesian regularization of the objective

function is commonly pursued. The basic idea behind

Bayesian regularization is that the true underlying function

is smooth to some extent and when the weights in a net-

work are kept small, network response will be smooth [46].

Therefore, the regularization adds another term to the

objective function:

E ¼ bEd þ aEw; ð4Þ

where Ew is the sum of square root of network weights;

superscript w refers to weights; and a and b are objective

function parameters. The ratio of the objective function

parameters determines training emphasis, with larger a/b
pushing the network toward generalization and smaller

values driving the network to smaller errors [46]. The main

challenge in implementing ANN regularization is choosing

appropriate regularization parameters value. MacKay pro-

posed a Bayesian framework for obtaining optimal objec-

tive function values [40], termed Bayesian regularization.

Another strategy for overfitting is early cessation of

weight optimization iterations [47]. In this method, avail-

able input and output data are divided into three subsets: a

training subset; a validation subset; and a test subset.

Training subset data are used to calculate gradients and

optimize weights using the LM algorithm, while testing

subset is used to verify the network generalization by

monitoring its validation error. Typically, for the initial

training phase, validation errors decrease; however, when

the network begins to overfit the training data, validation

error increases and LM iterations cease before they con-

verge to a global minimum of the training data set objec-

tive function. In current study, Bayesian regularization and

early cessation were used for training ANNs.

4.2 Automated peak picking, windowing,
and load classification for filtering ANN
training data

To investigate statistical relationships between various

train loading configurations that helped in identifying

snapshot matrix features used to develop POMs, an ana-

lytical study was completed using SAP2000 v19 [48]. The

study involved 81 different train loads recorded using

weigh-in-motion systems in close proximity to studied

bridge, with data being provided by the bridge owner [31].

Calculated strains were automatically extracted at sensor

locations (Fig. 2) using MATLAB in conjunction with the

SAP2000 v19 Open Application Programming Interface

(OAPI) [31]. Average root mean square (RMS) values were

calculated from extracted analytical stresses for each train

with corresponding RMS values cumulatively representing

stress statistics during each event [31]. Equivalent uniform

loads for each event were also determined as they were

efficient representations of train load intensity and length.

As shown in Fig. 8, comparison between normalized val-

ues of average RMS and equivalent uniform load demon-

strated strong correlation, with higher equivalent uniform

loads producing higher RMS averages. As a result, average

RMS was chosen as the main feature for output-only load

classification and feature extraction.

To further mitigate influence of variable non-stationary

external inputs on field-measured strain POM variability,

snapshot matrices for both tracks were sorted based on

average RMS, with matrices having RMS averages

between 45.4 and 47.1, a range of minimal variation, being

selected for damage detection. In Fig. 9, average RMS

snapshot matrices for Track 1 and 2 are shown. Track 2

matrices were selected for training and testing the

Fig. 8 Uniform axle loads and associated average RMS
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developed damage detection ANNs, with matrices for

trains 29–46 specifically being selected due to similar RMS

averages. It is important to note that testing snapshot

‘‘events’’ were not included in the ANN training process.

They were used to investigate how accurately the proposed

method detected damage under various loading scenarios

in the same average RMS range. Snapshots for trains 29,

35, 41 and 46 were randomly selected for ANN testing,

while snapshots for trains 30–34, 36–40 and 42–45 were

used for ANN training.

Since imposing actual damage on the studied bridge was

not permissible, measured strains were reduced by multi-

plying a reduction factor to account for various levels of

damage at stringer–floor beam connections. This ‘‘dam-

age’’ was simulated via reduction of field measured strains

at selected locations, with reductions being proportional to

assumed damage intensities (DIs). These reductions were

based on the assumption that connection deterioration

would reduce rotational stiffness, and in the limit would

convert a semi-rigid (‘‘healthy’’) connection into a pinned

connection having limited to no moment restraint [35].

Potential crack propagation through the connection depth

was modeled via continuous decrease in connection rota-

tional stiffness [35], resulting in smaller moments at the

connection and, accordingly, smaller stringer bottom flange

strains. In this study, induced damage at any connection

was simulated using a strain reduction factor at that con-

nection, with other connections being undamaged.

4.3 Nonlinear regression ANN for damage
detection

To generate training data, 10 DIs, varying between 10 and

90% in 10% increments, were examined at each field

instrument location (see Fig. 2). The DIs were sequentially

varied at the 20 locations for 14 train events, which pro-

duced 2800 damage scenarios. These damage scenarios

trained the ANNs using MATLABs Neural Net Fitting

function, where various numbers of internal neurons were

explored to ensure that ANNs were accurately generalized

for damage identification. A nonlinear regression ANN was

used to establish damage detection from POMs of exam-

ined scenarios. It was decided that 70% of the input POMs

would be used for training, 15% for validation and 15% for

testing during ANN regression analysis. ANN regression

correlation curves for training, testing and the entire input

data set are shown in Fig. 10a–c. In each subplot in

Fig. 10, solid lines represent the best fit of the estimated

DIs. Higher scatter was observed for DIs less than 20% in

Fig. 10a–c, meaning that DIs greater than 20% could be

more accurately predicted.

5 ANN testing

As stated earlier, Trains 29, 35, 41 and 46 were randomly

selected to test ANN effectiveness, with tested ANNs

featuring 25, 50, 100 and 200 internal neurons, with the

number of neurons being selected to use trial and error for

determining the appropriate number of internal neurons. A

representative comparison between ANNs using 100 and

200 neurons for a DI of 90% at Location 8 when loaded by

Train 29 is shown in Fig. 11. The figure indicated that both

ANNs predicted damage location and intensity very well;

however, the network with 200 neurons appeared to be

marginally affected by overfitting as evidenced by false

positives and negatives shown in Fig. 11b. The 100 neuron

(a)

(b)

Fig. 9 RMS averages: a Track 1; b Track 2

(a) (b)

(c)

Fig. 10 Representative ANN regression plots, 100 internal neurons:

a training; b test; c combined
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ANN was shown to be more robust for predicating damage

location and intensity when compared against 25 and 50

neurons, and, as a result, 100 neurons were adopted.

Training the ANNs was performed using a desktop com-

puter, featuring a multi-core architecture and running

Windows 7, 64 bit, as operating system. Its Central Pro-

cessing Unit (CPU) was an Intel Xeon E5-2630 2.4 GHz

processor, 8 Cores, 32 GB DDR4 RAM of main memory

and 20 MB Smart Cash. Training time varied based on the

number of internal neurons in the internal layer of the

ANNs. For 20, 50, 100, and 200 neurons, the elapsed CPU

time was, respectively, 27, 47, 120, and 221 min.

To ensure that the developed method was robust against

false-positive damage signals, POMs for a healthy bridge

subjected to various load events were also used to test

trained ANNs. As shown in Fig. 12, it was observed that,

for events associated with the 4 trains selected for ANN

testing, the maximum false-positive DI was approximately

6%, which was deemed to be small when compared against

the actual DI of 0%. These results supported the premise

that the method would successfully detect damage with the

caveat that an acceptable threshold should be established

via long-term monitoring and corresponding statistical

analyses.

To further ascertain the ability of the proposed

methodology to detect damage location and intensity, ANN

damage index predictions at instrumented locations were

studied. Representative results are shown in Figs. 13, 14

and 15. The choice of damage intensity and location was

arbitrary; however, DIs ranged from 0 to 90% and locations

were chosen to cover various spots on the bridge. Results

of ANN testing at Location 11 are shown in Fig. 13 and

indicated that DI predictions might be affected by recorded

signals from certain trains, especially at low DIs. A DI of

20% was captured well for all testing sets except for Train

35, where false-positive DIs, approaching 5%, existed.

Figure 14 demonstrates the ability of the proposed

methodology for capturing the studied range of DIs at

Location 8. Predicted DIs for Train 29 were 17, 37, 58, 79

and 89% for imposed DIs of 20, 40, 60, 80 and 90%,

respectively.

Conversely, Fig. 15 presents damage identification

capabilities of trained ANNs for a DI of 60% at Location

13 under multiple train loads. Trains 29, 35, 41 and 46 and

were used and damage location and intensity were, again,

(a)

(b)

Fig. 11 ANN testing, Train 29: a 100 neurons; b 200 neurons

(a)

(b)

(c)

(d)

Fig. 12 Healthy bridge ANN testing: a Train 29; b Train 35; c Train

41; and d Train 46

Fig. 13 ANN testing, Location 11, Train 35, all DIs
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captured accurately with predicted DIs ranging between 57

and 60%.

To estimate the importance of classifying trains based

on RMS as shown in Fig. 9, the trained ANN was tested

using healthy POMs for 4 trains whose average RMS was

located outside the selected range. Trains 10, 20, 50 and 55

were selected for this exercise. A moderate increase in

false positives was evident for three of the four selected

trains (Trains 10, 50 and 55), with false positives predicting

DI ranges between 8 and 25% as shown in Fig. 16a, c–d.

For Train 20, the predicted DI showed a significant

increase in false positives, with maximum value of 70% as

shown in Fig. 16b. These results showed that selecting

ANN training sets based on the associated average RMS is

necessary to reduce POM variations associated with

changes in non-stationary loading configurations.

To examine the effectiveness of the proposed method-

ology for detecting damage using noisy strain signals, as is

often the case with low-cost sensing devices, zero mean,

white Gaussian noise was added to the measured strain

time-histories. A representative example of noisy strain

signals for Train 41 is shown in Fig. 17. ANNs were

retrained and retested using the ‘‘noisy’’ data and results

showed that the proposed methodology was capable of

capturing damage from noisy signals with acceptable ac-

curacy. ‘‘Noisy’’ strains at Location 15, for a DI of 80% for

Trains 29, 35, 41 and 46 are shown in Fig. 18. Predicted

DIs ranged from 78 to 81%.

As stated earlier, a flowchart describing the methodol-

ogy is shown in Fig. 19.

6 Conclusions

In this study, an automated, output-only, damage detection

approach using POD and ANNs was developed and

investigated for steel truss railway bridges. Measurements

from full-scale field monitoring data and calibrated

numerical models were used to develop and examine the

proposed approach. Results demonstrated its efficacy for

detecting deficiencies in stringer–floor beam connections

and the approach can be extended to include damage

detection for other structural systems, details and types of

data. The following conclusions were drawn from the

study:

• The proposed method successfully detects damage

using strain outputs induced by unknown, nonstationary

external inputs.

• Automated data cleansing prior to POM extraction was

necessary to reduce discrepancies caused by nonsta-

tionary inputs.

• The developed approach could accurately capture

damage represented by DIs great than 20%, with

clearly improved accuracy for DIs higher than 40%.

• The method is robust enough to accurately predict

damage supplied from highly noisy signals.

It should be reiterated that the current study was per-

formed neglecting modeling errors and environmental

variability. It is noteworthy that existing filtering methods

in the literature, even in the absence of modeling errors and

environmental effects, lead to large estimation errors when

measurement noise is large and a relatively large number of

damage indices have to be identified. For example, hybrid

particle filters systematically account for modeling and

measurement errors but are prone to bias as the noise–

signal ratio increases [38].

Fig. 14 ANN testing, Location 8, Train 29, all DIs

Fig. 15 ANN testing, Location 13, Trains 29, 35, 41 and 46,

DI = 60%
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Ongoing work includes:

• Improving the approach via consideration of environ-

mental effects.
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(a)

(b)

(c)

(d)

Fig. 16 Healthy bridge ANN

testing: a Train 10; b Train 20;

c Train 50; and d Train 55

(a)

(b)

Fig. 17 Signal with 20% simulated noise, Locations 3 and 18, Train

41; a peak picking; and b magnified view

Fig. 18 ANN testing, simulated 20% noise, Location 15, DI = 80%,

Trains 29, 35, 41 and 46
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• Statistical investigations of damage indices and result-

ing damage thresholds.

• Incorporation of higher fidelity models to improve DI

prediction accuracy.
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