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Abstract
Nowadays, many non-destructive damage detection methods for determining the location and severity of damage in the

field of health monitoring are considered in order to reduce the cost of maintenance and improve safety and reliability of

structure. In this paper, damage specification is obtained by sensitivity-based updating approach. By applying changes on

sensitivity matrix and using measured flexibility data, it is concluded that the results of proposed method are more accurate

and efficient than the old modal flexibility methods. The mass modeling error and measurement error of flexibility and

natural frequency are calculated in order to ensure the accuracy and robustness of proposed method for 2-D finite element

truss and frame model. Close index, measuring the performance of the method, and the coefficient of variation, which

represents the distribution of response, are used. Compared with Wang method, the proposed method is capable of

accurately localizing and quantifying damage in all scenarios.
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1 Introduction

Various structures, such as bridges, dams, and high-rise

buildings, have a long-term period of operation. During

this period, damage caused by environmental effects

impairs the vibration characteristics of the structures,

which threatens the useful life of structures. Detecting

these damages on the threshold of their formation is one of

the most important requirements for optimal maintenance

of engineering structures. For this reason, an accurate

detection method to determine the damage becomes

essential.

These vibration characteristics which are generally

measured modal parameters, such as frequencies and mode

shapes, are dependent on the physical properties of the

structure. Hence, changes in the physical properties, such

as stiffness reduction, will cause considerable changes in

these modal properties.

Over the past decades, the interest for the issue of health

monitoring has increased greatly. Numerous researchers

[1–3] have exhibited the precise information of damage

detection methodologies in the literature. Law et al. pro-

posed a parallel decentralized damage detection method in

which the structure is divided into small zones. Dynamic

tests are performed for each zone and the derived responses

from the local sensors regarding each zone are used for

damage detection. The Newton successive-over relaxation

(SOR) is used for updating structural parameters. Using

this method, the computational time showed a considerable

decline [4].

According to their assertions, damage detection methods

typically consist of two major components: static data and

vibration-based methods.

The methods based on static data can be used to measure

the strain and displacement, while the dynamic methods

which one would choose in accordance with the particular

dynamic characteristics one was dealing with are the fol-

lowing: natural frequency, mode shape, mode shape cur-

vature, modal strain energy, and flexibility matrix methods.
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It can be stated that the static tests are more accurate

than dynamic ones; however, the sensitivity of static

methods to the change in structural parameters is low. The

static methods only require the stiffness properties,

whereas the dynamic methods require the use of mass,

stiffness and damping properties.

The measured response is more exact in static methods

than the dynamics; moreover, by considering the mea-

surement error, the result of static methods is more

dependable than the structural response measured in modal

testing.

Static methods have been widely used by many

researchers in the field of structural health monitoring.

Excellent primary studies of the issue have been done by

Gudmundson [5], Sanaeyi et al. [6] and Wang et al. [7].

Bakhtiari-nejad et al. [8] represented a damage detection

method based on static test data. By solving non-linear

simultaneous equations, the difference between the load

vector of the damaged and the intact structure was mini-

mized. Esfandiari et al. [9] proposed a sensitivity-based

finite element model updating algorithm to detect changes

in stiffness and mass parameters of a structure using strain

data applied to a plane truss and a plane frame structure.

Abdo [10] presented an analytical study of damage detec-

tion, which was carried out based on using changes in

displacement curvatures, derived from only a static

response, for an overhanging beam and a two-span con-

tinuous beam. Ni and Law introduced an approach in which

the collected responses from different measurement setups

are used and analyzed together. Local damages are directly

analyzed by the Pattern Search method and parallel com-

puting strategy. Furthermore, the effects of using a large

Generating Matrix on the results and accuracy are evalu-

ated. It is shown that using this method, damage detection

of a large-scale structure with short-term tests is viable

with using a few sensors [11]. Seyedpoor [12] propounded

a crack localization method via an efficient static data-

based indicator. According to this study, the Static

responses of an Euler–Bernoulli beam were obtained by the

finite element modeling. Sanayei et al. [13] described a

method for the finite element model updating, based on the

load cases and measuring locations of the nondestructive

tests. Using Monte Carlo simulation, simultaneous esti-

mation of the stiffness and mass parameters became pos-

sible using experimental data.

Another strategy for damage detection is known as

dynamic methods. Lin [14] observed that higher modes of

the structure have a great proportion in the stiffness matrix

rather than lower modes. For this reason, a proper esti-

mation of the stiffness matrix and its variations for

detecting the damage is required to measure all, especially

higher modes of the structure. Furthermore, in the struc-

tural modal test, measurement of higher modes is far more

difficult than lower frequency modes. To deal with this

practical problem, a series of new methods for detecting

damage were introduced, based on flexibility matrix used

to estimate the change in the stiffness matrix.

The flexibility matrix is the inverse of the global stiff-

ness matrix of a structure and it can be classified into two

categories: the static flexibility and dynamic flexibility.

The static flexibility is obtained from a unit force applied to

the structure and the other one is derived from the mea-

sured modal data. The modal approximation of the flexi-

bility matrix is called the modal flexibility matrix, which

can be accurately estimated by the lower modes of a

structure [15]. It should be noted that the innovative

approach implemented in this study is the parallel use of

such two categories.

Many researchers have found modal flexibility param-

eter alone more sensitive to detecting damages than natural

frequencies and mode shapes. Zhao et al. [16] performed a

theoretical study, comparing the use of natural frequencies,

mode shapes and modal flexibility in structural health

monitoring. The result showed that the modal flexibility

has been more successful in locating damages. Pandey

et al. [17] presented a numerically and experimentally

damage-detection method based on changes in the mea-

sured flexibility of the structure. The method was not

precise in recognizing the case which multiple locations of

the structure were damaged. Hence, Yan et al. [18] pro-

posed a damage indicator based on Axial Strain flexibility

for a Truss and a five-story steel frame. This method

localized multiple damages to the exact members and it

was suitable for the cases which baseline data of the intact

structure was not available.

Kim [19] proposed a new nondestructive damage eval-

uation method for a slender beam under an axial force by

utilizing dynamically measured modal flexibility.

Among most investigative theories in terms of modal

flexibility-based damage detection problems, the vital

matter is how to calculate the changes in modal flexibility

due to the structural parameters namely sensitivity of

modal flexibility. Over the past years, many methods have

been suggested to evaluate the sensitivity of flexibility. Li

et al. [20] propounded a new approach based on changes in

the generalized flexibility matrix used to detect structural

damage location and the intensity of damage for a

numerical example of a simply supported beam. In such

method, the effect of truncating higher-order modes can be

substantially reduced. Zhao et al. [21] proposed a method

by adding known masses to the structure and then using

these new data as well as the original test information, in

order that structural damages can be detected using the

generalized flexibility perturbation technique. The closed

form of modal flexibility sensitivity based on the algebraic

Eigen sensitivity method in order to detect the location and
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extent of structural damages has also been presented by

Yan and Ren [22]. The advantage of the method is to

eliminate the negative effect of the truncating higher-order

modes. Moreover, it could recognize results with sufficient

accuracy by employing one or multiple modes and also it

could overcome the operational mode shape normalization

problems by employing the scaling factors. The sensitive

equation of this method is more accurate in terms of

mathematical formulation than Yan‘s method.

Considering the pros and cons of using flexibility

methods, damage detection based on this method is

applied. In this research, damage identification technique is

handled based on a combination of two aforementioned

categories. By way of clarification, such technique is based

on the concurrent implementation of both static and

dynamic flexibilities. In other words, the suggested method

named modified modal flexibility is presented, utilizing

measured static flexibility data and changing in the sensi-

tivity of modal flexibility matrix.

A sensitivity-based finite element model updating tech-

nique using flexibility data is presented. By this approach,

unknown structural parameters should be updated to mini-

mize the difference between the measured data and the

analytical model in order to detect the damage location and

severity in the structural elements afterward. The damage is

considered based on linear stiffness reduction. The equation

of motion is linear with no damping consideration. There-

fore, the stiffness is reduced by the decrease in Young’s

modulus in percent. Themain idea of the proposedmethod is

the direct use of measured frequency of damaged structure

which changes in modal flexibility sensitivity matrix. In

other words, the derivative of frequencywhich applies in one

part of modal flexibility sensitivity equation and in the

residual staticmode ofmodal derivatives is replacedwith the

measured frequency of damaged structure. Flexibility

method owing to the quiddity or content of the formula is

more sensitive to low-frequency modes. Hence, due to

practical drawbacks of measuring all modes, only first eight

modes of the structure are calculated. By applying changes

and comparing to the previous methods, the proposed

method shows an appropriate performance in detecting the

location and severity of damage. It is demonstrated that the

updated results derived from the proposed method are robust

against incompleteness, noise polluted data, and measure-

ment and mass modeling error. Besides, by increasing the

noise of proposedmethod, the results still converge and show

the best estimation of damage in structure. In addition to

considering noise in the proposed method, the sensitivity of

results to the intensity of noise is detected in a way that by

adjusting noise rate, the damage detection via the afore-

mentioned technique and the results’ convergence are

assessed.

2 Theory

2.1 Modal flexibility sensitivity

For a linear, undamped structural system, the equation of

motion is given by

½M�f€uðtÞg þ ½K�fuðtÞg ¼ fPðtÞg; ð1Þ

where [K] and [M] are the global stiffness and mass

matrices of the intact structure, respectively. {P(t)} and

{u(t)} are the vectors of applied forces and responses. The

steady-state harmonic response of the Eq. (1) to the har-

monic excitation according to dynamic of structures sour-

ces is

u ¼ ð�x2½M� þ ½K�Þ�1
P ¼ GðxÞP; ð2Þ

where the GðxÞ is called dynamic flexibility matrix. It is a

dynamic generalization of the static flexibility matrix,

G(0) = K-1 (x, excitation frequency, is equal to zero)

[23]. By multiplying both sides by eigenvector and its

transpose, the Eq. (2) yields:

uTG�1u ¼ uT½K�u: ð3Þ

For a multi-degree of freedom structure, if the mode

shape vector furg is normalized, furg½M�furg ¼ 1 the

flexibility matrix [F] can be expressed for (the) first few

low-frequency modes (N) as:

½K��1 ¼ ½F� ¼
XN

r¼1

1

kr
furgfurg

T ¼
XN

r¼1

½F�r: ð4Þ

Equation (4) shows that the modal contribution to the

flexibility matrix decreases as frequency increases. On the

other hand, flexibility rapidly converges to a good

approximation with a few low-frequency modes [15].

Flexibility matrix can be determined by two ways: using

either dynamic or static data. Measuring the static tests is

more accurate than dynamic ones; however, the sensitivity

of static methods to the change in the structural parameters

is low. The static methods only require the stiffness prop-

erties, whereas the dynamic methods require the use of

mass, stiffness and damping properties.

The response derived from static methods is more exact

than dynamic ones; moreover, considering the measure-

ment error, static results are more reliable than modal

testing results. In this paper, flexibility matrix is deter-

mined based on static data.

The derivative of modal flexibility with respect to the

structural parameter ‘‘p’’ is called modal flexibility sensi-

tivity described by

SF ¼ o½F�
op

¼
XN

r¼1

o½F�r
op

¼
XN

r¼1

o

op

1

kr
furgfurg

T

� �
: ð5Þ
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According to Eq. (5), for gaining the modal flexibility

sensitivity of the structure (SF), the rth modal flexibility has

to be calculated. Expanding Eq. (5) yields:

o Fij

� �
r

op
¼ o

op

1

kr
urif g urj

� �T
� �

¼ 1

k2r

okr
op

urif g urj

� �Tþ 1

kr

o urif g
op

urj

� �Tþ 1

kr
urif g

o urj

� �T

op

" #
:

ð6Þ

The numerator of this derivative is the product of modal

coefficients at points i, urif g, and j, urj

� �
, of one mode,

respectively. The denominator is the corresponding fre-

quency, kr: It is known from Eq. (6) that the rth modal

flexibility Fij

� �
r
; at the ith point under the unit load at the

point j [i.e., the left side of Eq. (6)] is equal to the sum of

three terms related to the each rth mode identified [i.e., the

right side of Eq. (6)]. If the derivatives of the rth eigen-

value and eigenvector are known, the rth modal flexibility

sensitivity can be evaluated.

According to the right side of Eq. (6), the eigenvalue

and eigenvector derivatives, which have been presented by

Fox [24], are:

okr
op

¼ urf gTo½K�
op

urf g � kr urf gTo½M�
op

urf g; ð7Þ

o urf g
op

¼
Xn

k¼1

crk urkf g; ð8Þ

crk ¼

� urkf gT o½K�
op

� kr
o½M�
op

� 	
urkf g

kk � kr
k 6¼ r

� 1

2
urkf gTo½M�

op
urkf g k ¼ r

8
>>>><

>>>>:

: ð9Þ

Wang [25] presented a method for eigenvector sensi-

tivity which is used in this paper.

o urf g
op

¼ o ur0f g
op

þ
Xn

k¼1

ark urkf g; ð10Þ

o ur0f g
op

¼ �½K��1 o½K�
op

� okr
op

½M� � kr
o½M�
op

� 	
urf g; ð11Þ

ark ¼
�kr
kk

urkf gT o½K�
op

� kr
o½M�
op

� 	
urkf g

kk � kr
k 6¼ r

� 1

2
urkf gTo½M�

op
urkf g k ¼ r

8
>>>><

>>>>:

:

ð12Þ

The derivatives of eigenvector for both Fox and Wang

methods for complete mode shapes have the same results;

however, when the mode shapes are incomplete, Wang’s

results localize the damage more accurately than Wang’s

method.

2.2 Damage detection based on proposed
method

The modal flexibility parameters, from the aspect of mea-

sured degree of freedom (DOF), consist of two sets of data:

one from the intact structure denoted by I, and another

from the damaged structure denoted by D. The change in

flexibility is defined as:

D F½ � ¼ FD½ � � FI½ �: ð13Þ

Any changes in design parameters of the structure will

influence on modal parameters, thereby on modal flexi-

bility. These changes can be shown by first-order Taylor’s

series as:

D½F� ¼ o½F�
op

Dp: ð14Þ

Substituting Eq. (14) into Eq. (13), one can formulate

the inverse problem of model error identification into a

linear set of equation as:

o½F�
op

Dp ¼ FD½ � � FI½ �: ð15Þ

The right side of the equation can be obtained from

modal measurement and analysis. The Eq. (14) can be

completed according to the Eq. (5) as:

D½F� ¼ o½F�
op

Dp ¼
XN

r¼1

o½F�r
op

Dp

¼
XN

r¼1

o

op

1

kr
urf g urf gT

� �
Dp: ð16Þ

By extracting the Eq. (16) and differentiating kr and

{ur} in the rth mode shape as well as considering Eq. (14),

Eq. (16) would be as follows:

D Fij

� �
r
¼ 1

k2r
Dkr urif g urj

� �Tþ 1

kr
D urif g urj

� �T

þ 1

kr
urif gD urj

� �T
:

ð17Þ

To calculate the changes in modal flexibility based on

Eq. (17), the changes in mode shapes and frequencies are

required to be known. In this paper, the frequencies asso-

ciated with the damaged structure are used for considering

the changes in frequencies. To consider the changes in

mode shapes, as it was previously mentioned, Wang’s

method is used. Wang’s equation comprises two parts:

initial mode shape and the residual part. In such equation,

the derivative of the frequency is observed. In this paper,
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the frequencies of the damaged structure are used in lieu of

the implicit equation (i.e., Wang’s). As a result, the

Eqs. (6) and (11) can be changed to:

D Fij

� �
r
¼ 1

k2r
ðkrd � krÞ urif g urj

� �Tþ 1

kr
D urif g urj

� �T
"

þ 1

kr
urif gD urj

� �T
	
; ð18Þ

D ur0f g ¼ �½K��1 o½K�
op

Dp� ðkrd � krÞ½M�Dp� kr
o½M�
op

Dp

� 	
urf g

D ur0f g ¼ �½K��1 o½K�
op

Dp urf g þ ½K��1 krd � krð Þ½M�Dp urf g

þ ½K��1kr
o½M�
op

Dp urf g:

ð19Þ

The stiffness matrix of the structure is defined as [26]:

K½ � ¼ A½ � P½ � A½ �T; ð20Þ

where the [A] and [p] are defined as stiffness connectivity

matrix and diagonal matrix of assembled stiffness eigen-

values for the entire structure. In this paper, it is assumed

that structural damage does not cause mass variation;

however, it brings about only a reduction in the structural

stiffness. In other words, mass distribution of the intact and

damaged structures remains unchanged. As a result, by

substituting Eqs. (17–19) into Eq. (15), the improved

modal flexibility sensitivity of the structure is expressed by

~S ¼
XN

r¼1

1

kr
�½K��1 o½K�

op
urif g þ

Xn

k¼1

ark ukf g
 !

urj

� �T
"

þ 1

kr
urif g �½K��1 o½K�

op
urj

� �
þ
Xn

k¼1

ark ukf g
 !T#

:

ð21Þ

By solving the Eq. (21), the damage location and its

severity can be obtained. The procedure of the proposed

method can be summarized as follows:

1. Creating the finite element model of intact structure

2. Obtaining the measured flexibility data and Eigen

properties of intact and damaged structure

3. Updating parameters of intact structure and solving the

equation considering mass modeling and measurement

errors in order to estimate the unmeasured modes of

damaged structure and to detect and locate damage

2.3 Mass modeling error

In many real cases, the damage cannot have a significant

effect on the mass matrices of the structure. In other words,

the mass matrix of a structure is less likely to be changed

by damage phenomenon. However, the inaccuracies may

not be unexpected for the assumed mass parameters of the

intact and damaged structures which may lead the stiffness

parameter estimation results to be less accurate. As a result

of such inaccuracies, some deviations in the stiffness

parameter identification are likely to appear. Sensitivity

equations may be negatively affected because of the

potential errors in the eigenvectors of the undamaged

structure which contribute to the construction of sensitivity

equations and are caused by the inaccurate assumption of

mass properties.

In this study, with the aid of numerical simulations, it is

indicated that despite considering mass modeling errors,

robustness is still observable in the parameter estimation

process. The stability and robustness of the proposed

method against mass modeling errors can be proved by the

accurate estimation of variations in the stiffness parameter

and low values for the results’ COV.

2.4 Measurement error

The model updating methods by which the variations of the

flexibilities are considered are limited to the cases that

there is an access to the exact flexibly’ data of the damaged

structures, regardless of the accuracy and computational

issues [27]. Therefore, a low level of random errors (up to

2% of random errors) is considered by researchers in order

to evaluate robustness of these kinds of model updating

methods against measurement errors. Environmental noises

caused by ambient loads, or unstable positions of sensors

can have an impact on the extracted flexibilities; therefore,

experiencing a higher level of measurement error cannot be

unexpected.

Measurement of natural frequencies is accurate using

sophisticated accelerometers. This fact has led some

researchers to assume noise-free natural frequencies for

model updating. Sensitivity matrix for evaluation of the

stiffness parameters is established by implementation of

the measured natural frequencies. Nonetheless, sensitivity

equations are highly sensitive to and affected by any

unpredicted errors in natural frequencies
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3 Numerical results

A simulated two-dimensional truss and frame structures are

used as case studies in order to evaluate the ability of this

improved method. It should be mentioned that the imposed

load is a kind of impulse; as a result, in the simulation

study, the load is considered as a concentrated load

imposed to some specific degrees of freedom which are

wisely selected by engineering judgment.

3.1 Truss

The finite element model of the 2-D truss element consists

of 25 elements and 21 Kinematics degrees of freedom as

shown in Figs. 1 and 2. The basic parameters of the truss

element are as follows:

Mass density of 7800 kg/m3, Young’s modulus

E = 20 MPa, the cross-sectional areas are given in Table 1.

The excitation is applied at the DOFs 12, 9, 19, 15 and

17 and the measuring points are assumed to be in DOFs 3,

4, 13, 16, 14, 15, 21 and 20. Four damage scenarios that are

different in the number, location, and severity of damaged

elements in order to investigate the precision of the pro-

posed method are summarized in Table 2. Also, in order to

consider the measurement errors, 30 sets of 2 and 0.5%

random noises have been applied to the flexibility and

natural frequency of the damaged structure, respectively.

Since this method is model based and uses the analytical

model of intact structure, an error associated with modeling

the mass of numerical model compared to the real mass of

intact structure should be considered. For considering mass

modeling error, 5% random noise has been applied to the

mass of intact structure. As it was previously mentioned,

difficulties in calculation of all modes, caused by the sen-

sitivity of the equation to low-frequency modes, lead to

considering only first eight modes

To determine accuracy of the proposed method and

effectively compare the validity of responses, the damage

indicator coefficient of variation is used. The COV of the

parameters closer to zero indicates that the responses are

impervious to noises. As it can be seen in the figures, COV

is less than 33%. The results of damage detection using the

proposed formulation are depicted in Figs. 3, 4, 5, 6, 7, 8, 9

and 10.

The aim of identifying the location and severity of

damage in all scenarios is to understand the sensitivity

trend of the noise associated with flexibilities and fre-

quencies, when the proposed method is applied. According

to the results, in the presence of modeling errors, damage is

predicted to occur in some intact elements. Hence, these

errors reduce the accuracy of the method; nevertheless, this

method is still acceptable in terms of accuracy.

Fig. 2 Degrees of freedom of

truss model

Fig. 1 Geometry of truss model

Table 1 Cross-sectional area and density of truss elements

Element’s number Cross-sectional area (m2)

01-6 18E-4

07-12 15E-4

13–17 10E-4

18–25 12E-4
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To compare the severity and location of the predicted

damage derived from the proposed method with the actual

damage, a parameter called close index (CI) is defined.

CI ¼ 1� kdPp � dPactualk
kdPactualk

ð22Þ

where dPp and dPactual. are predicted damage and actual

damage, respectively. If the damage severity and location

are predicted correctly, the CI closes to 1.0. Results of the

damage detection process which uses modified modal

flexibility method present the CI which is closer to 1.0

Table 2 Damage cases for truss
Damage scenarios Flexibility

noise

Frequency

noise

Mass

noise

1 Elements 3 17 19 0.02 0.005 0.05

Damage

(%)

40 50 50

2 Elements 13 15 17 0.02 0.005 0.05

Damage

(%)

50 40 30

3 Elements 17 0.02 0.005 0.05

Damage

(%)

70

4 Elements 13 25 0.02 0.005 0.05

Damage

(%)

50 40
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Fig. 3 Actual and predicted damage of case 1 for original modal

flexibility and modified modal flexibility
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Fig. 4 Coefficient of variation of case 1 for original modal flexibility

and modified modal flexibility
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Fig. 5 Actual and predicted damage of case 2 for original modal

flexibility and modified modal flexibility
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Fig. 6 Coefficient of variation of case 2 for original modal flexibility

and modified modal flexibility
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compared to original modal flexibility method. The CI

index for truss structure is shown in Table 3.

To evaluate the accuracy of the proposed method, two

damage scenarios are randomly elected and assessed, for

instance, scenarios number 2 and 3. In such scenarios, the

measurement error, or the noise of flexibility, is changed

from 0.02 to 0.04; and 0.5% noise is applied to the natural

frequency of the damaged structure. 5% random noise is

applied to the mass of intact structure. It is notable that

with the increase in the noise, the accuracy of results is

different depending on the various health monitoring

techniques; the approach which can provide reliable results

in terms of accuracy can be considered as an efficacious

technique in the detection of the damage location and

severity.

The results derived from modal flexibility and modified

modal flexibility are compared. The close index (CI) for

original modal flexibility of case 3 is about - 0.0265;

whereas, for modified modal flexibility, it is equal to 0.452;

moreover, for case 2, this quantity is about 0.424, while, for

modified modal flexibility, it is 0.635.

Compared to the proposed method, it is observable that

the modal flexibility method is unable to provide con-

verged results and it cannot detect the amount of damage in

structure (Figs. 11, 12).

According to Figs. 13 and 14, the COV for the damage

cases 1 and 3 with applying measurement errors 4% to the

flexibility and 0.5% to the natural frequency of damaged

structure and 5% random noise to the mass of intact

structure for proposed method is less than 20 and 43%,

respectively, whereas, for original modal flexibility, it is

less than 60 and 43%. These results indicate that the

accuracy of the response of the model with modified modal

flexibility method is not affected by the noise.

3.2 Frame

The finite element model of a one-story one-bay aluminum

frame consists of 21 two-node beam and column elements

and 22 nodes as shown in Fig. 15. A joint of the plane

frame can have up to three degrees of freedom (two

translational degrees of freedom perpendicular to the

beam’s axis and a rotational one). The translational degrees

of freedom have been measured. The length of each
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Fig. 8 Coefficient of variation of case 3 for original modal flexibility

and modified modal flexibility
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Fig. 9 Actual and predicted damage of case 4 for original modal

flexibility and modified modal flexibility
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Fig. 10 Coefficient of variation of case 4 for original modal flexibility
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Fig. 7 Actual and predicted damage of case 3 for original modal

flexibility and modified modal flexibility
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element is l = 0.1 m with cross-section areas equal to

A = 3.6066E-4 m2 and moment of inertia of

I = 0.26444E-8 m4 and Young’s modulus of

E = 0.67 MPa, and the density equal to q = 2693.9 kg/m3.

The excitation is applied at the DOFs 4, 10, 16, 19, 32,

38, 49, 55 and 58 and the measuring points are assumed to

be the DOFs 4, 13, 23, 35, 38, 43, 46, 49, 52 and 58.

Damage cases with different assumed damage locations

and severities in addition to different noises applied to the

flexibility and natural frequency of damaged structure and

Table 3 Close index for truss

structure
Damage case Original modal flexibility method Modified modal flexibility method

1 0.608 0.704

2 0.488 0.643

3 0.383 0.605

4 0.613 0.764
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Fig. 11 Actual and predicted damage of case 1 for original modal

flexibility and modified modal flexibility
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Fig. 12 Coefficient of variation of case 1 for original modal flexibility

and modified modal flexibility
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Fig. 13 Actual and predicted damage of case 3 for original modal

flexibility and modified modal flexibility
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Fig. 14 Coefficient of variation of case 3 for original modal flexibility

and modified modal flexibility

Fig. 15 Geometry of frame model
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the mass of intact structure are summarized in Table 4.

Based on the incomplete measurements, only the first eight

modes are considered. The COV of frame structure is less

than 26%.

As it was previously mentioned for the truss elements,

the measurement errors are applied to the damaged struc-

ture which are equivalent to 4% for the flexibility and 0.5%

for the natural frequency; additionally, 5% random noise is

applied to the mass of intact structure, so as to estimate the

power of the proposed method; then, the results regarding

case 1 and 3 of modal flexibility and modified modal

flexibility of frame structure are compared. The close index

(CI) for original modal flexibility of case 1 is approxi-

mately - 0.18, whereas, for modified modal flexibility,

this parameter is roughly equal to 0.357. Similarly, the

close index (CI) for original modal flexibility of case 3 is

about - 0.2, while, for modified modal flexibility, it is

0.696. The COV of the case 1 for original modal flexibility

is less than 50% and for modified method it is less than

30%. For the case 2 related to the original modal flexibility,

this quantity is less than 110% and less than 38% for the

modified method (Figs. 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27).

As it is evident from the comparison of the modified

modal flexibility (i.e., the proposed method) with the

original one in terms of the derived results, the modal

flexibility method is incapable of providing converged

results in addition to the point that it unable to effectively

detect the damage intensity of the structure.

Table 4 Damage cases for

frame
Damage case Flexibility noise Frequency noise Mass noise

1 Elements 2 20 0.02 0.005 0.05

Damage (%) 40 30

2 Elements 3 17 19 0.02 0.005 0.05

Damage (%) 40 50 50

3 Elements 4 11 19 21 0.02 0.005 0.05

Damage (%) 40 50 50 40

4 Elements 11 0.02 0.005 0.05

Damage (%) 30
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Fig. 16 Actual and predicted damage of case 1 for original modal

flexibility and modified modal flexibility
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and modified modal flexibility
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Fig. 18 Actual and predicted damage of case 2 for original modal

flexibility and modified modal flexibility
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It can be observed from tables that the proposed method

predicts damage severity more accurately than the con-

ventional method.

Figure 28 illustrates that by considering eight measured

modes, damage charts do not change. In other words, the

damaged elements will be unvaried alongside with

increasing the measured mode shapes. Thus, requiring only

eight mode shapes for damage localization is one of the

most important advantages of the proposed method. It

depicts the actual and predicted damage detected by the

proposed method, considering 5, 6, 7 and 8 measured

modes for frame structure. The CI index for frame structure

of 4 scenarios is shown in Table 5.
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Fig. 19 Coefficient of variation of case 2 for original modal flexibility

and modified modal flexibility
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Fig. 20 Actual and predicted damage of case 3 for original modal

flexibility and modified modal flexibility
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Fig. 21 Coefficient of variation of case 3 for original modal flexibility

and modified modal flexibility
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Fig. 22 Actual and predicted damage of case 4 for original modal

flexibility and modified modal flexibility
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Fig. 23 Coefficient of variation of case 4 for original modal flexibility

and modified modal flexibility
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Fig. 24 Actual and predicted damage of case 1 for original modal

flexibility and modified modal flexibility
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4 Conclusion

In this paper, an efficient damage detection method called

modified modal flexibility has been proposed to detect,

locate, and determine the intensity of damage in the 2-D

truss and frame structures.

This method is based on model-based updating of sen-

sitivity equation, thereby determining the dynamic char-

acteristic and the modal flexibility. The finite element

model of intact structure should be developed, then the

damage data should be achieved from experiment. Due to

the number of sensors essential to be used, difficulty in

determining the points of excitation, and the impossibility

of measuring all features of the damaged structure, carrying

out a real experiment is not a straightforward approach;

therefore, in this paper, the location and severity of damage

in the damaged structure are detected by model updating of

intact structure with the least square solving of the sensi-

tivity equation.

The proposed approach represented in this paper is

based on the parallel use of static and dynamic flexibilities.

Another significant point to consider in this approach is

that the frequency data of the damaged structure are

implemented in lieu of the implicit derivative of frequency

in order to enhance the sensitivity equation. The derivative

of the frequency which is observable in both modal flexi-

bility and derivative mode shapes (i.e., Wang’s) equations

is removed; variation of frequency, including the frequency

of the intact and damaged structures, is supplanted. To

verify the proposed method, the results of the modified

modal flexibility approach are compared to the results

derived from the conventional method.

The damage scenarios are considered under the situation

that the measured flexibility, frequencies, and the mass of

intact structure are contaminated by uncorrelated random

noise. Moreover, as it is not plausible to apply excitation to

all mode shapes due to the high computational and other

operational costs it imposes to the process, measuring all

mode shapes is not feasible. Considering such point, in this

paper, the effect of number of mode shapes on the results

of damage detection is evaluated. According to the derived

results, mode shapes number 6, 7, and 8 provide close

results; therefore, eight modes are considered in this

research.

Two parameters including ‘‘close index’’ and ‘‘coeffi-

cient of variation’’ are used in order to evaluate the

robustness of the proposed method. The ‘‘close index’’ for

the proposed method is closer to 1 than the original

method. Moreover, the ‘‘coefficient of variation’’ for the

proposed method is less than the conventional approach.

Consequently, it is safe to say that the sensitivity equation

of the proposed method is more accurate in terms of

mathematical formulation than Yan’s method. By com-

paring the numerical results of all damage scenarios with

the assumed damages of the truss and frame structures, it

can be concluded that the modified modal flexibility

method makes damage detection process more convenient
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and modified modal flexibility
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Fig. 26 Actual and predicted damage of case 3 for original modal

flexibility and modified modal flexibility
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to evaluate the damage severity and location, with presence

of measurements and modeling errors, when the first eight

orders of modal data are used. As a suggestion, it would be

much more accurate to consider damping in this research

and assess its effects on the results separately.

References

1. Doebling SW, Farrar CR and Prime MB et al (1996) Damage

identification and health monitoring of structural and mechanical

systems from changes in their vibration characteristics: a litera-

ture review. Research report, Los Alamos National Laboratory,

USA

2. Araujo dos Santos JV, Maia NMM, Mota Soares CM et al (2008)

Structural damage identification: a survey. Trends in computa-

tional structures technology. Saxe-Coburg Publications, Stir-

lingshire, pp 1–24

3. Fan W, Qiao P (2010) Vibration-based damage identification

methods: a review and comparative study. Department of Civil

and Environmental Engineering and Composite Materials and

Engineering Center, Washington State University, Pullman, WA,

pp 99164–2910

4. Law SS, Ni PH, Li J (2014) Parallel decentralized damage

detection of a structure with subsets of parameters. AIAA J

52(3):650–656

5. Gudmundson P (1982) Eigenfrequency changes of structures due

to cracks, notches, or other geometrical changes. J Mech Phys

Solids 30(5):339–353

6. Sanayei M, Onipede O (1991) Damage assessment of structures

using static test data. J AIAA 29(7):1174–1179

7. Wang X, Hu N, Fukunaga H, Yao ZH (2001) Structural damage

identification using static test data and changes in frequencies.

J Eng Struct 23(6):610–621

8. Bakhtiari-Nejad F, Rahai A, Esfandiari A (2005) A structural

damage detection method using static noisy data. J Eng Struct

27(12):1784–1793

9. Esfandiari Akabr, Sanayei Masoud, Bakhtiari-Nejad Firooz,

Rahai Alireza (2010) Finite element model updating using fre-

quency response function of incomplete strain data. AIAA J

48(7):1420–1433

10. Abdo MAB (2012) Parametric study of using only static response

in structural damage detection. J Eng Struct 34:124–131

11. Ni PH, Law SS (2016) Hybrid computational strategy for struc-

tural damage detection with short-term monitoring data. Mech

Syst Signal Process 70–71:650–663

12. Seyedpoor SM, Yazdanpanah O (2014) An efficient indicator for

structural damage localization using the change of strain energy

based on static noisy data. J Appl Math Model 38:2661–2672

13. Sanayei M, Khaloo A, Gul M, Catbas FN (2015) Automated finite

element model updating of a scale bridge model using measured

static and modal test data. J Eng Struct 102:66–79

14. Lin CS (1990) Location of modeling errors using modal test data.

J AIAA 28(9):1650–1654

Fig. 28 Actual and predicted damage of frame structure with 5, 6, 7, 8 measured modes

Table 5 Close index for frame

structure
Damage case Original modal flexibility method Modified modal flexibility method

1 0.378 0.633

2 0.63 0.767

3 0.569 0.744

4 - 0.17 0.501

Journal of Civil Structural Health Monitoring (2018) 8:301–314 313

123



15. Yan A, Golinval J-C (2005) Structural damage localization by

combining flexibility and stiffness methods. J Eng Struct

27:1752–1761

16. Zhao J, Dewolf JT (1999) Sensitive study for vibrational

parameters used in damage detection. J Eng Struct

125(4):410–416

17. Pandey AK, Biswas M (1994) Damage detection in structures

using changes in flexibility. J Sound Vib 169(1):3–17

18. Guirong Y, Zhongdong D, Jinping O (2009) Damage detection

for truss or frame structures using an axial strain flexibility.

J Smart Struct Syst 5(3):291–316

19. Kim BH, Joong Joo H, Park T (2007) Damage evaluation of an

axially loaded beam using modal flexibility. Struct Eng KSCE J

Civ Eng 11(2):101–110

20. Li J, Wu B, Zeng QC et al (2010) A generalized flexibility matrix

based approach for structural damage detection. J Sound Vib

329:4583–4587

21. Zhao B, Xu Z, Kan X, Zhong J, Guo T (2016) Structural damage

detection by using single natural frequency and the corresponding

mode shape. J Shock Vib 2016:8

22. Yan W, Ren W (2014) Closed-form modal flexibility sensitivity

and its application to structural damage detection without modal

truncation error. J Vib Control 20:1816–1830

23. Preumont A (2011) Vibration control of active structures: an

introduction. Solid mechanics and its applications, vol 179, 3rd

edn. Springer, Netherlands. https://doi.org/10.1007/978-94-007-

2033-6

24. Fox RL, Kapoor MP (1968) Rates of change of eigenvalues and

eigenvectors. J AIAA 6(12):2426–2429

25. Wang BP (1991) Improved approximate methods for computing

eigenvector derivatives in structural dynamics. J AIAA

29(6):1018–1020

26. Doebling SW, Peterson LD, Alvin KF (1998) Experimental

determination of local structural stiffness by disassembly of

measured flexibility matrices. J Vib Acoust 120(9):49–57

27. Ren WX, De Roeck G (2002) Structural damage identification

using modal data I: simulation verification. J Struct Eng

128(1):87–95

314 Journal of Civil Structural Health Monitoring (2018) 8:301–314

123

https://doi.org/10.1007/978-94-007-2033-6
https://doi.org/10.1007/978-94-007-2033-6

	A generalized flexibility matrix-based model updating method for damage detection of plane truss and frame structures
	Abstract
	Introduction
	Theory
	Modal flexibility sensitivity
	Damage detection based on proposed method
	Mass modeling error
	Measurement error

	Numerical results
	Truss
	Frame

	Conclusion
	References




