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Abstract
Vision-based systems are promising tools for displacement measurement in civil structures, possessing advantages over

traditional displacement sensors in instrumentation cost, installation efforts and measurement capacity in terms of fre-

quency range and spatial resolution. Approximately one hundred papers to date have appeared on this subject, investigating

topics like system development and improvement, the viability on field applications and the potential for structural

condition assessment. The main contribution of this paper is to present a literature review of vision-based displacement

measurement, from the perspectives of methodologies and applications. Video-processing procedures in this paper are

summarised as a three-component framework: camera calibration, target tracking and structural displacement calculation.

Methods for each component are presented in principle, with discussions about the relative advantages and limitations.

Applications in the two most active fields, bridge deformation and cable vibration measurement, are examined followed by

a summary of field challenges observed in monitoring tests. Important gaps requiring further investigation are presented,

e.g. robust tracking methods, non-contact sensing and measurement accuracy evaluation in field conditions.
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Abbreviations
BRIEF Binary robust independent elementary

features

DIC Digital image correlation

DOF Degree of freedom

FREAK Fast retina keypoint descriptor

LK Lucas and Kanade optical flow

LMS Least median of squares

MCS Motion capture systems

ORB Oriented FAST and rotated BRIEF

RANSAC RANdom SAmple Consensus

SF Scale factor

SIFT Scale-invariant feature transform

SURF Speeded up robust features

ZNCC Zero-mean normalised cross correlation

ZNSSD Zero-mean normalised sum of squared

differences

1 Introduction

Structural health monitoring (SHM) is aimed at providing

valuable information for structural assessment and decision

support for maintenance through relevant measures of

structural response. Deformation is an important metric for

structural condition and performance assessment for sev-

eral reasons. In particular serviceability is reflected through

deformation during normal operation, since extreme values

and ranges indicate problems that may limit operational

use, while time-varying deformation patterns constructed

from discrete displacement measurements can provide a

wealth of information about structure condition.

Conventional sensors like linear variable differential

transformers (LVDT) require a stationary reference point

for installation and direct access to monitoring structures

that could be challenging on site. The global positioning

systems (GPS) have the limitation of measurement accu-

racy (i.e. sub-centimetre [1] or centimetre level [2]) and are

mostly applied for monitoring campaigns in flexible large-

scale structures. Integration schemes from acceleration

measurement are only feasible for short-time signals and

might fail to capture the static or quasi-static components
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in displacement signals. Such limitations of more tradi-

tional displacement sensing technologies have driven

research in non-contact optical sensing. Vision-based

monitoring methods have promising features, e.g. simple

instrumentation and installation, operation remote from the

structure and capacity for multi-point measurement using a

single (camera) sensor.

Although there have been earlier optics-based methods

used for monitoring civil structure deformation, e.g. in the

Tacoma Narrows Bridge [3] and the Tagus Bridge [4],

among the earliest applications of opto-electronic vision-

based continuous structural deformation monitoring using

charge-coupled device (CCD) arrays was to Humber Bridge

and Severn Bridge in the UK [5, 6]. Since then a number of

systems have been developed and evaluated for structural

deformation monitoring in high-rise buildings [7], short-

span bridges [8–11] and long-span bridges [12–14].

Vision-based systems offer significant potential for

structural condition assessment, in particular for system

identification [15–17]. In addition, deformation informa-

tion has been used for finite element model calibration

[18], damage detection [19] and contribution to bridge

weigh-in-motion system with camera assistance for traffic

monitoring [20].

Investigations have been made in system improve-

ment in both video acquisition hardware and video-

processing software. The feasible video acquisition

devices are expanded to include smartphone cameras

[15, 21], while artificial targets required in conventional

systems were discarded in some recent applications

under specific camera configurations [8, 15, 22]. Effi-

cient target tracking techniques in the computer vision

field have been validated in structural deformation

monitoring [15, 22, 23] and the measurement results

describing structural displacement have been expanded

to three-dimensional [17, 24–26] and six degree of

freedom (DOF) motions [11, 14].

This paper aims to present a summary of key work in the

field of vision-based systems for structural displacement

monitoring while highlighting the principles, advantages

and shortcomings of these systems. Although previous

reviews of vision-based structural monitoring exist

[27–29], the contribution of this work is to provide an

overview of system classifications, methodologies and

applications in field monitoring.

The paper is organised as follows: The components of a

vision-based system for displacement monitoring are

introduced, followed by a comparison of several mature

vision-based systems in application scopes in Sect. 2. In

Sect. 3, vision-based systems are categorised based on

methods of video processing, with three components in

video-processing procedures (i.e. camera calibration, target

tracking and structural displacement calculation) reviewed

in terms of principle, applications, advantages and short-

comings, respectively. In Sect. 4, applications for bridge

deformation and cable vibration measurement are reviewed

followed by a discussion of measurement challenges in

field applications. Finally, important gaps requiring further

investigation are presented, e.g. robust tracking methods,

non-contact sensing and measurement accuracy evaluation

in field conditions.

2 Vision-based displacement monitoring
systems

Applying a vision-based system for structural displacement

monitoring requires setting up one or more cameras in a

stable location, looking at the ‘target’ contained in a struc-

ture and deriving the structural displacement through target

tracking. Here the ‘target’ could be either artificial (e.g. pre-

installed marker, LED lamp or planar panel with special

patterns) or an existing structural feature (e.g. bolts or holes).

As shown in Fig. 1, the hardware generally comprises

Fig. 1 Vision-based system for

structural displacement

monitoring of the Humber

Bridge [30]: a site configuration

of the vision-based monitoring

system; and b 10-min time

history signal of vertical

displacement at the bridge mid-

span measured by the vision-

based monitoring system
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camera, lens, laptop/portable computer with video-process-

ing package and some accessories, e.g. tripod. The video-

processing software is critical: its role is acquiring the video

frames covering the target region, tracking the target loca-

tions in image sequences and finally transforming the target

location in image to time history of structural displacement.

Systems for extracting metric information from images

or videos exist in several fields as indicated in Table 1, e.g.

digital image correlation (DIC) [9, 31, 32], photogram-

metric techniques [33] and motion capture systems (MCS)

[17, 34]. DIC is a measurement tool to extract full-field

displacements or strains of a member surface in experi-

mental solid mechanics [32, 35, 36]. Photogrammetry,

originally in the production of topographic maps [37], is

expanded to include deflection monitoring of bridge

structures [38]. Motion capture systems (MCS) are usually

applied to capture the movements of a high degree-of-

freedom skeleton structure with a number of joints (e.g.

human bodies) [39].

A vision-based system for structural displacement

monitoring owns its unique features, as indicated in the last

row of Table 1. Researchers have performed several

investigations into system development targeted at struc-

tural applications and these studies will be reviewed in

terms of methodologies in the next section.

3 Review of vision-based structural
displacement measurement

In this study, vision-based systems in literature are classi-

fied based on video-processing methodologies. A typical

video-processing software package could fit into a three-

component framework shown in Fig. 2. The derived dis-

placement data could be interpreted for bridge condition

assessment.

If the monitoring campaign is only for system identifi-

cation and exact vibration values [40, 41] are not required,

target tracking may be the only part of the whole video-

processing procedure needed, but coordinate transforma-

tion might be necessary to align the image motion direc-

tions with the structural axes.

Next, the methods for camera calibration, target tracking

and structural displacement calculation in literature are

reviewed separately.

3.1 Camera calibration

Camera calibration concerns building the projection rela-

tionship between the 3D structural points in the structural

coordinate system and the corresponding 2D points in the

image plane. The determined projection transformation

Table 1 Summary of vision-based systems

Vision-based

systems

Main study objects Measurement information Features

Digital image

correlation

(DIC)

Small-scale experimental members under

large distortional deformation

Full-field displacements or

strains on member surface

Laboratory application in controlled

environment

Fixed camera locations

Dense measurement with high resolution

Usually large deformation with shape distortion

Motion capture

systems (MCS)

Objects or human bodies with a high

degree-of-freedom skeleton structure

3D locations of each joint in

structure

Laboratory application in controlled

environment

Fixed camera locations

At least two cameras with overlapped views

Markers and calibration object for calibration

assistance

Photogrammetry Initially aerial and terrestrial applications;

now bridges under live loads

3D geometry of objects and

deflection measurement

Field applications on structures mainly in

stationary status

Movable locations of camera

Distributed control points for calibration

assistance

System for

structural

monitoring

Structures with small deformation

compared with structure scale

2D or 3D displacement with

proper sample rate

Field applications and easy installation

preferred

High accuracy and also high calculation

efficiency (for real-time dynamic

measurement)

Small deformation compared with structure

scale and camera-to-structure distance
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could be used to recover the real locations of targets in

structure given the target locations in the image.

Three categories of projection transformation are

reported in the literature including the full projection

matrix, planar homography and scale factor as indicated in

Table 2. In most cases, the projection transformation is

following the full perspective model while it could be

simplified to an affine camera model when cameras are

equipped with large focal length lenses [25].

3.1.1 Full projection matrix

3.1.1.1 Principle The full projection matrix is the general

form of projection transformation from the 3D structural

system to the 2D image plane under no constraint on

camera orientation and structural movement directions and

is usually used to reconstruct the target 3D structural dis-

placement. The projection relationship is demonstrated in

Fig. 3 with a point PSðXW ¼ ½X; Y; Z; 1�TÞ in the structural

coordinate system mapping to a point PIðu ¼ ½u; v; 1�TÞ in

the 2D image plane,

afug ¼ ½H�3�4fXWg; ð1Þ

where ½H�3�4 is a full projection matrix and a is an arbitrary

coefficient.

The calibration process is shown in Fig. 4 with two main

steps. The camera intrinsic matrix is usually estimated in

the laboratory by analysing a set of images of a calibration

object taken from different viewpoints [42]. The calibration

object is typically a flat plane or 3D object with a dot or

grid pattern of known spacing such as the chessboard

pattern shown in Fig. 4. At least three views of the cali-

bration object with four corner points are required, but it is

suggested to use at least ten images to derive more robust

estimates [43]. After laboratory calibration, any lens

functions, e.g. autofocus and automated image stabilisation

that might lead to changes in camera internal parameters

are disabled.

Consumer-grade cameras and smartphone cameras

always employ wide-angle lenses to increase the field-of-

view [15], leading to distorted images particularly in the

corner regions of the frame as shown in Fig. 5a. The lens

distortion parameters could also be estimated in laboratory

calibration and applied to correct the image with the rec-

tified one in Fig. 5b. For cameras equipped with lenses

producing no apparent lens distortion, the distortion cor-

rection step is not necessary. Naturally for the monitoring

measurements, it is preferable to locate the target region in

the central area of the field of view [10] which suffers less

lens distortion, as shown in Fig. 5a.

In the second step, the camera extrinsic matrix repre-

senting the camera position and orientation is estimated on

site through point correspondences, i.e. 3D structural

coordinates of control points and 2D image coordinates of

their projections in an image. Given at least four sets of

Fig. 2 Video-processing procedures for structural displacement mea-

surement and common methods in each step

Table 2 Projection transformation from structure to image plane

Projection

transformation

Assumptions Recovered

localisation

information of

target

(1) Full

projection

matrix

– 3D structural

coordinates

(2) Planar

homography

The motion along one axis

in structural coordinate

system is negligible

2D structural

coordinates

(3) Scale factor The camera optical axis is

perpendicular to one

plane in the structural

coordinate system (e.g.

the target plane XY)

2D motions

within the

target plane

Fig. 3 Camera projection model: central perspective projection
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point correspondences, least-squares optimisation is used

to find the best option of camera extrinsic matrix that

minimises the total re-projection error between the detected

image points and the calculated image projection points.

The calibration algorithms are available in the Vision

System Toolbox of MATLAB and the open-source library

OpenCV.

3.1.1.2 Application review Camera calibration for full

projection matrix estimation is commonly used to measure

3D structural displacement, with a few examples illustrat-

ing the method: the procedures of laboratory and site

camera calibration are described by Kim et al. [44] in an

application to structural displacement monitoring in a

three-span bridge under truck-induced vibration. The via-

bility of motion capture systems for the laboratory vibra-

tion measurement was verified [34] using a T-shaped

calibration wand for the estimation of camera extrinsic

parameters. In the case of a long span bridge, Martins et al.

[14] applied the calibration method to measure the 3D

structural displacement at mid-span with the assistance of a

set of four active targets. The estimated camera parameters

can be refined when multiple cameras with overlapped

views are involved. For example, the methodology

described by Chang and Ji [24] is based on the epipolar

geometry principle of stereoscopic vision where five points

including structural point PS, projection points in two

image planes P1
I and P2

I , and two camera optical centres

should all be coplanar, as shown in Fig. 6.

3.1.1.3 Remarks The full projection matrix is an accurate

representation of the projection relationship and is thus

applicable to any configuration of cameras on site. The lens

distortion problems common for consumer-grade cameras

Fig. 4 Calibration steps for estimation of full projection matrix

Fig. 5 Images of chessboard taken by GoPro Hero 4 session camera: a raw image; and b image after distortion correction
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do not prevent their use for such measurements, since

corrections are readily made for distortion using laboratory

camera calibration.

Camera calibration on site requires position information

for some structural points. In existing studies this has been

mainly acquired through the installation of artificial targets.

Including artificial targets in laboratory tests is easy, e.g.

attaching a planar chessboard target [24, 44] or placing a

planar T-shaped wand in the field of view [17, 34] while

the installation efforts in field tests [14] are much greater.

The existing examples of two field applications are sum-

marised in Table 3, indicating the feasibility of this method

for both short-range and long-range monitoring tests.

3.1.2 Planar homography

3.1.2.1 Principle For the case where the target moves

within a plane contained in the 3D structural system (e.g.

the XY plane), the projection relationship could be sim-

plified to a planar homography between a 2D structural

plane ðXP ¼ ½X; Y ; 1�TÞ and a 2D image plane

ðu ¼ ½u; v; 1�TÞ
afug ¼ ½P�3�3fXPg; ð2Þ

where ½P�3�3 is the planar homography matrix and a is an

arbitrary coefficient.

The reconstructed results using planar homography are

usually the 2D structural displacement of targets.

The calibration process requires at least four sets of 2D-

to-2D point correspondences [46], similar to the estimation

process on site in full projection method.

3.1.2.2 Application review The planar homography con-

siders the geometric distortion in the projection process and

thus has no constraint on camera positioning [47]. The 2D

direct linear transform is effective for the planar homog-

raphy estimation [48], for example the method was applied

to monitor the oscillation of a laboratory steel frame with a

dense array of markers glued to the surface [48] and the

mid-span deformation of a long-span bridge with an

attached planar artificial target [49].

3.1.2.3 Remarks Planar homography applies no con-

straint on camera positioning and can be used to recover

the target 2D structural displacements. In its application it

is usual that the geometric information needed for cali-

bration is provided by attaching artificial planar targets

with known dimensions.

This calibration method is based on the assumption that

the target moves within a structural plane with negligible

motion along the third axis. Any motion not contained

within this plane will lead to measurement error unless the

motion is purely perpendicular to the camera optical axis.

3.1.3 Scale factor

3.1.3.1 Principle Scale factor is the simplest projection

transformation and assumes an equal depth-of-field for all

projected points or a camera configuration where the

optical axis is perpendicular to one structural plane [48].

With this assumption, the mapping process converts to a

1D–1D projection indicated in Fig. 7. The scale factor SF

from the structural displacement to the image motion could

be determined by one-dimensional correspondence or the

camera-to-target distance,

SF ¼ PIQIj j
PSQSj j ; ð3Þ

or SF ¼ fpix

D
; ð4Þ

where PSQSj j and PIQIj j are the known physical dimension

on the structural surface and the corresponding pixel length

of the projection in image; fpix is the camera lens focal

length in terms of pixel units; and D denotes the distance

from the camera optical centre to the structural surface

plane.

For the system combining a camera with a total station,

a projection coefficient called angular resolution [50, 51] is

used to perform the transformation which represents the

angle value (a in Fig. 7) from the camera optical axis to a

projection line with the projection length ( OIPIj j) of one

pixel. In principle, this projection transformation is similar

to the scale factor estimated by camera-to-target distance in

Eq. (4) where the distance D is measured directly by

electronic distance measurement (EDM) instrument and

the focal length fpix is related to the angular resolution h by

h � tan h ¼ 1=fpix: ð5Þ

3.1.3.2 Application review Scale factor has been widely

used to transform image motion to structural displacement

with the features summarised in Table 4. Mostly the scale

factor is determined via a known dimension in an artificial

target attached to structure [5, 8–10, 12, 13, 15, 52–57]
Fig. 6 Epipolar geometry principle of stereoscopic vision
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while the method using the camera-to-target distance [22]

is less popular. For 2D structural displacement measure-

ment, the scale factors for two axes within the target plane

are calibrated separately according to dimension corre-

spondences [53–56]. Error analysis indicates that the scale

factor by dimension correspondence is less sensitive to the

tilt of camera optical axis [8]. However, the scale factor

using the camera-to-target distance has no dependence on

artificial targets and thus is an easier way to realise com-

pletely non-contact monitoring [22].

3.1.3.3 Remarks Scale factor is the simplest projection

transformation, particularly when no artificial target is used

[15, 22] and works when the camera optical axis is per-

pendicular to the structural surface. Camera positioning is

less critical [8] when known structural dimensions are used

for calibration. However, when applying the scale factor

derived from the camera-to-target distance, the tilt angle of

the camera optical axis is suggested to be less than 10�
through laboratory validation tests in short distance

(B 3.7 m) [58]. Care must be taken that different scale

factors are applied to different axes to measure the 2D

displacement. This simple method can also be used with

cameras having apparent lens distortion, since the lens

distortion correction method previously described can be

used [15, 57].

3.2 Target tracking

Target tracking is the key part of a video-processing soft-

ware package. In this study, target tracking techniques are

categorised into four types based on target characteristics

shown in Table 5, partly referring to [59].

3.2.1 Template matching

3.2.1.1 Principle Template matching is a classic tech-

nique for target tracking by searching in a new frame for an

area most closely resembling a predefined template, fol-

lowing the procedures demonstrated in Fig. 8. A rectan-

gular region that is a subset in the reference frame is first

selected as the template, and could be either an artificial

target [5] or a feature target on the structural surface [8]. A

Table 3 Summary of two field applications in literature using the full projection matrix as projection transformation

References [11] [14, 45]

Focal length 36.4 mm 600 mm (composed by a 300 mm telephoto lens and a 92

tele-converter)

Camera-to-target

distance

5.2 m 500 m

Artificial targets

installed

A planar 3 9 3 chessboard A 3D target set combined by distributed four LED targets

with the whole dimensions of 250, 350 and 250 mm along

the three axes

Observed

maximum

displacement

6 mm 1.82 m

Measurement

evaluation

Not commented about vertical measurement

Measurement noise along the two other directions with the

standard deviations at 0.76 and 1.09 mm, respectively

Uncertainty at 15–20 mm in the vertical and transverse

directions

Fig. 7 Camera projection model when the optical axis of camera is

perpendicular to the structural surface

Table 4 Features of two calibration methods for scale factor

Scale factor By camera-to-target

distance

By dimension

correspondences

Target

dependence

Target free Artificial targets always

required

Camera

positioning

constraint

Very sensitive to the tilt

of camera optical axis

Less sensitive to the tilt

of camera optical axis

Applications Mostly used in the short-

range measurement

The long-range

measurement feasible

for the vision-based

systems assisted the

total station

Widely used in both the

short-range and the

long-range

measurement
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correlation criterion is required to evaluate the similarity

level between the template and the new image subset.

Robust criteria for matching are zero-mean normalised

cross correlation (ZNCC) and zero-mean normalised sum

of squared differences (ZNSSD) which are insensitive to

offset and linear scale in illumination [35] while another

similarity criterion based on orientation code is also

reported to be effective [60]. The definition of the ZNCC

criterion is provided as an example in Eq. (6) while more

details are given in [35]

CZNCC ¼
XM

i¼�M

XN

j¼�N

ðf ðxi; yjÞ � fmÞðgðx
0
i; y

0
jÞ � gmÞ

DfDg

" #
; ð6Þ

where f ðxi; yjÞ and gðx0
i; y

0
jÞ denote the image intensity

values at the specified pixel locations in the template

region and the new frame; fm and gm denote the average

intensity values in the template region and the new frame;

and Df and Dg denote the standard deviations of intensity

values in the template region and the new frame.

The location in the correlation map reaching the highest

similarity is taken as the new image location of the target.

The default resolution is at pixel level, so interpolation

schemes [8] are used to refine the result to the subpixel

level. The feasible interpolation methods include bi-cubic

interpolation [56], second-order polynomial interpolation

[57] in spatial domain and zero-padding interpolation in

frequency domain [8]. If the selected target includes robust

and identifiable features, Harris corner detection that

identifies the edge intersection points through a score value

related to the eigenvalues of image gradient matrix could

be an alternative to refine the initial matching location [24].

3.2.1.2 Application review Template matching is an

established method widely applied in structural monitoring

Table 5 Categories of target

tracking methods
Tracking methods Regions or points tracked for matching

(1) Template matching Rectangular subset of the frame as the target region

(2) Feature point matching Sparse ‘special’ points with salient features within the target region

(3) Optical flow estimation Every pixel location within the target region

(4) Shape-based tracking Line-type, circular-shaped or custom-made targets

Fig. 8 Procedures of template

matching method for target

tracking: the horizontal and

vertical coordinates of the target

centre in the image plane are

denoted as U and V,

respectively; and the subscripts

0 and 1 represent the image

coordinates in the reference and

new frames, respectively
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from the earliest work on the Humber and Severn Bridges

in 1990s [5, 6]. Recent applications include displacement

monitoring tests on a railway bridge [8], a long-span bridge

[13] and a high-rise building [7].

Digital image correlation (DIC) is an extension of

template matching mostly used in experimental mechanics

[32, 35], with the difference that DIC considers the shape

distortion under large deformation [61], i.e. Lucas–Kanade

template matching [62]. As an example, a short-span rail-

way bridge monitoring exercise [63] used normalised

correlation-based matching and Lucas–Kanade matching

and indicated high similarity in both time and frequency

domain.

3.2.1.3 Remarks Template matching is easy to use with-

out user intervention apart from the initial selection of the

template region. It does not have any special requirement

for target patterns and has been validated to work well to

track artificial planar targets with specific patterns

[5, 6, 24], LED lamp targets [13] and feature targets on

structural surfaces [8].

Template matching is not robust to changes in shading,

illumination [30, 63] and background conditions [64] in

field, although sensitivity to lighting changes might be

reduced using camera auto-exposure settings [30]. The

method is also not appropriate for tracking slender struc-

tural components, since the rectangular subset image used

as a template might include background pixels with

inconsistent motion.

3.2.2 Feature point matching

3.2.2.1 Principle Instead of analysing all the locations

within the target, feature point matching applies to sparse

‘special’ points within the target region, independently

detecting these special points in two images and then

finding point correspondences based on their local

appearance. ‘Special’ points in an image, termed ‘interest

points’ or ‘keypoints’ in computer vision, are those which

are stable, distinctive and invariant to image transformation

and illumination changes, such as building corners, con-

nection bolts, or other patches with interesting shapes [65].

The procedures are indicated in Fig. 9. A popular key-

point detector in step (1) is the Harris corner detector [66]

which is widely used in structural monitoring applications

[11, 15, 22, 24, 57]. Instead of using the pixel values

directly for similarity comparison, keypoints are often

extracted and described by a more complex representation

(i.e. feature descriptor) according to the shape and

appearance of a small window around the keypoint [65].

The common descriptors and their matching criteria are

indicated in Table 6. Float point-based descriptors (e.g.

scale-invariant feature transform (SIFT) [67] and speeded

up robust features (SURF) [68]) are represented by float

vectors, commonly reflecting various local intensity gra-

dients of a pattern around the keypoint. Binary string-based

descriptors (e.g. binary robust independent elementary

features (BRIEF) [69], oriented FAST and rotated BRIEF

(ORB) [70] and fast retina keypoint descriptor (FREAK)

[71]) are represented by binary vectors (with elements of 0

and 1) through pairwise comparisons of image intensities

(i.e. whether the former is greater or less than the latter)

over a special pattern around the keypoint. The matching

criterion between two binary descriptors is usually the

Hamming distance [69] equal to the number of elements

which differ between the two vectors.

To verify the matched keypoint correspondences in step

(3), geometric alignment is often used based on whether

the keypoints in the first image could fit with the keypoints

in the second image after a specific geometric transfor-

mation. The widely used approaches for discarding outliers

are RANdom SAmple Consensus (RANSAC) [72] and

Fig. 9 Procedures of feature point matching for target tracking

Table 6 Categories of feature descriptors and corresponding matching criteria

Descriptor categories Descriptor names Matching criteria

Float point based Scale-invariant feature transform (SIFT) [67]

Speeded up robust features (SURF) [68]

Euclidean distances in feature space [65]

Binary string based Binary robust independent elementary features (BRIEF) [69]

Oriented FAST and Rotated BRIEF (ORB) [70]

Fast retina keypoint descriptor (FREAK) [71]

Hamming distance [69]
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least median of squares (LMS) [73]. The tracking output is

the average motion of keypoints in an image that inherently

has sub-pixel resolution and could be converted to the

target location in the image.

3.2.2.2 Application review Song et al. [74] proposed a

target tracking method based on circular Hough transform

for marker detection and coherent point drift algorithm for

marker matching and the method was applied for system

identification of a steel cantilever beam in the laboratory.

Field applications include Khuc and Catbas [22, 75] who

applied the FREAK and SIFT methods for deformation

measurement in a stadium structure and a railway bridge

and Ehrhart and Lienhart [59, 64] who applied the ORB

method for deformation measurement in a short-span

footbridge.

3.2.2.3 Remarks Feature point matching is an efficient

technique since it deals with sparse points instead of the

whole region as in template matching. This technique uses

local descriptors to represent keypoints instead of the raw

image intensities and are less sensitive to illumination

change, shape change and scale variation.

However, feature point matching requires the target

region to have rich textures for distinctiveness during the

whole recording period. Also several parameters need to be

adjusted manually according to users’ experience or

judgement, e.g. contrast threshold for feature detector and

distance threshold in matching criteria. These parameter

adjustments might depend on environmental changes, e.g.

the threshold for outlier removal might vary with the illu-

mination condition [22].

Currently feature point matching technique has only

been validated in several short-range measurement tests

[22, 59, 64, 75]. However, the feasibility for long-range

monitoring in terms of stability over several hours and how

to choose the best feature descriptors are open questions.

3.2.3 Optical flow estimation

3.2.3.1 Principle Instead of finding matching locations of

a complete region or sparse keypoints, optical flow esti-

mation detects motions or flows of all pixels within the

target region. Optical flow is the apparent velocity of

movement in an image resulting from brightness pattern

shift [76]. The calculation imposes two constraints, one

temporal constraint on image properties (e.g. image

intensity constancy for the same pattern over time) and one

spatial constraint that models the flow properties in an

image (e.g. coherent motion in adjacent pixels) [77]. A

function reflecting these two constraints is then defined and

optimised to derive a dense estimation of velocity flow for

each pixel. In structural monitoring applications, the output

could be converted to image motion instead of velocity by

replacing the temporal gradient of image properties in the

function with the variation of image properties between

two discrete frames. Outlier removal is used to retain only

sensible image motions, and average image motion of the

inlier pixels is converted to target location inherently

having sub-pixel resolution.

Optical flow estimation is an established method with

several variant techniques, such as ‘differential’, ‘spa-

tiotemporal energy’ and ‘phase-based’. In this section only

two methods, the differential technique of Lucas and

Kanade (LK) [78] and the phase-based technique [79] are

discussed.

LK optical flow estimation [78] is based on brightness

constancy assumption, i.e. projection of the same point has

the same image intensity in every frame. Since corner

points or keypoints are good features mathematically for

the computation of optical flows, LK method is usually

applied for sparse estimation instead of computation at

every pixel. With keypoints detected in the reference frame

usually using the Shi–Tomasi corner detector [80], LK

algorithm is applied to compute the image motion of each

keypoint in the new frame from spatial–temporal image

brightness variations,
P

i I
2
xi

P
i IxiIyiP

i IxiIyi
P

i I
2
yi

� �
dx

dy

� �
¼ �

P
i IxiIti

�
P

i IyiIti

� �
; ð7Þ

where dx and dy denote the optical flows in the horizontal

and vertical directions of the image plane; Ix, Iy and It
represent the spatial and temporal gradients of image

intensities; and i denotes the ith pixel location in a square

patch (e.g. 3 � 3) around a feature point ðx; yÞ. The image

motion is then estimated after discarding false motion

estimates according to RANSAC or LMS, as with feature

point matching.

Phase-based optical flow estimation is based on local

phase constancy assumption. The method first proposed by

Fleet and Jepson [79] is receiving new attention together

with the motion magnification technique [81] which visu-

alises motions in image sequences that are not visible to the

naked eye. The mathematical details of phase-based optical

flow estimation are explained in [23] and the algorithm is

briefly summarised here.

The Fourier shift theorem indicates that a delay of a

signal in the time domain corresponds to a linear phase

variation in the frequency domain. Similarly, the image

motion in spatial domain is also reflected in phase changes

in spatial frequency domain. The phase here is the local

phase [82] corresponding to a specific spatial location

instead of the whole image, usually derived by employing a

quadrature pair of filters consisting of an even real part and

an odd imaginary part [83], i.e. Gabor filters [84] and
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Gaussian derivative filters [23] (demonstrated in Fig. 10).

The image motion at each pixel is then estimated from the

spatial–temporal variations of the local phase for the fil-

tered image.

3.2.3.2 Application review LK optical flow estimation

was applied in a laboratory test of a multi-storey metal

tower [15] for system identification, and for field applica-

tion in deformation measurement in a footbridge [59] and

bridge stay-cable vibration measurement [85, 86].

Implementations of phase-based optical flow estimation

were mostly focused on system identification, i.e. extract-

ing modal frequencies and mode shapes in laboratory tests

[23, 87] and identifying modal frequencies of high-rise

tower buildings [88].

3.2.3.3 Remarks Optical flow estimation enables tracking

of features on a structural surface without the requirement

for artificial targets. It provides fast and accurate results in

controlled environmental conditions.

Like feature point matching, optical flow estimation

prefers target patterns with distinct and robust features over

the whole test period. Edges are not suitable for tracking

due to the ‘aperture problem’, i.e. only the motion com-

ponent perpendicular to the local edge direction could be

detected instead of the true motion of the edge. If the

structural motion along edges is one-dimensional transla-

tion with known direction, e.g. bridge stay cable vibration

[85], optical flow estimation is viable.

Phase-based optical flow estimation is mostly applied

for system identification in the laboratory but is harder to

use in field conditions due to high signal noise [88].

Measurement of image motion is sensitive to the choice of

pixel location [89], while a selection strategy to ensure

satisfactory measurement has not yet been clearly reported.

Changes of lighting and background conditions might lead

to apparent measurement error [88].

3.2.4 Shape-based tracking

Other than general techniques, there are also some target

tracking methods that depend on the special shapes of

target patterns which could appear in custom-made artifi-

cial targets or structural components (e.g. line-like cables).

Table 7 provides a summary of target patterns commonly

used. With lack of generality, these methods have limita-

tions for application.

3.2.5 Summary of target tracking performance

In terms of target tracking, the nominal algorithm resolu-

tion can be better than 0.01 pixel while the reported

accuracy in practice varies from 0.5 to 0.01 pixel [95]. The

real-time processing was realised in [8, 49, 63] using the

template matching method, in [16, 86] using the optical

flow estimation method and in [13, 51–53] using the shape-

based tracking approaches. Although not reported in the

existing applications, the feature point matching approach

Fig. 10 Image after filtering by a quadrature pair of Gaussian

derivative filters in the image width direction: a the real part of

Gaussian derivative filters; b the imaginary part of Gaussian

derivative filters; c the raw image of footbridge stay cables; d the

real part of filtered image data; and e the imaginary part of filtered

image data
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is capable of being used for real-time application [70].

Among the four tracking methods, template matching

requires the least user intervention apart from the initial

selection of template region while in the other three

methods some threshold values that might be environ-

mentally dependent are required as user inputs.

Ehrhart and Lienhart [64] evaluated the performance of

three techniques (optical flow, template matching and

feature point matching) by tracking structural features of a

footbridge and reported that feature point matching is

robust to the changes of background condition (i.e. snow-

fall), whereas drift over time was observed in the mea-

surement by the two other methods. Busca et al. [96]

evaluated three techniques (template matching, edge

detection and digital image correlation) on a steel truss

railway bridge, concluding that the three techniques pro-

vide similar tracking performance while tracking accuracy

is slightly poorer for natural targets. Khaloo and Lattanzi

[97] investigated four optical flow estimation methods for

dense displacement measurement. The study indicated that

classic ? NL method (i.e. introducing a weighted non-lo-

cal term into the classical optical flow formulations [77])

provided the most consistent and accurate measurement.

However, the coarse-to-fine schemes (i.e. building image

pyramids for each frame and computing optical flows on

each layer of pyramids to get rid of the small motion

constraint) are necessary for Lucas–Kanade and Horn–

Schunck methods to deal with large displacement.

3.3 Structural displacement calculation

Structural displacement could be easily derived from the

change of structural coordinates given the image location

of a target (output of target tracking) and the projection

Table 7 Examples of shape-based tracking

References Target patterns Determination of target location

[30, 90] Detecting the edges of line-shaped patterns and building image

point correspondences among image sequences [90] or

computing the cable motion from the distance between two

identified edges [30]

[12, 41, 91, 92] Detecting the edges of circular-shaped patterns through brightness

thresholding or edge detection and computing the centroid

coordinates for the circle

[52] Detecting the edges of cross-shaped patterns through image

gradient and computing the arithmetic mean of edge coordinates

as the target location

[53–55, 93, 94] Detecting four spots through brightness thresholding and

computing the motions along the specified horizontal and

vertical directions

[11] Detecting grid dots by Harris corner detector and applying the

image coordinates of grid dots for the estimation of camera

extrinsic matrix

[10] Detecting the edges of squares through brightness thresholding and

computing the coordinates of the intersection point
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transformation relationship (output of camera calibration).

In this case, the projection transformation is a fixed value

or matrix without any update during the test.

Another less common method to derive structural dis-

placement is based on the variation of real-time camera

extrinsic matrix. The camera extrinsic matrix represents the

camera pose, i.e. position and orientation relative to the

structural system. Since the camera is physically fixed

during the recording, variation of camera extrinsic matrix

is related to the change of target pose (position and ori-

entation) and could be used to estimate the target motions

in six degrees of freedom (6DOF).

3.3.1 Offline projection transformation

3.3.1.1 Principle For single camera applications using

scale factor or planar homography, the 2D structural

coordinate/displacement is derived uniquely through

transforming the target location/motion in an image to that

in the structure via a projection transformation value or

matrix.

When two or more cameras with overlapped views are

used to monitor the same target, 3D structural displacement

can be extracted based on triangulation method [46].

3.3.1.2 Application review Applications of scale factor

and planar homography for 2D structural displacement

measurement have been reviewed in Sect. 3.1.

For stereoscopic view or multiple cameras, the trian-

gulation method was used in [24, 33, 98] for 3D structural

displacement measurement. A multi-camera arrangement

provides more reliable results than a single view but the

measurement quality has high dependency on the time-

synchronisation of camera recordings.

3.3.2 Online pose estimation

3.3.2.1 Principle For single camera applications, using a

fixed projection transformation relationship only supports

recovery of 2D structural displacement. Some researchers

tried to extract more information about target motion (up to

6DOF) using a single camera by updating the real-time

target pose in the structural system.

Estimation of camera extrinsic matrix is performed for

every frame and the 3D translational and rotational target

motions are extracted from the changes of camera extrinsic

matrix compared to the initial frame. The calibration pro-

cess requires at least four non-collinear points with known

dimensions or spacing in structure that should have con-

sistent motion.

3.3.2.2 Application review Greenbaum et al. [99] applied

the online pose estimation method for the laboratory 3D

motion measurement of an oscillating rigid object with a

few targets of known positions distributed on its surface. In

field applications, Chang and Xiao [11] used a planar target

with square grid patterns attached to a bridge surface for

the measurement of 6DOF structural displacement while

Martins et al. [14] tracked four non-coplanar LED targets

together to reconstruct the 3D structural motion in a long

span bridge.

3.3.2.3 Remarks The greatest advantage of the method is

the capacity to extract 6DOF structural motions from single

camera, but it has a high requirement on the nature of

tracked targets which should consist of at least four non-

collinear points with precisely known geometry. The target

or a set of target points should have rigid motions and be

visible during the whole recording period, e.g. artificial

planar targets with salient corner points [11], distributed

target points on structural surface [99] or a set of LED

targets [14].

This technique cannot measure translation along the

camera optical axis [11]; thus the camera should be con-

figured to avoid facing any motion direction of interest.

The measurement accuracy of this method might be

poorer than offline projection transformation method. In a

footbridge monitoring test by Chang and Xiao [11], using a

36.4-mm focal length camera placed about 5.2 m from

mid-span generated measurement noise with standard

deviations of 0.76 and 1.09 mm in two horizontal direc-

tions. This was much larger than would be achieved by

offline projection transformation method in a similar test

[100] (tracking 0.2 mm bridge vertical displacement with

the 85-mm focal length and 27-m camera-to-target dis-

tance). Therefore, this method is not recommended for field

applications unless the target size is not negligible com-

pared to the camera-to-target distance [96].

4 Field applications and challenges

This section summarises the existing field applications of

vision-based systems in two active fields, bridge defor-

mation measurement and cable vibration measurement. A

discussion about measurement challenges in field applica-

tions is also presented.

4.1 Application examples

Video acquisition devices are now expanded to include

smartphone cameras, with numerous applications including

vibration measurement of a laboratory multi-floor tower

structure [15] and cable vibration measurement of a cable-

stayed footbridge [21]. In these two applications, smart-

phones are only used as the data acquisition system with
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the recorded video files post-processing for data extraction.

Smartphone applications for real-time video acquisition

and processing are also viable [101] through experimental

validations.

The existing applications of vision-based systems in

field tests involve the deformation measurement of a wide

range of structural types including: high-rise buildings

[7, 88], bridges [5, 6, 8, 10–14, 18, 20, 22, 30, 44, 45, 49,

51–55, 59, 63, 64, 75, 98, 102–104] and stadium structures

[22, 105]. Work in the two most active fields, i.e. bridge

deformation measurement and cable vibration measure-

ment are summarised in Tables 8 and 9, respectively.

The viability of vision-based systems for bridge dis-

placement measurement has been verified through com-

parison with traditional displacement sensors, e.g. LVDT

[10, 55, 103], laser sensors [55] and potentiometers [44] for

short-span bridge and GPS [13, 30, 49] for long-span

bridges. The displacement data could be interpreted for

system identification [8, 11, 12, 49, 54, 55, 63, 75], eval-

uation of load carrying capacity [53], model calibration

[18] and estimation of vehicle weights [20]. Artificial tar-

gets are commonly used in existing applications to assist

camera calibration, whereas recent investigations

[51, 63, 75, 103, 104] overcome the dependence on artifi-

cial targets and realise completely non-contact sensing

based on a simplified projection transformation, i.e. scale

factor.

Another promising application of vision-based systems

is to estimate cable tension forces based on vibration

measurement. Measurement accuracy was verified through

comparison work with traditional sensors, e.g. accelerom-

eters [40, 85, 106], velocimeters [41] and load cells [105].

Vision-based systems require no access to cables

[16, 30, 40, 85, 86, 90, 105, 106] and are capable of

measuring the vibrations of multiple cables using a single

camera [16, 86, 105, 106] that is comparable to an array of

accelerometers.

4.2 Measurement accuracy and challenges

Measurement accuracy of vision-based systems depends on

several parameters, e.g. camera-to-target distance, target

pattern features, lighting conditions, camera mounting

stability and video-processing methods. Khuc et al. [22]

investigated the measurement accuracy of a vision-based

system in a laboratory and suggested an accuracy of

0.04 mm in a short-range distance (\ 14 m). Martins et al.

[14] demonstrated the uncertainty evaluation of displace-

ment measurement by a vision-based system on a long-

span bridge monitoring test and illustrated a standard

measurement accuracy of 1.7 mm in the vertical direction.

The high noise range might limit the field application of

vision-based systems for system identification on civil

structures although high frame rate is taken for vision-

based systems.

The achievable accuracy in field tests might be much

poorer than that of controlled conditions. The authors

investigated the field challenges through a series of moni-

toring tests in two short-span and two long-span bridges

which have been reported in [30]. A summary of the main

findings from the tests and the literature is presented here.

• Camera and support motion induced by wind [10]

might lead to apparent measurement error. Except for

improving camera mounting configurations [30], a

common correction method is to additionally track

the ‘nominal’ motion of a fixed target, e.g. bridge

towers or adjacent buildings. Recent work [97] indi-

cates another promising approach for camera motion

compensation through removing the averaged motion

of background pixels based on dense optical flow

estimation.

• Variation in lighting and background conditions is one

of the critical challenges during field tests. The

influence of lighting variations might be reduced by

enabling camera auto-exposure settings [30]. Correla-

tion-based template matching is not robust to this effect

apart from testing during overcast weather, whilst the

feature point matching method was reported to be less

sensitive [64].

• Atmospheric refraction and turbulence of optical light

propagating through the air are common error sources

for any optical-based instrument, especially for long-

range measurements. Refraction deviation could be

minimal for short-term displacement measurement

while the air turbulence movement has a larger

influence [52]. Quantification of the induced error

based on mathematical models is demonstrated in a

vision-based measurement test of a long-span bridge

[107].

• Observations from short-term tests (with duration less

than 12 h) do not find an apparent influence of

temperature variations on measurement accuracy, while

this effect is necessary to consider for long-term tests,

e.g. with duration a few months or more. A time–

frequency approach indicates the potential for error

compensation based on investigation of the correlation

models linking measurement errors and temperatures

[108].

5 Summary and prospects

As evidenced from the review, vision-based systems are

promising tools for structural displacement measurement

having advantages in cost, installation efforts and
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measurement capacities of frequency range and spatial

resolution. Although the potential in field applications has

been validated in many articles, there are a few aspects still

to mature.

• Robust target tracking methods. Template matching

and optical flow estimation are established methods

widely used in short-range and long-range measure-

ment tests, but they are not robust to lighting and

background changes. Feature point matching is a

relatively new and promising tracking method, but

investigations regarding several aspects, e.g. selection

strategy of proper threshold parameters, sensitivity on

environmental effects and field viability for long-range

measurement are rare and need to be expanded. It is

still an open question about the most robust tracking

method for vision-based systems to deal with changes

in lighting conditions during field tests.

• Completely non-contact measurement. Artificial targets

are commonly included to assist the camera calibration

process, but dependence on artificial targets is elimi-

nated in a few field applications [15, 22, 75, 104].

These studies were based on a simplified projection

transformation, i.e. scale factor that is not a general

approach and imposes constraints on camera position-

ing. To develop a non-contact vision-based system for

the general case, requiring control points with known

locations is the main obstacle which could possibly be

resolved via the assistance of surveying instruments,

such as total station.

• Distributed sensing of structural displacement. Vision-

based systems have the capacity for simultaneous

multi-point displacement measurement that is compa-

rable or superior to an array of accelerometers for

system identification. Currently, bridge applications

primarily focus on the mid-span displacement mea-

surement, while the potential of distributed sensing and

system identification is not well investigated.

• Measurement uncertainty evaluation. Measurement

accuracy and uncertainty are of great importance for

a mature measurement system. Quantified descriptions

about measurement accuracy haven been made in some

references (e.g. [8, 22, 54, 64]) through comparisons

with reference measurements. However, the quality of

vision-based measurements could be time-varying,

environmentally dependent and differ significantly with

various test configurations. The influential factors

include the test configurations (e.g. the camera-to-

target distance and the target features), the video-

processing methods used and the environmental condi-

tions (e.g. the lighting conditions, the atmospheric

refraction and turbulence). A systematic evaluation of

vision-based measurement methodologies will require

extensive experimental effort by the research commu-

nity with publication of case studies contributing to

evolving guidance for field applications.
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Table 9 Review of studies about cable vibration measurement using vision-based systems

References Application structures Target tracking methods Data interpretation

[85] A footbridge Optical flow estimation Extracting modal frequencies

[90] A footbridge Shape-based tracking Extracting modal frequencies

Identifying mode shapes.

[86] Guadiana Bridge, Portugal Optical flow estimation Extracting modal frequencies

[40, 106] Gwangan Bridge and a two-pylon cable-stayed

bridge in Busan-Geoje Fixed Link, Korea

Correlation-based template

matching

Extracting modal frequencies

Estimating cable tension

[41] Chi-Lu Bridge, Taiwan China Shape-based tracking Extracting modal frequencies

Identifying the mode shape ratio of cables

[105] Hard Rock Stadium, USA Correlation-based template

matching

Extracting modal frequencies

Estimating cable tension

[30] A footbridge Shape-based tracking Extracting modal frequencies

[21] A footbridge Edge detection Extracting modal frequencies

Estimating cable tension
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