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Abstract
Various structural health monitoring techniques have been developed over the years. Due to the lack of a common platform

to test the efficiency of these methods, the damage analysis models have been tested on different structures selected

according to the choice of researches. Therefore, perfect comparison among the models was not possible. In light of this

event, a benchmark structure was developed providing a common ground to analyse the effectiveness of the damage

detection strategies. This structural damage analysis consists of different damage patterns, major damages and minor

damages. The damage detection algorithms were tested for the detection of these different damage patterns and the

effectiveness against noise contamination. Also the amount of data required for the algorithms to effectively detect damage

was also recorded, which indicated the efficiency of the method applied. The paper deals with the application of different

damage detection techniques on the ASCE benchmark Phase-I and Phase-II structure and studies their efficiency against

the other structures. A brief comparison has been made among different damage detection models such as Bayesian model,

neural network, autoregressive models, and model update. These methods have been successfully implemented on the

benchmark structure and their efficiencies have been measured in terms of noise contamination, the amount of data

required to measure the damage and the detection of damage (major and minor). Out of all the techniques discussed, model

update technique, wavelet approach, autoregressive technique, convolution neural network and synchrosqueezed wavelet

transform have proved to a robust damage analysing tool.
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1 Introduction

Structural HealthMonitoring (SHM) is a very interesting field,

attracting researchers to investigate and evaluate the structural

health. This process mainly involves two steps: (a) diagnosis;

this includes damage identification, localization and quantifi-

cation, and (b) prognosis; this includes the estimation of

structure’s residual capacity and forecasting its residual life

[1, 2]. To process the huge information provided by the sensors

and to simplify them for measurement of the structural con-

dition, an improved algorithm is required [3]. Under this field, a

number of techniques have been developed and implemented

successfully for damage analysis: vibration based methods,

local diagnostics method, non-probabilistic methods and time

series based methods [4]. The 2 different model approaches

used for real-time automated damage analysis are: model-

based and non-model based approach [5]. The model-based

approach is a mathematical model that has to be developed,

assuming that the system is time invariant and linear. The

damage diagnostic is done by studying the change in stiffness,

natural frequency, damage ratio, etc. In non-model approach,

instead of acquiring the structural parameters, sensors are used

to extract data from the structure for diagnosis. Thus, this

approach is suitable for real-time damage detection. The sensor

signals, however, have to feed in a time series-based algorithm

for the monitoring process. Few of such techniques are the

flexibility-based model update method [6], free modelled

artificial neural network-based approach [7], combined wave-

let Hilbert Transform [8], model updating [9], and Bayesian-

based adaptive filter-based technique [10]. Butmost techniques

have been implemented by the researchers on different
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structures of their own choice. Therefore, a comparative study

is hard to perform for the damage detection methods.

In the light of these events, an ASCE benchmark struc-

ture has been designed by the IASC–ASCE Structural

Health Monitoring Group. The structure is a G ? 3 Stor-

eyed 2*2 bay steel frame quarter scaled model building

(Fig. 1) [11, 12]. The benchmark structure has been

researched in two phases. Phase-I deals with various types

of damage introduced in the structure, the sensor data and

the introduction of sensor noise in the structure and

obtaining the different response using analytical methods

[11]. This phase deals with analysis considering shear

building model. Therefore, the discrepancies, i.e. user-de-

fined damage, between analytical model and real model

were not considered. In Phase-II, the freedom for user to

define the type and point of damage has been included [13].

In this phase, the building model can be modified in a

number of ways to analyse damage. Also, each phase con-

sists of one analytical model and one experimental model.

For efficient damage detection, the algorithm chosen

shall effectively analyse damage using the minimum

number of sensor data [14]. This criterion will determine

the efficiency of the algorithm. This paper deals with a

comparative study of different damage detection tech-

niques that have been implemented on the benchmark

structure for damage analysis.

2 Damage detection techniques

To obtain a good comparative study of the different dam-

age detection techniques, researchers all around the world

implemented various innovative techniques to the bench-

mark problem. The damage detection techniques discussed

in the paper are classified into two groups according to the

structures used for analysis (Phase I and II). Further, both

Phase-I and Phase-II structures consist of analytical model

and experimental model on which these methods have been

tested. This benchmark helped the researchers to perform a

comparative study among the different algorithms and

determine if the algorithms are appropriate for locating and

quantifying the damage in the structure. The algorithms

applied on the analytical ASCE benchmark include system

identification methods, damage index method, flexibility

based approach, wavelet approach, adaptive recursive least

square filter, autoregressive models, time history approach,

parameter identification tool, model update and decompo-

sition models, artificial neutral network, adaptive neuro-

fuzzy inference system and hierarchical sparse Bayesian

learning (HSBL) algorithm. The ASCE experimental

model benchmark was experimented with power spectral

density method, Bayesian model, Fuzzy network, damage

pattern recognition, autoregressive model, pole transfer

method, model update, HSBL algorithm, neural network

and convolutional neural network model.

3 Damage algorithms on Phase-I structure

Phase-I deals with the analytical model and the experi-

mental data of the benchmark structure, and extraction of

structural parameters related to different damage cases.

Damage in the structure has been provided by removal of

braces or loosening the bolted connections. The removal of

braces from the structure indicates the reduction of stiff-

ness to zero without affecting the mass matrix. A broken

connection cannot transfer moments in any direction but

only shear and axial forces. A number of damage detection

techniques have been implemented on this model for

comparison of efficiency.

3.1 Analytical Phase-I benchmark structure

The analytical phase-I structure comprises a 12 DOF model

and 120 DOF model of the G ? 3 storey building. The

damage patterns introduced in the structure are shown in

Table 1 and the damage patterns are shown in Fig. 2 [11].

The removal of braces in the storey, which leads to stiff-

ness reduction, is considered as major damage scenario and

the weakening of beam column joint by loosening of bolts

or reduction of stiffness for braces is considered as minor

damage scenario of the structure. This condition holds true

for phase-I and phase-II analytical and experimental

structure. For phase-I structure, the major damage patterns

include Pattern 1, 2, 3 and 4 whereas minor damage is

included in damage pattern 5 (loosening of bolts) and 6

(reduction of 1/3rd stiffness). In case of this phase, the

modelled damage patterns are pre-defined and the analysis

is carried out accordingly.Fig. 1 IASC–ACSE benchmark structure-quarter scaled model [11]
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3.1.1 System identification methods

3.1.1.1 Natural excitation technique (NExT) and eigensys-
tem realization algorithm (ERA) Caicedo et al. [14] made

use of NExT in combination with ERA to determine the

damage in the structure by determining the change in

stiffness of the ASCE benchmark structure. The NExT

technique is used to extract the modal parameters of the

structure. Under the assumptions that the input is stationary

and structural parameters can be easily determined, it was

seen that the cross-correlation function between the

reference output and the actual output of the system is

similar and matches the homogeneity equation of motion

[15].

This cross correlations can thus be treated as free

response data due to the similarity. This approach does not

need the previous excitation data and, hence, can be

applied for excitations that are not measureable, ambient

vibration. It has been assumed that the ratios of the masses

are approximately equal. Therefore, the technique uses

only the mass of the structure, which is required for stiff-

ness problem formulation. Later, it was experimented and

Fig. 2 The damage scenarios for analytical phase-I benchmark structure [11]

Table 1 Analytical Phase-I

benchmark problem damage

cases [11]

Damage patterns Damage nature

Damage pattern 1 No stiffness in 1st floor braces

Damage pattern 2 Damage pattern 1 ? No stiffness in 3rd floor braces

Damage pattern 3 No stiffness in one 1st floor brace

Damage pattern 4 Damage pattern 3 ? No stiffness in one 3rd floor brace

Damage pattern 5 Damage pattern 4 ? beam—column connection weakened

Damage pattern 6 2/3 stiffness in one 1st floor brace

Journal of Civil Structural Health Monitoring (2018) 8:689–718 691

123



showed that the assumption made did not hamper the

modal parameter detection system [16–19].

Once the modal parameters are obtained, the ERA is

used to identify the modal properties so as to identify the

damage to the structure. This algorithm is effective in

determining damage in lightly damped structures and can

be applied for multi-input/multi-output systems [20]. The

success of the technique lies in determining the damage

accurately with the help of minimum number of data. The

sample chosen was for time record generated at 1000 Hz

which was down-sampled to 125 Hz. The reasons for such

sample were: (1) high-resolution cross-spectral data are

useful for ERA and (2) the frequency is twice the natural

frequency and, thus, no higher modes will be omitted or

miss-interpreted. The ERA method obtained an accurate

result of natural frequencies in a short time record; hence,

using larger time frame size was not required. Also, the

sum of error in stiffness is seen to increase slightly with the

increase of time. The error in natural frequency and stiff-

ness is shown in Eqs. 1 and 2, respectively.

Ek ¼
Xn

i¼1

100
ki identified � ki exact

ki exact

����

���� ð1Þ

Ek ¼
Xn

i¼1

100
ki identified � ki exact

ki exact

����

���� ð2Þ

where n is the number of natural frequencies, ki identified and
ki identified are the natural frequency and stiffness identified

with the help of ERA method, and ki exact and ki exact are the
exact natural frequency and stiffness of the ith floor.

The damage case 1 and 2 is considered for observation.

It can be observed that for 12-DOF and 120-DOF model,

the average error in natural frequencies is 0.79 and 0.17%,

respectively. The error in stiffness for 12-DOF model was

reported to be 0.766% for undamaged case. For 120-DOF

model, the least square estimate was used and could not be

compared with the exact values but it was less than the

equivalent stiffness of identified 12-DOF. However, the

results showed good agreement with the original data.

Therefore, this technique was effective in determining the

damage in structure when the input to the structure is

unknown. Also, an iterative process can be implemented

when the sensor data are limited.

3.1.1.2 OKID/ERA nonlinear optimization Lus et al. [21]

made use of Observer/Kalman filter Identification algo-

rithm (OKID) to identify the damage in the structure. Using

this algorithm, the Markov parameters of the system could

be calculated [22, 23]. These parameters can be used in

ERA for discrete time first-order system matrices realiza-

tion [20]. This model was further refined using a nonlinear

sequential quadratic programming-based optimization

approach to obtain the exact physical parameters (stiffness,

damping and mass matrices) [24, 25]. From this model, the

parameters of second-order model (finite element model)

can be retrieved [24, 26] which can identify the damage.

The OKID algorithm is used to derive the Markov

parameters. From these Markov parameters, the set of

minimum order discrete time matrices is obtained. This

process is carried out with the help of ERA which uses

singular value decomposition of Hankel matrix.

The system Markov parameters can be obtained from

observer Markov parameters with the help of back substi-

tution [21]. The initial state space model obtained with the

help of OKID and ERA is again passed through nonlinear

optimization scheme for further optimization or refining.

However, for proper optimization, the backbone of the

methodology, OKID/ERA approach must be performed

accurately to obtain initial state space model. Nonlinear

sequential quadratic programming is used to obtain the

physical structural parameters [24]. From the calculated

structural parameters, the damage can be located. This

method is advantageous as it does not take into consider-

ation any assumptions, does not require any data manipu-

lation and it can use information from both actuators and

sensors. The relative changes in the stiffness along x-axis

and y-axis are used for damage analysis.

The algorithm, when applied on damage case 3, showed a

good initial warning along with modelling error or measure-

ment errors of 1–5%. Therefore, this method holds good for

damage analysis without the help of any complex numerical

calculations. Also, the presence of noise in the structure does

not hamper the major damage identification results.

3.1.1.3 Model parameter identification by syn-
chrosqueezed wavelet transform The method proposed

uses the vibration signals from the structure for identifi-

cation of modal parameters natural frequencies and

damping ratios [27]. The methodology is shown in Fig. 3.

The modal parameters obtained for Phase-I structure with

ambient vibration were compared with the original analy-

sis. The frequency calculated using the above technique

showed an error of 0.33%, whereas the damping result

showed an error of 15%.

3.1.2 Damage index method

The damage index method was one of the most basic

algorithms developed by Stubbs [28] and proved to be a

good competitor against the other vibrational based dam-

age analysis techniques, change in stiffness [29], change in

flexibility method [30] and change in uniform load surface

curvature method [31]. The damage index method was

accurate in damage analysis as compared to the other

methods [32]. The main advantages offered by this method

is that: (1) the unit-mass normalized mode shapes are not
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required for calculation, (2) few modes (B 3) are required

for extracting good results, and (3) statistical approach can

be incorporated with this method to determine the level of

structural reliability [33].

Barrosa and Rodriques [33] performed the experimental

verification of damage index method on the ASCE

benchmark structure for comparative study. The modal

parameters were obtained from the stimulated data using

Frequency Domain Decomposition (FDD) method. Previ-

ously, the frequency domain decomposition was used to

extract the modal parameters in which the data collected at

two points in time were analysed [34]. In this study, the

researchers proposed a new technique to identify the

undamaged structural state with the help of ratio calcula-

tion between mass and stiffness values from the eigen

value problem [33].

To validate the result, Modal Assurance Criterion was

applied for the actual and identified undamaged structure.

The MAC value close to unity signifies good agreement

between the two observed values.

Damage in the structure is determined from the Eq. 3:

aj ¼
k�j � kj

kj
ð3Þ

where aj is the damage expression, and kj
* and kj are the

stiffness of damaged and undamaged structure. The dam-

age in the structure is indicated as aj\ 0.

Case 4 of the benchmark was studied which consists of

severe damages (pattern 1 and pattern 2) and the less severe

patterns. This technique was successful to identify the severe

damage patterns (1 and 2), but for the less severe patterns it

gave false alarms. Therefore, modification in the technique

has to be done for identification of less severe damages.

3.1.3 Flexibility based approach

Bernal and Gunes [35] analysed the benchmark problem for

damage detection and quantification with the help of flexi-

bility matrix extracted from the sensor readings. In this

study, the realization parameters were calculated from the

measured signals using OKID/ERA algorithm [20] when

input is known and using Sub-Id technique when input is

stochastic [36]. The flexibility matrices are extracted from

the realization matrices and compared for damage detection.

To enhance this process, damage locating vector technique

(DLV) [37] was used to localize the damage taking vector of

weighed stress indices as damage indicator. For stochastic

input, a ‘‘general model update solution’’ was used for

damage analysis. WSI\ 1 indicates the damaged storey.

For quantification of damage, the change in interstorey

stiffness of a storey is taken into consideration (Eq. 4). It is

the shear occurring due to unit drift in a particular storey,

the storey to be quantified for damage, when drifts and

twist for all the other storeys are zero.

Fig. 3 Modal parameter

estimation using

synchrosqueezed wavelet

transform (SWT) [27]
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kj ¼ dTj F
��dj ð4Þ

where dj is the displacement vector due to the unit drift at

level j and * indicates pseudo-inverse operation. This

approach is only valid for the case in which the output

sensor data for all the storeys are known. For limited sensor

data condition, the model is updated using weighing con-

stants and error vector. The case 5 damage pattern 4 has

been studied for damage algorithm validation considering

level 1 and 3 in study. The damage technique showed good

agreement for damage detection in the respective levels.

However, it has been pointed out by the researchers that

this approach may encounter some difficulty in the field

structures due to the complex computation of physical

parameters from large modal space matrix.

3.1.4 Modal algorithm using expectation algorithm

Expectation Maximization (EM) model is a well

known algorithm that can compute the maximum likeli-

hood estimate of structure damage with original structure.

This algorithm works on evaluating a conditional Expec-

tation (E-step) and maximizing the previous expectation

in an iterative loop until a convergence is achieved (M-

step) [38]. The algorithm has been shown in Fig. 4. The

drawback of this algorithm is that the iterative loop is a

slow converging one and the dependence of the algorithm

on setting a starting point which may produce sub-optimal

maximum likelihood estimates [39]. These drawbacks can

be reduced by the use of (1) Stochastic Subspace Identifi-

cation (SSI) combined with EM algorithm and (2) gener-

ation of random starting points to make the algorithm

smooth and easy [40].

Both the methods were implemented on the 12 DOF

ASCE Phase-I benchmark problem and a comparative

study was conducted to mark the efficiency of the methods.

It was concluded that the three methods were able to detect

the low-frequency and high-frequency damage. The results

were compared with the SSI algorithm. Method 1 gave a

more accurate result than SSI algorithm used alone except

one mode which was hard to excite. When using Method 2,

it was observed that the results are more accurate for modal

identification.

3.1.5 Wavelet approach

On the event of damage occurrence, the acceleration data

recorded at damaged location show discontinuity. This

discontinuity can be detected with the help of wavelet

analysis which can estimate the time instant and location

for damage [41, 42]. The wavelet approach or wavelet

analysis may be regarded as an extension of the traditional

Fourier transformation, which is an effective tool for health

monitoring. As suggested by some researchers, the wavelet

analysis is termed as examination of local data with the

help of zoom function with adjustable focus. This phe-

nomenon allows this technique to provide great details of

damage and approximate the original signal [43]. Method

of decomposition [44] and Hilbert transform [45] have

been used for analysis which proved to be more precise in

decomposing a signal in frequency-time domain.

3.1.5.1 Decomposition method 3.1.5.1.1 Direct wavelet
decomposition In this method, damage can be identified

from the presence of impulse in the mapping of the high-

resolution wavelet decomposition of acceleration response

data [46]. The wavelet transformation is given by Eq. 5

[47–49].

W fð Þ a; bð Þ ¼ 1ffiffiffi
a

p r
þ1

�1
f ðtÞ �W t � b

a

� �
dt ð5Þ

where a is the dilation parameter which indicates the

wavelet window width, b is the translation parameter which

represents the location of moving wavelet window in

wavelet transformation, f(t) is the signal, W(t) represents

the mother wavelet and �WðtÞ is the complex conjugate.

Fig. 4 EM algorithm for modal identification [38]
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Hera and Hou [43] used this wavelet analysis for

damage monitoring of the ASCE benchmark structure Case

1 damage pattern 1. The response found was for dynamic

loading, stochastic wind load which was achieved by

breaking the braces after 5 s. The damage was identified by

the spike in wavelet graph. This damage was not identified

when the damage case was tested for Fast Fourier

Transform algorithm. Wavelet approach also proved to

be less model dependant and can detect damage without

and prior knowledge of structural model parameters. The

drawback of the direct wavelet decomposition method is

that when the measured signal is corrupted with noise, the

damage identification is difficult [5].

3.1.5.1.2 Empirical decomposition method (EMD) The

EMD method can detect the time instant and location of

damage by observing the damage spike caused due to

change in stiffness. This method uses the spline fitting to

construct the lower and upper envelopes of signal and the

mean of both is calculated, from which the signal is sub-

tracted. This process is repeated till a mono-component

resulting signal is obtained. This signal is called the intrinsic

mode functions (IMF) and follows the well-behaved Hilbert

transform. Repeated IMFs are obtained by (Eq. 6) [44]:

x tð Þ ¼
Xn

j¼1

cj tð Þ þ rnðtÞ ð6Þ

where x(t) is the measure signal, cj(t) is the IMF of x(t) and

rn(t) is the residue. The first IMF has the highest frequency

contents of the signal, thus identifying the stiffness change

in a structure, damage indicator.

The method was demonstrated on ASCE benchmark

building for damage pattern 2 by Yang et al. [50]. The

damage result obtained was similar to the Direct Wavelet

Decomposition method, i.e. detection of damage is only

possible in case of low or zero noise and severe damage.

The contamination due to noise may mask the low level

damage, thus making it difficult to extract the parameters.

Also, a great number of sensors have to be employed to

response measurement.

3.1.5.2 Hilbert–Huang transformation To reduce the

noise phenomenon observed in different techniques, Yang

et al. [50] used the Hilbert–Huang transformation to

determine the damage characteristic with the use of one

sensor. The algorithm followed for analytical signal Y(t) is

(Eq. 7) [44]. The analysis uses EMD method, along with

band-pass filters [51], to decompose the cross-correlation

functions of measured acceleration responses into modal

components.

Y tð Þ ¼
Xn

j¼1

Ajðt;xjÞei r xj tð Þdt ð7Þ

where xj is the frequency, t is the time, Aj(t, xj) is the

amplitude of jth IMF cj(t). Following this algorithm, the

natural frequencies have been obtained for Damage Pattern 2.

It was observed that the natural frequencies obtained for

healthy and damaged structure are approximately equal to the

theoretical value. Also, it can be observed that the effect of

noise (R = 10%) on the measurement has negligible effect.

Therefore, this algorithm can be utilized for damage analysis.

The Hilbert–Huang spectral analysis was used by Yang

et al. [52] to identify the damage in the IASC–ASCE

benchmark Phase-I structure for case 1 [11]. It was observed

that the parameters measured were approximately equal to

the theoretical value, thus effectively determining the

damage using single noisy response from the accelerometer.

Similar study has also been performed by Lin et al. [53] and

the results obtainedwere similar to the above described case.

To calculate both the natural frequencies and damping

ratio, an alternate method based on Random Decrement

Technique (RDT) [54, 55] and Hilbert transform has been

design by Yang et al. [50] and was tested for damage case

2. The RDT converts the free vibration model response to

system response which is processed using Hilbert trans-

form to obtain the phase angle and instantaneous ampli-

tude. The parameters identified were more accurate (about

0.1% for frequency identification) than the Hilbert–Huang

spectral analysis discussed before.

3.1.6 Adaptive recursive least squares (RLS) filter

Most of the analytical methods discussed above utilize the

entire data recorded at one time for damage analysis.

Whereas for the effective damage detection, the use of real-

time data is more preferable for algorithm modelling. To

achieve these data, Chase et al. [56] employed adaptive

filtering, digital filtering with self-adjusting coefficients,

methods for real-time sample to sample identification,

Adaptive Recursive Least Square (RLS) filter. In this

method, sample to sample adjustment of coefficients is done

to minimize the mean square error (MSE) between the

modelled value and the measured noisy value. The RLS

filter algorithm is given by Haykins [57] and Ifeachor and

Jervis [58] which require the vector signal (ck) from each

element for processing. The only drawback of this method

was that for large DOFs, the number of vector signal would

be large and, hence, includes complex calculations [56].

Therefore, a One-Step Method, a vectorized approximation,

for RLS filter has been developed to reduce the number of

operations. 12 DOF model was tested for the comparison of

one-step method and RLS filter algorithm. The convergence

time for RLS filter algorithm was seen to be less than that of

one step method, thus proving its robustness in damage

detection for structure with less DOFs.
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3.1.7 Autoregressive (AR) models

With the development of SHM techniques, an autore-

gressive (AR) technique was developed which uses sta-

tistical pattern recognition and time series analysis to

monitor [59]. This model is a two-stage prediction pro-

cess which combines autoregressive (AR) and autore-

gressive with exogenous inputs (ARX) model. The model

uses signal from the healthy structure for damage analy-

sis. da Silva et al. [60] proposed a method for damage

analysis in which the damage detection was based on AR-

ARX model [59] and quantification of damage was based

on the fuzzy c-means algorithm [61]. The model was

tested on the IASC–ASCE Phase-I benchmark structure

[11] and the first four damage scenarios. 16 acceleration

readings were recorded for each case (2 along x-axis and

2 along y-axis) and these served as the input for AR-ARX

model. The AR-ARX model for damage scenario 12 was

considered for comparison of probability density function

of residual error from damage with reference signal

(signal). To quantify the damage fuzzy clustering was

used. This method can be of interest for damage analysis

of complex structure. However, further investigation has

to be performed for noise other than Gaussian White

noise for conformation of the method. The damage

measured is in global level.

Unlike the above technique, ARMA model is used for

damage analysis at the local level [62, 63]. The autore-

gressive moving average (ARMA) model is used to design

linear stochastic time history response models of the

structures even if the structural excitation response in

unknown [64, 65].

The autoregressive (AR) function is given as (Eq. 8)

[66]:

/l ¼ ð�1Þlþ1
Xn

i1;i2;...il¼1;i1\i2\...\il

ki1ki2 . . .kil ð8Þ

ki; ki�1 ¼ e
D �nxj�xj

ffiffiffiffiffiffiffiffi
n2j �1

p� �
ð9Þ

Equations 8 and 9 show that the ARMA parameters

obtained represent the dynamic structural characteristics

which are useful for health monitoring. From Eq. 9, it can

be observed that the damping ratio (n) and natural fre-

quency (x) can be determined from the AR parameter only

[67, 68]. Therefore, the moving average (MA) parameters

are considered to be less important for system identification

though they are important for the purpose of modelling.

MA parameters are mainly associated with mass, damping

properties and stiffness of the structural system. AR model

can be used without the MA terms, by inverting the MA

parameter series to AR parameter series. But this approach

may give rise to a series of infinite length which is not

desirable, but the estimation can be obtained by linear

least-squared manner which is easier to calculate. If the

residuals at input side obtained are not white, then the

excitation poles, system dynamics, filter characteristics,

measurement noise or any combination of these have not

been measured by the ARMA model [66]. Suitable model

orders, Akaike Information Criterion (AIC), Rissanen’s

Minimum Description Length (MDL) criterion and Baye-

sian Information Criterion (BIC), may be used in order to

determine the suitable model orders [69].

Carden and Brownjohn [70] used the ARMA in col-

laboration with time series approach to detect damage in

IASC–ASCE benchmark structure for Phase-I [11]. The

damage sensitivity features, the first three AR coefficients,

were compared using t test with both experimental and

analytical results. The damage was successfully determined

and the change in first two AR coefficients can detect the

damage location. The AIC was used for estimation of

model orders [69]. This classifier-based algorithm has been

used to separate damaged state from undamaged in the

ARMA model. However, this model failed to detect dam-

age due to high-order and low-order assumptions for which

no clear results could be obtained.

Nair et al. [63] designed a new method for damage

detection using the ARMA model. AR coefficients-based

damage sensitive feature (DSF) was used to detect damage

from the signals obtained from undamaged and damaged

structure. For locating the damaged region on the structure,

two localization indices (LI1 and LI2) have been

introduced.

Using the first three AR coefficients, a1
2,a22 and a3

2, a

robust DSF has been proposed [63]:

DSF ¼ a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ a23

p ð10Þ

As the stiffness decreases due to the presence of dam-

age, the AR parameters will also change due to varying

structural response. The DSF can detect the change in

measurements between damaged and undamaged state for

analysis. The damage localization indices LI1 and LI2 are

as follows (Eq. 11) [63]:

LI1 ¼
dmean

dundamcloud

LI2 ¼
ddamcloud

dundamcloud

ð11Þ

where dmean is the distance between the midpoints of

undamaged and damaged clouds, dundam cloud and ddam cloud

are the distance from the origin to center of undamaged

cloud and damaged cloud, respectively (undamaged and

damaged clouds in AR coefficient space). Damage local-

ization was applied on the four damage patterns: 1, 2
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(major damage) and 3, 4 (minor damage). It was observed

that LI1 was a better localization index than LI2.

The damage decision has been decided on the hypoth-

esis test with a significance level of 0 [63]. The damage

decisions for the analytical major and analytical minor

patterns have been studied and it can be observed that as

the p values are very less; hence, H0 (null hypothesis) is

rejected in all the cases and H1 (alternate hypothesis) is

accepted indicating damage in the structure. Therefore, the

probability that the damage has occurred cannot be pre-

dicted only by DSF even if the structure is damaged. This

ARMA-based time series algorithm has been successful in

detection of damage. The advantage is that no finite ele-

ment modelling is required. This algorithm is suitable for

wireless sensor analysis which can process data through

embedded algorithms.

3.1.8 Time history approach

Nair and Kiremidjian [71] used time series analysis of

vibrational signals along with Gaussian Mixtures Modelling

to identify damage extent in terms of Mahalanobis distance.

The pre-damage and post-damage vibrational sensor data

have been normalized and fitted into ARMA model. These

data are used in the Gaussian Mixture Model (GMM) to

classify the damage pattern [72]. The damage extent is

characterized with the help of Mahalanobis distance

between centroid of mixture distribution of the damage

occurred and the baseline mixture [73]. The damage extent

or Mahalanobis distance is calculated using Eq. 12 [71].

DM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lundamaged � ldamaged

� �TP�1
undamaged lundamaged � ldamaged

� �

lundamaged

� �TP�1
undamaged lundamaged

� �

vuut

ð12Þ

It was observed that the damage extent holds good

correlation even in noisy environment. The limitations

pointed were that the previous knowledge about the

structure has to be known and the damaged data have to be

properly measured using full sensor data. Failing to do this

may lead to false damage indication.

The strategy was experimented on ASCE benchmark

Phase-I structure [11] by Nair and Kiremidjian [71]. The

damages considered are all the 6 damage patterns. With the

increase in damage progress, the Mahalanobis length

increased indicating detection of damage.

3.1.9 Parameter identification tool

The use of vibrational signals measured from sensors for

real time damage analysis is challenging but important in

the field of research. Most of the techniques developed so

far have dealt with the linear structures requiring both

reference and damaged data, with the help of sensors, for

detection of damage [74]. However, the reference data may

not be available in several cases and also it is desired that

the number of sensors used be minimized. To minimize

these problems, new methods were developed: Extended

Kalman Filter (EKF) [75] and Sequential NonLinear Least

Square Estimation (SNLSE) [76].

3.1.9.1 Extended Kalman filter The commonly used

parameter identification tool is the Extended Kalman Filter

(EKF) [77], which is effective for the identification of

structural parameters with limited and unknown measure-

ments [75, 78–80]. However, the traditional EKF method is

unable to estimate the nonlinear damage with unknown

inputs. A number of researches have been performed to

estimate the nonlinear damage condition by combining

EKF with iterative least squares methods [81] and using

unscented Kalman Filter (UKF) [82]. However, these

techniques were suitable for unknown offline inputs. For

online tracking of the evolved structural damage parame-

ter, the least squares objective function has been minimized

to derive EKF with unknown inputs [83]. However, these

approaches make use of inputs in observation equations

which pose a challenge for sensor installation [81–84].

Pan et al. [85] proposed the use of General EKF with

unknown inputs (GEKF-UI) to identify the unknown inputs

and structural parameters simultaneously. In this method, it

is not required to measure the responses of all the DOFs.

The responses for which some entries of input are missing

are calculated for analysis. This parameter identification

method was implemented on ASCE Phase-I structure with

white noises (5 and 10%) at 2nd and 4th floors along the

weak direction. It can be observed that though an error of

1–7.2% has been recorded, the method holds a good

agreement with the identified parameters.

3.1.9.2 Sequential nonlinear least square estima-
tion Yang and Huang [86] used the SNLSE with

unknown excitations (input) and responses (output)

(SNLSE-UI-UO) for SHM analysis with a goal to reduce

the number of sensors used [87]. This process involves

extraction of state vectors including velocity and dis-

placement from the recursive solution derived by mini-

mizing sum-square error. The recursive solution is obtained

from the constant parametric vector using adaptive tracking

technique. And the adaptive factor is determined from the

current input data. To verify the result of this technique, it

has been implemented on the ASCE benchmark structure

Phase-I, with symmetric loads and ambient vibration, as

white noise, in the 4th floor (CASE 3) [11]. The white

noise and absolute acceleration of the 2nd floor are

unknown and can be identified from unknown external

excitation, state vector and parametric vector.
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3.1.10 Model update and damage analysis

System identification and damage detection techniques

have been a favourite area of interest for SHM. The

damage detected due to the dynamic load such as earth-

quake and wind force can provide global evaluation of the

structural condition. A number of methods have been

developed in this research area for system identification;

Fast Fourier Transform (FFT) method [88], natural exci-

tation technique with an eigen system realization algorithm

(ERA) [89], ARMA model [90] and stochastic subspace

identification [36].

For the purpose of damage detection, a number of

damage detection technique has been developed; Statistical

Model Updating Method [91], Synthesized Flexibility

Matrices method [35], Least Squares Approach [14] and

Finite Element (FE) Modelling [92]. The updating tech-

niques require a set of structural models to predict different

possibilities of model conditions. Most of these methods

utilize the Bayesian model updating technique to charac-

terise modelling uncertainties of structural system. The

reason behind this choice is the ability of Bayesian model to

consider more than one structural model for analysis [93].

3.1.10.1 Two-stage model update Yuen et al. [94]

designed a two-stage SHM approach for Phase 1 bench-

mark structure. The process is modelled in such a way that

in stage 1, modal identification is carried out using MODE-

ID technique [95–97] and in stage 2, damage detection is

carried out using model updating [98, 99].

The modal parameters are extracted in stage 1 from the

time domain measured data. The identified parameters are

damping ratio, modal frequency, effective modal partici-

pation factors and initial modal velocities and displace-

ments. To obtain the stiffness parameters, modal

identification is carried out. Then, updated probability

density function (PDF) is calculated using Bayes theorem

[96, 100]. The main aim of model updating method is to

update the PDF of stiffness parameters of identification

model, by MODE-ID technique, based on the data mea-

sured from the damaged and undamaged structure [101].

For unknown excitations, the correlation functions should

satisfy the free vibration equation where ‘‘pseudo-time’’ is

considered for time lag [102]. This algorithm is effective for

providing the modal parameters but failed to directly pro-

vide the uncertainly of modal parameters. Therefore, the

stage two is performed for structural model identification.

In this stage, a Bayesian statistical approach has been

employed to update PDF for the stiffness parameters uti-

lizing the identified modal parameters of stage 1 [98, 99].

The method determines the probability of change in the

values of stiffness. The PDF estimated is derived based on

Bayes’ theorem.

The following algorithm was tested on the ASCE

benchmark problem—Phase I for the 6 cases. For all the

cases, 12-DOF shear building model was adopted for

simple structural study and the cases 2 (including model

error, known inputs and unknown inputs), 3 (with roof

excitation and unknown inputs) and 5 (with model error

and unknown inputs) have been shown in the study.

In the first stage of the procedure, the modes’ shapes

have been extracted and normalized. The coefficient of

variation (COV) percentages, ratio of sample standard

deviation to sample mean value, have been shown in the

brackets [11]. The variation in frequencies (\ 1%) and

damping ratios (* 50%) has also been observed for all the

cases. In spite of large variation in damping ratio, the

method has been chosen because the SHM process does not

include the damping ratio for the formulation [94].

The second stage involves damage detection in which

the stiffness parameters are globally updated. Multidi-

mensional Gaussian distribution is used to approximate the

updated PDF [100]. It can be seen that for case 2 the results

obtained are not satisfactory due to the presence of model

error. The ratios shifted from unity even though there was

no damage in storey 2 and 4. Also, the 120-DOF has been

simplified to 4-DOF system which may have hampered the

readings. Therefore, it has been recommended by the

researchers to use the marginal PDFs for stiffness param-

eters for damage detection. It can be observed that damage

patterns 4 and 5 are negligibly different though the damage

has been introduced by loosening the bolt. Therefore,

minor damage cannot be easily detected. This error may be

due to the damage being local. This method uses mainly

the global stiffness matrix for damage analysis.

3.1.10.2 Statistical model updating approach The Sta-

tistical Model Updating Approach developed by Lam et al.

[91] uses One Step Model Updating Approach to determine

damage in the structure. Unlike the two-stage update

method, this method uses identification vector which

includes stiffness parameters h along with modal frequen-

cies. The stiffness matrix is parameterized in linear manner

as in Eq. 13.

K ¼ K0 þ
XN0

i¼1

Kihi ð13Þ

where K0 is the initial global stiffness matrix and Ki is the

stiffness of ith substructure.

The PDF is then used for model update. One step

approach adopted ensures that the structural model corre-

sponding to the optimal stiffness parameters is same as the

optimal structural model. This property is not absolutely

true for the two-step method. Case 2 of ASCE benchmark

was considered for study which includes 120 DOF model.
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Modelling error recorded was not a hindrance in locating

damage, thus proving the effectiveness of the algorithm

even in the presence of noise.

3.1.11 Data-driven approach

Data-driven stochastic subspace identification (SSI-DATA)

is an iterative algorithm to determine damage coefficients

[103]. This strategy is applied so as to detect the damage

characteristics such as position and severity. The method

considers two assumptions: (1) in case of damage, the mass

matrix remains unchanged whereas the stiffness and

damping matrix change and (2) behaviour of the structure

is linear before and after the damage occurrence. The

method derives the frequency, mode shapes and damping

ratio from the output data and from the damaged stiffness

matrix using iterative process. Then, the damage coeffi-

cient is calculated and iteration is done to reduce the

residual function and acquiring a good result of damaged

structure. The method has been implemented on ASCE

benchmark structure for damage patterns 1, 2 and 3. The

damage locations and severity of damage were identified

using the algorithm.

3.1.12 Artificial neural network

Artificial Neural Network (ANN) is a damage detection

algorithm widely used for analysis in construction,

machinery, aerospace, etc. It has got three main charac-

teristics: strong nonlinearity, large-scale parallel distribu-

tion management and strong fault tolerance and robustness

[104, 105]. ANN consists of group of interconnected neu-

rons, processing units, which individually performs simple

computation process. ANN is a self-learning network

which can change the weights of network and numerical

biases using iterative process according to the previous

data [106]. The neurons are organized in layers with one

neuron for each input in the first layer, and one neuron for

each output in the last layer. The number of neurons in the

intermediate layers may be numerous. The ANN archi-

tecture is very crucial for efficient performance of the

network; a factor that has been overlooked by numerous

researchers [107, 108].

Shi and Yu [5] used the non-model approach for anal-

ysis with the help of ANN. This process is an adaptive

learning and nonlinear mapping system which can adjust

the network connections to minimize the mean square error

at the output. The SHM process for wavelet analysis

includes sensor measurement, signal pre-processing, fea-

ture extraction (using wavelet analysis) and damage

detection using ANN. The raw data obtained from the

sensors are pre-processed/filtered for noise reduction.

Then, the wavelet transform is applied to extract structural

feature vectors or wavelet coefficients. These serve as the

input for ANN which determines if the structure is healthy

or not. The algorithm was used for damage detection of

IASC–ASCE Phase-I benchmark structure using neural

network of level 5. Damage cases 1 and 2 were studied and

the differences between training and testing stage obtained

were 4.03 and 2.25%, respectively, which show damage

detection with good accuracy even in the presence of noise.

3.1.13 Adaptive neuro-fuzzy inference system

SHM mainly monitors the changes in vibrational signals,

damping coefficients and stiffness, to calculate the mode

shapes and natural frequency for damage analysis. Many

artificial intelligence (AI) methods have been developed,

such as generic algorithm [109], generic fuzzy system

[110] and fuzzy cognitive maps [111], for mapping of

parameters in modal domain to damage location and

severity [2]. These studies, however, did not take into

consideration the rapid damage identification of engineer-

ing structures in short period of time [112].

Zhu and Wu [2] conducted their research on a rapid

damage detection technique using non-parametric Adaptive

Neuro-Fuzzy Inference System (ANFIS) [113], a system

identification (SI) method, for structural system identifica-

tion and interval modelling technique for rapid damage

detection [114]. ANFIS can be used for obtaining the input

(location and extent of crack)–output (structural eigen fre-

quencies) relation of the structural system [113]. A time-

delayed ANFIS can be used for modelling magnetorheolo-

gocal (MR) dampers under forces of high impact [115],

whereas wavelet-based ANFIS can be utilized for modelling

the nonlinear behaviour of smart structures installed with

MR dampers [116]. Interval Modelling Technique is mainly

used for quantification of the uncertainties in a structural

dynamics problem [117]. This method has been used for

identifying the dynamic models under numerous test con-

ditions from the time domain input–output data [118].

Several techniques have been designed in order to fit the

single output of the wavelet-based ANFIS; average

method, weighted average method and interval modelling

method. The first two methods work on the principle of

output adjustments to obtain a comprehensive result.

Therefore, this technique could not be used as damage

feature extractor for damage identification [2]. The last

method is similar to PCA which can be effective for

damage feature extraction [119]. The damage detection

algorithm has been shown in Fig. 5. The damage is indi-

cated if jMiT j[ q:
For better performance of ANFIS, complex network has

to be designed and trained involving more fuzzy rules and

membership functions and longer training time. Noise of

10% is introduced in order to predict the response of
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practical structure, as such structures always include noise

[2]. This condition was applied on damage patterns 2 and 3

and it was observed that for both the cases, damage was

identified at a lesser time. However, for low level damage,

as that of pattern 3 (as compared to pattern 2), the algo-

rithm was not able to detect any damage.

3.1.14 Cuckoo optimization algorithm

Cuckoo algorithm is an optimization technique which uses

the reproductive strategy of cuckoo, brood parasite method,

to optimize and detect damage in structure [120]. This

method uses flexibility matrix to calculate static displace-

ment to indicate damage in the structure [121]. Static dis-

placement is a good measure for damage analysis as it is

directly related to stiffness of the structure. The cuckoo

algorithm has shown in Fig. 6. This iterative optimization

process can be used to calculate cost function.

f a1; a2; . . .; aNe
ð Þ ¼ ET � E ð14Þ

where E is the error vector between calculated displace-

ment obtained from the modal data and displacement of

damaged structure with unknown damage severity.

Fig. 5 Rapid damage detection algorithm using ANFIS [2]

Fig. 6 Cuckoo algorithm [120]
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The method has been tested on ASCE benchmark

structure to determine the damage severity for damage

pattern 2, 4 and 6 indicating major, medium and minor

damage, respectively. The damage severities were detected

accurately. To evaluate the performance of the algorithm,

the results have also been compared with an evolutionary

optimization algorithm based on natural and generic

selection principles, Generic Algorithm (GA) [122]. The

cuckoo algorithm was observed to be faster in detecting the

damage severity due to its high convergence speed.

3.1.15 Comparison and discussion

A comparative study was carried out among the different

damage detection techniques for phase 1 study. Different

techniques implemented on ASCE benchmark structure

have been studied and a uniform platform for damage

comparison has been obtained. This comparison has been

framed for the ability of the algorithms to detect damage

and quantify damage as major damage or minor damage,

detect if the results are noise contaminated and to quantify

the amount of data used to obtain the damage result

(Table 2). The lesser the number of data used to achieve

the final result, the more efficient the algorithm. Similar

comparison has been made for Phase-II analytical and the

experimental model for Phase-I and Phase-II. The different

methods have their own pros and cons.

The system identification technique uses NExT/ERA

method and OKID method for damage detection. OKID can

detect bothmajor andminor damage to the structure with the

help of the data available from the sensors, unlike NExT/

ERA method in which the presence of noise reduces the

ability to sense small change in stiffness. However, like the

NExT/ERA method, the results obtained are contaminated

with noise making it ineffective tomeasure damage severity.

Modal identification using Synchrosqueeze wavelet trans-

form also showed good agreement with the original bench-

mark analysis. The Damage Index method offers an

improvement in detection process by measuring the damage

severity using all the data from the structure but only for

major damage to the structure. Due to noise contamination,

theminor damages are masked with the noise. The flexibility

method detects damage as similar to the OKID technique

without any noise interference, but using the full set of data

available. EM algorithm which can calculate maximum

likelihood estimate of structure with original structure uses a

slow iterative loop to converge at the damage point. This was

improved with the help of SSI to improve the efficiency of

the algorithm. Wavelet Analysis consists of Direct

Decomposition, EMD, EMD-HHT and RDL-HHT. Out of

these methods, Direct Decomposition and EMD methods

have a similar way of detecting damage, i.e. they can mea-

sure damage in the structure if its nature is severe using the

full set of data. The result obtained is a noise contaminated

up to certain extent making the lower level damages not

measureable. The improved EMD technique, EMD-HHT,

has proved to be more robust than normal EMD technique in

detection of both severe and less severe damages without

any noise contamination. The method made use of full set of

data from the structure and can eliminate the noise using

Hilbert–Huang Transformation with the data from one

sensor. A modified wavelet analysis, RDL-HHT, was

implemented which can perform as efficiently as the EMD-

HHT, but with the limited set of sensor data. The plotted

least square fit graph helps to determine the missing sensor

data. Thus, for structures where it is not possible to place a

sensor in particular place, this method can be used to cal-

culate damage. Adaptive RLS filter works similar to the

advanced wavelet analysis techniques, but utilize the full set

of data from the structure. The full data are used to obtain the

convergence time which indicates the damage in the struc-

ture. The faster the convergence, the more accurate the

damage detected. Autoregressive methods, such as ARX

model and ARMA by DSP, proved to be good damage

detecting models which can detect and quantify damage

without any noise contamination in the presence of full set of

sensor data from the structure. However, ARMA by AIC

was unable to detect damage as it is a classifier-based

algorithm which makes the assumption of higher order and

lower order derivative for damage evaluation. Hence, no

clear result is obtained for the damage. Time History anal-

ysis using Mahalanobis distance have been able to identify

the damage severity. The noise contamination has been

reduced so that the damage can be detected. However, pre-

vious knowledge of the structure needs to be obtained;

failing to do so may lead to false damage indication. The

GEKF and SNLSE methods analyse the missing input data

from the given response and has proved to be effective in

presence of noise. Thus, these methods are good for damage

analysis. The model update techniques used for study are

two-stage model update and Statistical Model Updating

Approach. The two-stage approach using Bayesian

approach uses the full set of data available to measure and

quantify the severe damage. As the method utilizes global

stiffness matrix, the local damages are not measured. The

Statistical Model Update Approach uses a one step update

approach to detect damages in the absence of any modelling

error or noise. The SSI DATA are a good iterative method to

determine the structural parameters and determine damage

coefficients; however, it is not able to detect minor damages.

Both the Artificial Neural Network and Adaptive Neuro-

Fuzzy Inference System are good techniques without any

noise contamination and good at measuring severe damages

to the structure. Both these methods require a full set of data

for damage analysis. Cuckoo algorithm has proved to be

robust optimization algorithm for damage detection.
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3.2 Experimental Phase-I model

The experimental phase-I model has been proposed to

implement and study the damage techniques under exci-

tation [123]. The excitation is provided with the help of

Ling Dynamic Electrodynamic shaker and placing mass on

the top floor. The damage conditions implemented are as

shown in Table 3. The ambient vibration was also con-

sidered as a scenario for damage detection. The damage

introduced is mainly by removal of braces and bolts. This

phase has been experimented to obtain the results so that a

phase-II model can be developed for benchmark analysis.

Cases C, D, F, I and J include major damage which con-

siders the removal of braces. Cases E, G and H include

minor damage to the structure which means loosening of

beam column connection.

3.2.1 Power spectral density method

A damage identification technique, Power Spectral Density

(PSD), has been introduced by Mikami et al. [124] for

localization, detection and monitoring of damage rate with

the use of unknown input. The technique utilizes the

acceleration time history data to determine PSD data

instead of the measurement of excitation forces. These data

can then be statistically analysed to determine damage

location. The damage is indicated by the difference in PSD

readings after and before the damage (Eq. 15).

Di fð Þ ¼ Gi fð Þ � G�
i ðf Þ

�� �� ð15Þ

where f is the frequency value for the channel number i,

Gi
*(f) and Gi(f) are the PSD readings for damaged and

undamaged cases, respectively.

The damage cases for the IASC–ASCE benchmark for

cases B,C,D and E were studied and were found that due to

small variation in damage data, the frequency range cannot

be used to determine the damage for Case C [123].

Thus, the total change is obtained by summation of all

the PSD change values for different frequencies, which is

employed for damage analysis. Though the method was

found to be weak for indicating damage localization, it can

be used for the detection of damage occurrence and mon-

itoring the damage growth. Damage location was indicated

assuming that the environmental noises are negligible and

severe damages produce more difference in PSD data.

Therefore, the damage has been detected for all the cases.

This method has been seen to provide damage results for

single damage case and successfully indicating damage and

monitoring its growth, but is unable to detect damage

severity [124].

3.2.2 Bayesian damage detection model

Most of the techniques developed face problem due to

incomplete nature of sensed data, complicated nonlinear

structural behaviour and uncertainties in the model pre-

dicted and sensed data. To reduce the modelling errors and

data uncertainty, the Bayesian Probabilistic Method was

developed for SHM [11, 91, 98–100, 125, 126]. The two-

step Bayesian process has been employed for SHM and it

has been a success for damage detection [98, 100, 127].

Jiang and Mahadevan [128] employed a nonparametric

damage detection technique based on Bayesian Proba-

bilistic Method. A Bayesian hypothesis is designed to

evaluate the damage. The process includes the application

of dynamic fuzzy wavelet neural network (WNN) model

[129] for identifying the nonparametric system. The system

training is conducted with the help of Bayesian null point

hypothesis-based method and relative root mean square

(RRMS) error method [128].

Table 3 Experimental Phase-I

Benchmark Damage Cases

[123]

Case Configuration

Braces Location of brace/connection

A All braces* –

B All braces –

C Case B ? remove one brace on floor 1 Remove brace on N face, W bay

D Case C ? remove one brace on floor 3 Remove brace on W face, N bay

E Case D ? loosen one connection Loosen bolts on N face to outside of W bay

F Remove all braces, tighten loose connection –

G Case F ? loosen one connection Loosen bolts on N face to outside of W bay

H Case G ? loosen second connection Loosen bolts at center connection in the E

bay of N face

I Reattach beam and repeat Case F –

J Repeat Case I, one day later –
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The quantitative measure for overall reliability assess-

ment of system identification is given as (Eq. 16):

c ¼ PrðBayer Factor[ 0Þ ð16Þ

The above method was employed for damage analysis for

the ASCE benchmark problem considering damage with

electrodynamic shaker and the damage results for the 5

cases, C, D, E, G and H [123]. The technique proved to be

a good detecting tool for global damage detection giving

damage in x direction for cases C and D and damage in

y direction for cases D and E. However, the local damage is

mostly considered for damage detection which was not

effectively calculated by this algorithm (cases G and H).

To localize the damage, classical neural networks can be

combined with Bayesian method.

3.2.3 Fuzzy stochastic neural network

To extent the work of other researchers in the field of ANN

[130], Jiang et al. [131] designed a dynamic fuzzy

stochastic neural network (SNN) model for non-parametric

damage identification. A number of researches have been

performed using the ARMA model for non-parametric

analysis. However, the problems faced were uncertainties

in predicted and sensed data and the complicated structural

behaviour. The dynamic fuzzy SNN can handle fuzzy

information (by fuzzy logic) and uncertainties form the

sensed data for damage analysis (by Bayesian hypothesis).

The fuzzy SNN model is created using fuzzy c-cluster and

the Kullback–Leibler distance criterion is developed to

train the model. The model analysis was carried out in time

domain and frequency domain using RMSS error-based

metric and Bayesian hypothesis based metric. The tech-

nique was used on ASCE benchmark building with ambient

vibrations (Cases B and F) and was found to be effective

under stationary random excitations [123]. The difference

between the two sets of data for case B is insignificant

indicating that the fuzzy SNN model can detect the struc-

tural system correctly. Thus, the model is effective for

stationary random excitations.

3.2.4 Comparison and discussion

Similar to the analytical phase-I study, a comparative study

is made among the different damage techniques used by

different researchers on experimental study (Table 4). The

methods are PSD, Bayesian damage detection model and

Dynamic fuzzy SNN model. All the methods were good for

analysis in their own respect.

The PSD method is a good damage detecting method

which can provide results for single damage case suc-

cessfully indicating damage and monitor its growth. The

environmental noise is also suppressed in this methodTa
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subtracting the standard deviation of total maximum

changes in PSD from the maximum change in PSD, thus

reducing the noise. However, the method was unable to

detect the damage severity. The Bayesian method for

damage detection uses neural network to detect and

localize the damage in the structure. The full set of data

measured is required for measuring the damage but the

minor damages are ignored in the algorithm as the method

is used for global damage detection. Dynamic Fuzzy SNN

model makes use of fuzzy logic to process the data and

Bayesian hypothesis to analyse he damage. The method

uses the full set of data available and is unable to quantify

the damage.

4 Damage algorithms on Phase-II structure

The second phase of study was initiated keeping in mind

that the mathematical model selected is much simpler than

the real complex structure. Similar to phase-I, analytical

and experimental model was prepared for this phase.

4.1 Analytical Phase-II benchmark structure

Phase-II analytical structure consists of user-defined con-

dition of damage insertion. The parameters that were

treated to be deviating are mass value, position of centre of

mass, stiffness of bracing element and rotational stiffness

of the beam–column connection. The phase-II gives the

user freedom to choose the type of damage according to the

problem statement. This privilege was not available in case

of phase-I structure. The few damage details commonly

used for damage analysis have been shown in Table 5 [13].

These damage cases have been considered for the study of

bracing system damage and beams to column connection

damage. The beam to column damage is studied consid-

ering unbraced condition. The major damage includes

cases RB.fs, DP1B.fs, DP2B.fs and DP3B.fs. The minor

damage (loosening of bolts) includes cases RU.fs, DP1U.fs

and DP2U.fs. Due to the user friendly nature of phase 2

analytical structure, most of the researchers prefer to use

self-defined damage.

4.1.1 Hierarchical sparse Bayesian learning algorithm
(HSBL)

Huang et al. [132] made use of Hierarchical Sparse

Bayesian learning for high-resolution damage localization.

This method uses the sparse Bayesian learning (SBL) [133]

and Bayesian compressive sensing for damage analysis

[134]. The SBL method eliminates the unreliable approx-

imation from the original theoretical function. Along with

compressive sensing, the method reduces error due to

stiffness inversion and computes the mass, stiffness and

mode shapes effectively. The SBL phase includes cali-

bration of the structural model to estimate the uncertain

parameters (stiffness) due to occurrence of damage. The

commonly used SBL technique requires adjustments to

obtain real-time data [135]. To overcome this problem, the

new SBL method (HSBL) uses no approximation and uses

probabilistic method to infer the stiffness reduction. The

second part of the algorithm is the monitoring part which

uses the data from SBL to indicate damage in the structure.

The algorithm proposed possess a scale invariance property

which gives it independence to choose the units of mass

and stiffness matrices according to availability. Also the

stiffness inversion can be achieved by suppressing the

mean stiffness. This optimizes the algorithm and the

Maximum A Posteriori (MAP) estimates for parameters are

obtained. The proposed algorithm has been applied on the

Table 5 Damage cases for analytical Phase-II benchmark structure [13]

Case * General description Members affected

RB.fs Nominal healthy state for braced condition None

DP1B.fs 50% loss of stiffness on 2 braces (1 brace on each of the two perimeter frames in the strong direction in

the first level)

br1, br6

DP2B.fs Same as DP1B but only 25% loss of stiffness br1, br6

DP2B.fs Same as DP1B and, in addition, 25% loss of stiffness on two braces on level 3 (1 on each perimeter

frame, also in strong direction)

br1, br6, br17, br22

RU.fs Nominal healthy state for the unbraced condition None

DP1U.fs Loss of rotational stiffness at 3 connections in the beams of level 1 in the perimeter frames in the strong

direction and 2 connections in level 2

b1-r, b2-lr, b5-r, b6-lr

b14-lr, b18-lr

DP2U.fs Two failed connections at level 1 b2-lr, b6-lr

fs full sensors
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IASC–ASCE Phase-II benchmark structure (simulated and

experimental) for damage detection [13, 136]. Generally,

each member of the structure is treated as a substructure so

that the dynamic data can be obtained in case of any

damage. In view of reducing the network of sensors and the

modal parameters, assembly of structural members has

been considered as a single substructure. During monitor-

ing, the MAP values from the calibration stage is used to

detect damage in the second stage. The application of the

method in ASCE benchmark problem has found impor-

tance for damage detection for severe damage case.

4.1.2 ANN

For the study of ANN on Phase-II ASCE benchmark, the

Back Propagation (BP) algorithm has been adopted by

Yang and Mi [137]. A two-stage damage identification

process has been followed in the study. In the first stage,

the damage substructure with similar material characteris-

tic and the consistent parts of dynamic characteristics is

recognized. The second stage deals with damage location

in the structure. This procedure seems to reduce the mod-

ified parameters, reduce calculations and increase the

efficiency of damage analysis [138]. The BP training model

for ANN also consists of two layers: a) positive process,

which processes the input information, obtained from input

layer to hidden layer and calculates the layer by layer

output value of each element, and b) reverse process, which

adjusts the weighed value, by calculating the error between

the expected and actual output, when the expected output

in the output layer is not obtained [138]. Yang and Mi

[137] used the BP algorithm and L–M rule for damage

analysis of braces, columns and beams. It can be observed

that the damage in braces and columns was detected per-

fectly (output of ANN = 1). But the beam damage could

not be justified as the damage in beam has slight change in

the overall structural natural frequency. The method also

proved to be effective for detection of multiple damages in

most of the cases.

4.1.3 Model update using Gibbs sampler

The model updating methods discussed in previous part of

the paper were used to define a linear model by identifying

the structural stiffness. But using these techniques did not

ensure the errors due to modelling as there may be more

than one optimal model [139]. This problem was resolved

when the amount of data used for identification was in

large amount [100]. To encounter the problem of small

amount of data, Markov chain Monte Carlo algorithm was

used by Beck and Au; however, the method has proved to

be efficient for low dimension problems [140].

For the purpose of developing model update algorithm

valid for all the types of structure, Ching et al. [93] used

Gibbs Sampler (GS) to update linear structural models with

incomplete model data. The GS decomposes the uncertain

model parameters into three groups (k, /, r2). The indi-

vidual dimension of the three groups is large, but the

effective dimension used for calculation is three. This

ensures that exact sample can be obtained from one

parameter group conditional on other groups and hence the

modal data can be calculated. Linear structural model is

identified with the help of Bayesian Approach. PDF is

defined using Gibbs sampler algorithm for model update

and structural health monitoring. Monitoring is done by

providing index to measure damage severity and locate

damage. The damage is compared with the undamaged

state and possible damaged state by determining the dam-

age probability exceeding threshold.

Using GS process, the Markov chain samples of stiff-

ness, mode shapes and stiffness are obtained. The advan-

tage of GS approach is that the efficiency does not degrade

with increase in the number of uncertain structural

parameters. This feature is a plus point when compared to

Markov chain which has been observed to burn out after

1000 samples, i.e. after 1000 samples the result for all the

cases are almost similar [93]. However, it was observed

that though GS method gave no false alarms for the 120

DOF ASCE structure and is suitable for high dimensional

uncertain values, the method is not suitable for local

damage where the PDF value is high [93].

4.1.4 Wavelet packet decomposition approach

Sun and Chang [141] used a covariance-driven wavelet

packet signature extraction method to monitor structural

degradation due to random ambient excitation. This

method measures response from one location of the

structure to establish a wavelet package which can serve as

a damage indicator. This method uses response covariance

which reflects the structural condition indicating the

probable changes in the properties. The response covari-

ance functions are normalized to form wavelet packet

decomposition signal in time domain. These wavelet

packet signatures (WPS) are used as input of neural net-

work (NN) model to be used as damage indicator for

damage occurrence and damage quantification (Eq. 17).

SAD sum of absolute differenceð Þ ¼
Xr

i¼1

jEi
j � Êi

jj ð17Þ

where Ej
i is the WPS of the measured data and Êi

j is the

baseline WPS.

The main advantage of this method is that it does not

require any previous mathematical knowledge of the
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structure. The technique was modified to reduce the noise

by eliminating the mean square values from output

covariances which may be the reason for noise contami-

nation. For the Phase-2 structure damage conditions, the

algorithm was able to detect damage with a confidence

level of 95–99%.

4.1.5 Symmetry measure for damage detection

Continuous symmetry measure (CSM) is an algorithm to

determine the symmetry of shape for a structure [142]. This

method is applicable for determining any kind of symmetry

such as translational, rotational or mirror symmetry using

mode shapes of structure. Hence, only the mass and stiffness

properties are required for analysis. Increase in the CSM

value indicates asymmetric structure which in turn means

that damage in structure is high. The CSM is calculated as:

CSM ¼ 1

n

Xn

i¼1

v0i � vi
�� ��2 ð18Þ

where n is the number of modes, v0i is the final vertex mode

shape and vi is the initial vertex mode shape. CSM value of

0 represents perfect symmetry.

The phase-II structure was considered for damage

analysis considering damage scenarios of Phase-I and self-

made damage scenarios and considering 120� of freedom

model [143]. Frequency domain decomposition was

implemented to obtain the operational deflection shapes

from simulated time series. The first 8 bending modes are

considered for CSM calculation, 4 bending modes in X di-

rection and 4 in Y direction were analysed separately. The

deviation of CSM value is the greatest for the case of

removal of braces in structure, indicating major damage;

and the smallest value of CSM was obtained for stiffness

reduction of brace by 2/3 in first floor, indicating minor

damage. Therefore the minor damage detection has to be

studied as low level damages in the structure, such as

creep, corrosion and loosening of joints, is common. The

algorithm has been found out to work for asymmetric

damage case rather than symmetric damage as the CSM

values for symmetric case showed negative damage.

4.1.6 Comparison and discussion

The analytical phase-II structure has been an interesting

subject for study. The real-time damage analysis was pos-

sible as the users were given the freedom to choose the type

of damage they want to input. In this structure, different

damage detection algorithms such as HSBL, BP algorithm,

Model Update using GS and Wavelet Decomposition have

been implemented (Table 6). The behaviour of algorithms

under the damage cases has been studied.

The HSBL algorithm uses the damage probability to

observe damage in the structure. To reduce the amount of

data to be used, the assembly of structural members is done

in such a way that it is considered as a single substructure.

Then, this substructure is checked for any loss in stiffness.

Therefore, the severe as well as minor damages can be

recognized and the damages can be quantified without any

noise interference. The ANN technique is used on the

benchmark problem using BP algorithm and L–M rule for

damage analysis of braces, beams and columns. The

method indicated good damage for severe damages.

However, due to noise contamination, the method was

unable to detect the minor damages and damage severity.

The GS method has been a good damage indicator for

damage and gave no false alarms; however, the PDF value

must be in nominal range to detect minor damages to the

structure. Wavelet packet decomposition approach does not

require any previous structural data for damage analysis

and hence can detect severe and minor damages in the

structure and also quantify the damage. The noise con-

tamination is also reduced. Therefore, the damage in the

structure can easily be identified. CSM method was

implemented for 120 DOF ASCE benchmark structure.

The method works on shifting of mode shapes from the

original symmetry. This method was robust and can easily

detect damage in structure even for small change in mode

shapes, i.e. corrosion, creep or loose joints.

4.2 Experimental Phase-II benchmark structure

This structure is similar to the Phase-I experimental

structure. The excitation cases for this structure are due to

the electrodynamic shaker, the impact hammer and the

ambient vibration. The experimental case for Phase-II

consists of damage patterns considered for detection as

shown in Table 7 [136]. The major damages considered for

this phase are 2, 3, 4, 5, 6 and 7, and the minor damages as

loose beam column joints are included in cases 8 and 9.

4.2.1 Structural damage pattern recognition

An innovative damage detection technique based on Fuzzy

Cluster (FC) algorithm and Artificial Immune Pattern

Recognition (AIPR) has been introduced by Chen and Zang

[144]. The FC algorithm is used to generate an initial

memory which can store the damage pattern. Then, the

AIPR is being employed to modify the quality of memory

cells that represent the different damage patterns. This

system is similar to the human adaptive immune system

which can learn from the diseases occurring. The SHM

method uses data measured from the multiple sensors and

feeds them to the autoregressive algorithm to obtain dam-

age pattern. This pattern is stored in the memory cell
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generated by fuzzy clustering. The AIPR system then

evolves the memory cell by continuous damage pattern

update. These evolved cells are used for damage pattern

detection. The method has been used on ASCE Phase-II

benchmark structure [136] for validation. The technique

was successful in detecting damage with a success rate of

approx. 83%.

4.2.2 ARMA model

Carden and Brownjohn [66] studied the Phase-II of the

ASCE benchmark for ARMA model application taking into

consideration the experimental phase II damage pattern

[136]. The study deals with only the case in which the

responses were obtained from electrodynamic shaker.

The shaker input force showed peaks in the spectrum at

resonant frequencies due to structure–shaker interaction

[101]. This state made it difficult to extract the modal

parameters. This problem was minimized or eradicated by

applying ARMA model to the time response of the shaker

[66]. The DSF method used by Nair et al. [63] has been

implemented on experimental benchmark structure where

the damage patterns C and D have been considered. The

results received were not accurate as one of the sensor data

recorded for damaged node was false.

4.2.3 Pole transfer method

The previous damage detection systems included the use of

modal parameters, mode shapes and frequencies, for

damage analysis. These parameters provide good estima-

tion of dynamic systems as they are dependent on the

structural mass and stiffness. However, the complex cal-

culative models and error due to noise may hinder the

results [4]. In order to counter this problem, the input and

output response data of the structure are considered to

extract the complex domain transfer function which can

estimate the undamaged structure. On occurrence of dam-

age, the transfer function characteristics equation roots are

compared with the undamaged structure for analysis [145].

Lynch [145] used the time series-based autoregressive

(ARX) model to estimate the modal damping ratio and

modal frequency of the dynamic system. The pole transfer

function can be written as (Eq. 19):

H zð Þ ¼ YðzÞ
UðzÞ ¼

b1z
�1 þ � � � þ bnba z

�nb

1þ a1z�1 þ � � � þ anaz
�na

ð19Þ

where H(z) is the pole transfer function, a and b are the

weights on past observations of system output and input,

respectively, na and nb are the observations of the system

output and input, respectively, and z is the Z-transform

discrete time analogue of continuous-time Laplace

transform.

The ARX system identification model pole locations for

all the 5 configurations have been shown. It can be seen

that the damaged clusters have migrated from the original

undamaged condition indicating the damage in the struc-

ture and the migration distance indicated damage extent.

Therefore, it can be seen that configuration 2 and 3 has got

higher damage severity than that of 4 and 5, thus proving

the accuracy of the method. This method can be easily used

to determine the damage extent for each scenario, but

further study has to be conducted for detection of damage

in structure and measuring the influence of environmental

noise in the measured readings.

4.2.4 Model update

4.2.4.1 FE-based algorithm The FE-based model adopted

by Friswelli and Mottershead [92] used to estimate the

experimental damage was successful. But FE model

updating using ambient vibrational data measurement is

very rarely being researched upon. A two-stage finite ele-

ment (FE)-based model updating system has been used by

Wu and Li for the ASCE benchmark structure Phase-II

taking into consideration the ambient vibrations [146]. In

the first stage, the stiffness of the beam-column joints has

been identified via FE model updating. In the second stage,

Table 7 Damage Cases for

experimental Phase-II

benchmark structure [136]

Cases Configuration

1 Fully braced configuration

2 All east side braces removed

3 Removed braces on all floors in one bay on southeast corner

4 Removed braces on 1st and 4th floors in one bay on southeast corner

5 Removed braces on 1st floor in one bay on southeast corner

6 Removed braces on all floors on east face, and 2nd floor braces on north face

7 All braces removed on all faces

8 Configuration 7 ? loosened bolts on all floors at both ends of beam on east face, north side

9 Configuration 7 ? loosened bolts on floors 1 and 2 at both ends of beam on east face, north side
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the cross-section areas of the braces are obtained by FE

model updating, through comparing the differences

between undamaged and damaged structure. Following this

process, the damaged braces can be located and quantified.

4.2.4.2 Bayesian-based algorithm 4.2.4.2.1 Expectation–
maximization algorithm Ching and Beck [101] utilized

the Bayesian-based method, a two-step probabilistic SHM

approach, for damage analysis. This algorithm has previ-

ously been used by Yuen et al. [94]. In this method, the

updating algorithm has been modified to expectation–

maximization (EM) algorithm which is more reliable as

compared to the previous model [101]. The damage

detection is based on the probability that each substructure

stiffness parameter has a factional decrement of damage

severity from undamaged to probable damaged stage. The

first step is the extraction of experimental modal parame-

ters from the time domain measure acceleration data with

the help of modal identification procedure, MODE-ID

[95, 96, 102]. This procedure uses Euclidean norm to

estimate the modal parameters in case of excited forces.

For ambient vibration, the structural responses and exci-

tations are modelled as weakly stationary stochastic pro-

cesses [102]. These extracted modal parameters are used

for damage analysis in the next step using Bayesian sta-

tistical approach to calculate updated PDF for stiffness and

mass parameters [99, 100, 147].

The updated PDF is based on the experimental modal

parameters from first step (pðkjx̂; ŵÞ), k being the full set

of modal parameters, x̂ being the experimental modal

frequency and ŵ is the experimental mode shape [99]. The

most probable value (MPV) of the parameters is obtained

by maximizing pðkjx̂; ŵÞ. The optimized problem intro-

duced by Ching and Beck [101] works on the logarithmic

function of pðkjx̂; ŵÞ. The log function is further optimized

with the help of Expectation–Maximization (EM) Algo-

rithm [148]. This algorithm resolves the problems in which

the uncertain variables are not observed for parameter

estimation and probabilistic inference. This algorithm has

been further modified to tight EM (TEM) which increases

the logarithm function value such that the MPV of stiffness

parameter is obtained [101]. The damage probability is

obtained using Gaussian asymptotic approximation

assuming that the stiffness parameters for the probable

damaged state and healthy state are independent

[98, 100, 101, 149]. The algorithm gave few unsuccessful

results while detecting damage for braced conditions of

Phase 2 structure under ambient vibration.

For experimental confirmation of the EM method used

in Phase-I structure (Sect. 3.1.4), the method was imple-

mented on the Phase-II ASCE benchmark structure. Some

of the damage results were not calculated by SSI but was

measured by Method 1. The number of mismatches

increased at higher frequency. Method 2 used was also a

good damage detecting method; however, the algorithm

was time consuming and some of the spurious modes were

not able to appear at starting points, hence creating hin-

drance in damage detection. For a complex structure, no

single algorithm can be used for determination of damage

[40].

4.2.4.2.2 Hierarchical sparse Bayesian learning algorithm
(HSBL) For the damage detection of experimental bench-

mark structure, the probability curve obtained was exactly

as predicted with a tolerance of 10% for braced case. For

joint damaged case, the algorithm picked up a false alarm.

Therefore, the model picked up error in case of experi-

mental problems. Since the algorithm only used the MAP

values, the uncertainties in structural parameter identifica-

tion have been reduced [132].

4.2.5 ANN

Lautour and Omenzetter [150] used the AR model to fit the

acceleration time histories to reduce the number of data to

be processed. These AR model coefficients were used as

inputs to an Artificial Neural Network (ANN) which was

trained to quantify the damage and determine the input data

needed. This method was implemented to ASCE Phase-II

benchmark structure for the 9 damage configuration in

order to validate the results [136]. In order to reduce

complex computations of input data, data reduction tech-

niques were used. It was observed that with increase in AR

coefficients, the number of accelerometers decreases. The

second method used for data reduction is using principle

component analysis (PCA) to reduce data into lower

dimensional space. ANN technique was used to calculate

the misclassification of the system by reducing the princi-

pal components. For principal components above twenty,

the classification results were good. Therefore, the data

reduction using PCA proved to be more effective than its

counterpart.

Taha [130] used the acceleration data from ASCE

Phase-II study for developing the ANN model for damage

analysis. The damages considered were for configuration

1–4 and 6–9. He used the Wavelet Multi-Resolution

Analysis (WMRA) technique with integration of ANN to

determine the damage in benchmark structure. The method

extracts the damage features by measuring the change in

energy of the structural acceleration signals, due to dam-

age, calculated in the wavelet domain [151, 152]. The

acceleration signals were processed with the help of

WMRA which decomposed the signals into time domain

for further processing. The third approximation of WMRA

was considered as inputs and outputs of ANN. The
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modified acceleration signal and the ANN predicted signal

were compared for damage analysis. It can be observed

that a good agreement exists between them when applied

on the benchmark structure, thus serving as a good damage

indicator. But it has been indicated by the researchers that

the uncertainties can be eliminated with the knowledge of

other models like adaptive fuzzy learning and neural-fuzzy

inference systems.

4.2.6 CNN

Convolutional neural networks (CNNs) are an algorithm

which can combine feature extraction and classification

into a singular learning block in the training phase [153].

The CNNs have been reported to utilize a significant

amount of sensor data to for the training phase. This huge

number of data is not feasible to obtain for large complex

structure [154]. To reduce the amount of data, an enhanced

CNN technique has been used which can estimate the

actual amount of data using only two measurements. The

method utilizes two sets of acceleration data, first the

undamaged acceleration data and second the data for fully

damaged structure (all bolts loosed). Using these data, the

CNN for each accelerometer is trained using back propa-

gation. After completion of training phase, this CNN can

classify any input acceleration data measured as damaged

or undamaged with the help of probability percentage

(PoD). The lower the value of probability, the lesser is the

damage to the structure. The average of the PoD of n

number of accelerometers is calculated and the damage is

anticipated. The technique was successful for detecting the

damages in the benchmark structure both for removal of

braces and bolts.

4.2.7 Model parameter identification by synchrosqueezed
wavelet transform

The method has been discussed in Sect. 3.1.1.3. For

experimental validation, the experimental phase-II was

experimented for ambient structural vibration [27]. This

result was compared with other algorithms such as

expectation maximization (EM) algorithm [40] to verify

the efficiency. The algorithm proved to be success. How-

ever, the efficiency of EM algorithm depends on the initial

values of the sensor data recorded. However, the syn-

chrosqueezed algorithm does not require any prior

knowledge of the individual mode shapes, therefore,

making it a suitable for modal parameter identification.

4.2.8 Comparison and discussion

Similar to the phase-II analytical structure, different

structural health monitoring algorithms have beenTa
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implemented on the experimental structure. Most of these

algorithms have proved to be a good damage indicator. All

the algorithms shown in Table 8 are able to detect both

severe and minor damages. FC algorithm and AIPR is

successful in detecting severe and minor damages using

memory cell allocation and success rate percentage.

However, the severity of damage is not mentioned by the

researchers. ARMA model using AIC is an effective

damage detecting model which can also separate damaged

features from the undamaged features even for ambient

vibrations. However, the environmental noise contamina-

tion reduces the efficiency of the algorithm. Therefore, it

has been concluded by the researchers that taking a large

amount of data for marking the damage will help in

increasing the efficiency of the model. ARMA model using

DSF was able to reduce the noise contamination and detect

the damage severity. It makes use of the damage indexes to

quantify the damage. Pole transfer method uses complex

domain transfer function to quantify and identify damage

in the structure and the distance of migration is the damage

extent. The migration of damaged clusters from their

original undamaged places indicates the damage in the

structure. The experiment was carried out in an environ-

ment with less noise; hence, the extent of noise has to be

marked. Model updating technique based on finite element

analysis has been a good damage identifying model for

identification of even minor damages to the structure and

quantifying the damage. EM algorithm uses stiffness

parameter as an indicator of damage severity. However,

due to noise contamination, the damage quantification for

all types of damage was not clear. The HSBL technique,

which performs the damage analysis using stiffness

inversion to compute structural parameters, comes across

noise contamination in the measurement recording. This is

due to the noise contamination for which the minor dam-

ages are not collected by the algorithm. ANN model inte-

grated with AR coefficient (AR-ANN) and WMRA model

was applied to the structure. The ANN-AR model and

WMRA model both have been able to detect severe and

minor damage to the structure; however, the WMRA model

is more efficient in detecting damage severity even in the

presence of noise. However, the uncertainties due to noise

contamination can be reduced using models like neural

fuzzy and adaptive fuzzy learning. The CNN technique is a

modern technique using acceleration data to calculate

probability percentage indicating damage. The method has

got almost no noise contamination and uses minimum

amount of data to indicate structural damage. The syn-

chrosqueezed wavelet transform is a good modal parameter

identification algorithm which does not take into consid-

eration any prior knowledge of the structure.

In the Phase-I analytical model, the parametric identi-

fication tool techniques (GEKF and SNLSE) have been

successful in determining damage with the use of unknown

inputs. Therefore, this is advantageous for identification of

damage in cases where the collection of data is not con-

tinuous. The rest of the techniques require full set of data

for damage analysis. Following this, NExT/ERA and RDL-

based HHT method use minimum data set for damage

detection which is equally helpful for damage analysis. Out

of these four techniques, NExT/ERA technique is unable to

detect minor damages and the result is also contaminated

with noise, thus making the technique inconvenient for

SHM analysis. The damage severity can be measured using

Damage Index method and Two-Stage Model Update

method; however, the minor damages are not recognizable

using these two damage algorithms.

The SHM techniques used in Phase-I experimental

structure were unable to measure the damage extent.

However, PSD method proved to be superior as it was able

to detect both major and minor damages with unknown

inputs and the results were not contaminated with noise.

The Phase-II analytical structure was tested for damage

analysis. Out of the methods used for detection, Wavelet

Approach and HSBL approach were found to be efficient

than their counterparts. Both these methods are effective as

they use fewer amounts of data to indicate damage extent,

detect both major and minor damage in structure and are

free from noise contamination. However, the wavelet

approach is more efficient and suitable as it required data

from only one response.

For Phase-II experimental structure, several techniques

were used for damage study. HSBL and AR-based ANN

method use the reduced data set or limited data set for

damage analysis. But the results obtained from HSBL

method were contaminated with noise. Also the minor

damages were not detected in this method. However, both

these methods were not efficient for detection of damage

severity. ARMA-based DSF method, Pole Transfer method

and FE-based Model Update were equally efficient for

damage analysis detecting major and minor damages and

measuring damage severity without any noise contamina-

tion. The CNN technique proved to be a robust technique

to detect structural damage using least number of sensor

data, but further analysis is needed to be performed to

eliminate the noise measurement probability. The syn-

chrosqueezed wavelet transform is a good modal identifi-

cation technique which can work without any previous

knowledge of the existing structure.

5 Conclusion

Different SHM techniques have been applied on ASCE

benchmark problem to compare their efficiencies in dam-

age detection. The parameters considered for identification
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are damage severity, types of damage and amount of data

collected for data detection.

In phase-I analytical structure, RDL-based HHT method

proved to be superior in case of detection of damage with

full set of data and no noise contamination. To detect the

damage severity, two-stage model update technique is

effective and for damage detection with less amount of

sensor data; GEKF and SNLSE proved to be effective.

In phase-I experimental structure, PSD method proved

to be effective in detection of damage without any noise

contamination collecting minimum number of sensor data.

In phase-II analytical structure, wavelet approach suc-

cessfully determined the damage in structure utilizing the

minimum number of data recorded. This technique can use

only one response data to indicate damage in structure

without any noise contamination.

Damage analysis in phase-II experimental structure was

effectively carried out using ARMA based DSF method,

Pole Transfer and FE-based Model Update method. Three

of these methods were equally successful in determining

damage in structure by recording the full set of data. Modal

identification technique, synchrosqueezed wavelet trans-

form, without any previous knowledge of the structure

proved to be effective for damage analysis.
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