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Abstract This study proposes a damage indicator auto-

matically derived from a set of multivariate autoregressive

models estimated from ambient vibration of bridges. The

damage indicator evaluates a stochastic distance between a

set of reference data (healthy bridge data) and unknown test

data. Statistical hypothesis testing based on a probability

distribution of the damage indicator was applied for damage

detection. A field experiment conducted on an actual steel

truss bridge with truss members that were artificially severed

was conducted to assess the damage detection efficacy of the

proposed damage indicator. Experimentally obtained results

showed that the proposed damage indicator enables detec-

tion of three damage patterns. The proposed damage indi-

cator effectiveness was also assessed by comparison to the

damage sensitive feature from a univariate autoregressive

model using experimental data of the same bridge. This

comparison also demonstrated the efficacy of the proposed

damage indicator obtained from amultivariate linear system.

Keywords Damage indicator � Damage detection � Field
application � Multivariate autoregressive model �
Hypothesis testing

1 Introduction

Management of aging infrastructure is a crucially impor-

tant issue confronting civil engineering professionals. To

reduce the potential risk of structural failure as well as life

cycle costs, an efficient inspection method is desired for

preventive maintenance. Techniques of structural health

monitoring (SHM) based on vibration measurements have

been attracting bridge owners because of their efficient

inspection processes [1–3]. Changes in structural integrity

of bridges engender changes in their modal properties such

as natural frequencies, damping ratios, and mode shapes

that are identifiable from vibration data [4–8]. Conse-

quently, vibration-based SHM is a useful technique if a

bridge can be excited easily and effectively. Two com-

monly used means to excite bridges are forced vibration

tests and ambient vibration tests. Bridges are excited using

a shaker, impact hammer or other means in the forced

vibration test. However, ambient vibration tests use various

natural excitations such as wind and ground motion.

For bridge health monitoring, the ambient vibration test is

regarded as much more convenient than the forced vibration

test because natural excitations require no traffic control,

whereas the forced vibration test requires traffic control during

the test. However, in ambient vibration tests conducted on

actual bridges, the identifiedmodal properties are contaminated

by unknown noises. In other words, deciding whether changes

in modal properties are caused by damage or noise is difficult.

To reduce noise and to improve identification of modal prop-

erties, this studywas undertaken to develop a damage indicator

(DI) that can be defined directly using a multivariate linear

system model estimated from measured vibration data.

For existing studies using a coefficient of an autoregres-

sive model as a damage-sensitive feature, Nair’s damage-

sensitive feature (NDSF), which consists of univariate

autoregressive (AR) coefficients, has been investigated as a

damage indicator for a model building [9]. A laboratory

experiment conducted on a model bridge shows the feasi-

bility of NDSF for SHM of bridges based on traffic-induced

vibrations [10]. A damage detection method using the

& Chul-Woo Kim

kim.chulwoo.5u@kyoto-u.ac.jp

1 Department of Civil and Earth Resources Engineering, Kyoto

University, Kyoto, Japan

123

J Civil Struct Health Monit (2017) 7:153–162

DOI 10.1007/s13349-017-0222-y

http://orcid.org/0000-0002-2727-6037
http://crossmark.crossref.org/dialog/?doi=10.1007/s13349-017-0222-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13349-017-0222-y&amp;domain=pdf


Mahalanobis distance (MD) [11, 12] was proposed to eval-

uate the statistical distance between groups of samples of

NDSF.The validity of this damage detectionmethod has also

been verified from results of field experiments conducted on

real steel truss bridges with artificial damage to its truss

members [13]. It is noteworthy that the NDSF includes

information about vibrations of each sensor, but information

about correlation between sensors is not included because it

is derived from the univariate AR model.

Chang and Kim [14] investigated the MD sensitivity to

modal parameters attributable to damage. They concluded

that considering all the modal parameters including modal

frequency, damping ratio, and the modal assurance crite-

rion from the mode vector demonstrated that the inclusion

of more parameters in outlier analysis might engender

more sensitive features. That is because any statistical

change in those features would be reflected in the MD,

which indicates that the mode vector, which is a kind of

correlation between sensors, would provide useful infor-

mation related to the bridge health condition. However, it is

not straightforward to decide damage-sensitive modes as

well as relevant mode vectors for healthy bridges. There-

fore, aiming at a pattern recognition approach to estimate

damage-sensitive modes or damage locations, a novel DI is

derived directly from a multivariate linear system to

include spatial information between sensors.

This study proposes a novel DI based on the MD of

damage-sensitive features that are extracted directly from a

multivariate autoregressive (MAR) model using principal

component analysis (PCA) [15]. The DI evaluates stochastic

changes in modal information contained in the MARmodel,

whereas the NSDF is merely based on univariate AR model.

Therefore, the DI is expected to detect changes in modal

properties related to correlation among measurement points

and improve damage detection performance. This study also

proposes a damage detection approach based on the

hypothesis test to enable stochastically appropriate decision-

making. Acceleration data from the field experiment in [14]

are examined to validate the feasibility of the proposed

method. In this experiment, truss members on an actual steel

truss bridge were artificially severed. This study investigates

the efficacy of the presented DI and hypothesis testing for

three damage patterns considered in the experiment. The

NDSF is also examined using the field experiment data and

compared to the proposed DI.

2 Methodology

2.1 Damage detection flow

This study investigates an unsupervised change detection

method for changes between a reference dataset obtained

from a bridge under healthy condition and a newly

observed dataset monitored from the same bridge under

artificial damage. Based on machine learning approaches

[16], the former dataset is designated as the ‘‘training

set’’. The latter is the ‘‘test set’’. An outline of the cal-

culation of the novel DI and damage detection is pre-

sented in Fig. 1. Detailed procedures for each process

are as follows:

• As the first step, parameter vectors related to modal

properties of the structure are estimated from measured

acceleration data using the MAR model (see Sect. 2.2).

• The obtained parameter vectors are classified as a

training set C and a test set C0 (see Sect. 2.3).

• Damage-sensitive features and the corresponding sub-

space are extracted by application of PCA to the

training set (see Sect. 2.3).

• The proposed DI is defined using MD between the

training set and the test set with respect to the damage-

sensitive features (see Sect. 2.4).

• Damage detection is formulated as a hypothesis test

based on the probability distribution of DIs (see

Sect. 2.5).

2.2 Linear system model

Let y(k) denote a column vector of the discrete time series

of measured acceleration data for which the components,

respectively, correspond to M measurement points (or M

sensors). The time series obtained from a linear structural

system excited by white noise can be modeled as a MAR

model of sufficient model order P as [17, 18]

Measured acceleration

Estimation of MAR model

Training set C Test set C’

Feature extraction

Principal components D

Principal subspace U1

Evaluation of MD 

DI

Hypothesis test 

Comments 
MAR: Multivariate Auto-Regressive 
MD: Mahalanobis Distance 
DI: Damage Indicator 

Fig. 1 Flow of the proposed damage detection
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y kð Þ ¼
XP

i¼1

Aiy k � ið Þ þ eðkÞ; ð1Þ

where Ai denotes the ith AR coefficient matrix and

e(k) denotes a white noise vector.

Letting E[�] represent expectation and letting [�]T stand

for a transposed matrix or vector, the autocorrelation

matrix of the measured data y(k) is defined as

R(s) = E[y(k) y(k-s)T]. It provides the Yule–Walker

equation as follows:

R sð Þ ¼
XP

i¼1

AiRð�iÞ þWðs ¼ 0Þ ð2Þ

R sð Þ ¼
XP

i¼1

AiRðs� iÞ ðs ¼ 1; 2; . . .Þ ð3Þ

Therein, W = E[e(k)e(k)T].

From a measured time series of finite data length N,

autocorrelation matrices are estimated as shown below:

R̂ sð Þ ¼ 1

N

XN

k¼s

y kð Þy k � sð ÞTðs ¼ 0; 1; . . .;PÞ ð4Þ

R̂ sð Þ ¼ R̂ �sð ÞTðs\0Þ ð5Þ

Therefore, Eq. 3 can be summarized as the form of

following equations using autocorrelation matrices esti-

mated from Eqs. 4 and 5:

A1;A2; � � � ;AP½ �T ¼ R̂ 1ð Þ; R̂ 2ð Þ; � � � ; R̂ Pð Þ
� �

ð6Þ

T ¼

R̂ 0ð Þ R̂ 1ð Þ � � � R̂ P� 1ð Þ
R̂ �1ð Þ R̂ 0ð Þ � � � R̂ P� 2ð Þ

..

. ..
. . .

. ..
.

R̂ 1� Pð Þ R̂ 2� Pð Þ � � � R̂ 0ð Þ

2

6664

3

7775 ð7Þ

The AR coefficient matrix Ai can be estimated from an

actual measurement time series by solving Eq. 6. Auto-

correlation matrices defined in Eqs. 4 and 5 provide the

positive definite matrix T for which the inverse matrix is

assured to exist to solve Eq. 4.

Using the z-transform, Eq. 1 is transformed in z-domain

as shown below [19]:

Y zð Þ ¼ HðzÞEðzÞ ð8Þ

H zð Þ ¼ IM �
XP

i¼1

z�iAi

 !�1

; ð9Þ

where, Y(z) and E(z), respectively, denote z-transforms of

y(k) and e(k). Also, IM denotes the identity matrix of M-

order. Matrix H(z) in Eqs. 8 and 9 is the transfer function

of the linear system shown in Eq. 1. The conjugated pairs

of the poles of the transfer function H(z) are related to the

modal characteristics of the structure, as shown in Eq. 10.

ki; k
�
i ¼ exp �ni � j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2i

q� �
xiDt

� �
ð10Þ

In that equation, the following variables are used: xi

denotes the natural angular frequency of the ith mode; ni
stands for the damping ratio of the ith mode; Dt signifies
the sampling time of the discrete time series; and j repre-

sents an imaginary unit. These poles are obtainable by

solving the eigenvalue problem with respect to z as

Ilz� Aj j ¼ 0 ð11Þ

A ¼

A1 A2 � � � AP�1 AP

IM 0 � � � 0 0

0 IM � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � IM 0

2
666664

3
777775
; ð12Þ

where |�| denotes determinant of a matrix and Il denotes the

identity matrix of l-order in which l = MP.

2.3 Feature extraction

The left-hand-side of Eq. 11 can be rearranged to the fol-

lowing polynomial with the appropriate polynomial coef-

ficients ci:

zl þ c1z
l�1 þ � � � þ cl�1z

1 þ cl: ð13Þ

The polynomial of Eq. 13 produces its roots as shown in

Eq. 10. Therefore, each of the polynomial coefficients is

related to modal properties of the structure. In this study, a

coefficient vector c = [c1 c2���cl]T is assumed to be a vector

of random variables that follow a multivariate Gaussian

distribution produced from an independent observation of

the bridge vibration. These coefficients presumably change

their statistical characteristics when damage on a structure

causes any change in the modal properties. Therefore, the

proposed damage detection method is formulated to detect

changes in these coefficients.

To formulate the change detection method, the coeffi-

cient vectors c obtained from measurement data are clas-

sified into a training set and a test set. Let ci (i = 1, 2…, n)

and c0i (i = 1, 2 …, nt), respectively, denote the training

samples and the test samples of the coefficient vectors.

Each set is described as a matrix comprising the sample

vectors, i.e. the training set and the test set are described as

follows:

C ¼ c1; c2; � � � ; cn½ � ð14Þ

C0 ¼ c01; c
0
2; � � � ; c0nt

� �
ð15Þ

Damage-sensitive features are extracted using PCA with

respect to the training set. The PCA is definable as the

orthogonal projection of the data onto a lower dimensional

linear space, known as the principal subspace, such that the
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variance of the projected data is maximized [15]. Kim et al.

[20] reported that the damage sensitivity of the NDSF can

be improved by application of PCA to the estimated AR

coefficients of a univariate AR model, so that the PCA is

expected to extract damage-sensitive features from the

training set. The orthonormal basis of the principal sub-

space is defined by the m eigenvectors corresponding to the

m largest eigenvalues of the data covariance matrix. The

PCA is performed using the singular value decomposition

(SVD) to a matrix comprising deviation vectors of the

training samples, as shown in Eq. 16:

Cdev ¼ ~c1; ~c2; � � � ; ~cn½ � ð16Þ

In that equation, ~ci represents the deviation vectors

defined as Eq. 17:

~ci ¼ ci �
1

n

Xn

k¼1

ckði ¼ 1; 2; . . .; nÞ ð17Þ

The basis of the principal subspace is provided as the

sub-matrix U1 using the SVD:

Cdev ¼ USVT ¼ ½U1U2�SVT ð18Þ

Therein, S denotes the l 9 n diagonal matrix with

diagonal entries that are non-negative real numbers listed

in descending order. Also, U and V stand for the corre-

sponding orthogonal matrices. U1 represents the sub-matrix

which consists of the first m columns of U, and U2 repre-

sents the sub-matrix excluded U1 from U.

Using the basis of the principal subspace U1, the prin-

cipal components of training set C are formulated as

D ¼ UT
1C: ð19Þ

In that equation, each column vector included in D cor-

responds to principal components of the training data in C.

2.4 Novel damage indicator

The MD is traditionally used to detect an anomalous

sample referring to a set of normal samples [12]. Using a

set of reference sample vectors X = [x1 x2��� xn] and

another sample vector x0, the MD in squared units is

defined as

MDðx0;XÞ ¼ x0 � �Xð ÞTR�1 x0 � �Xð Þ; ð20Þ

where �X and R, respectively, signify the sample mean and

the covariance matrix estimated from X as defined in

Eqs. 21 and 22.

�X ¼ 1

n

Xn

i¼1

xi ð21Þ

R ¼ 1

n� 1

Xn

i¼1

xi � �Xð Þ xi � �Xð ÞT ð22Þ

Assuming that each of the samples x1, x2,…, xn and x0

are independent and identically distributed (i.i.d.) Gaussian

random vectors and the number of the reference samples n

is much larger than the length of the sample vectors m, MD

is known to be approximately v2-distributed with m degrees

of freedom. The probability density function (PDF) of the

v2-distribution with m degrees of freedom is given as shown

below:

v2 xjmð Þ ¼ 1

2Cðm=2Þ
x

2

� �m=2�1

exp � x

2

� �
; ð23Þ

where C(�) denotes the gamma function. The expectation

and the variance of this distribution are known, respec-

tively, as m and 2 9 m.
Using MD with a test sample of the coefficient vectors c0i

the novel DI proposed in this study is defined as

DI c0i
	 


¼ 1

m
MDðUT

1c
0
i;DÞ; ð24Þ

where U1 and D, respectively, stand for the matrices

defined in Eqs. 18 and 19.

2.5 Hypothesis test

Assuming that the test sample vectors included in C’ and

the training sample vectors included in C are i.i.d. Gaussian

vectors and m � n, the MD in Eq. 24 follows X2-distri-

bution with m degrees of freedom as mentioned in

Sect. 2.4; hence, the mDI(c0i) is presumed to have the

following distribution:

mDIðc0iÞ� v2 xjmð Þ; ð25Þ

where mDI c0i
	 


¼ MDðUT
1c

0
i;DÞ from Eq. 24 and *

denotes that the variable in the left-hand-side takes the

distribution as the PDF in the right-hand-side.

Therefore, assuming that the monitored bridge is heal-

thy, the expectation of the DI is presumed to be 1. For

damage detection, it is reasonable to carry out the right-

sided test with respect to the expectation of the DI because

the DI shows the stochastic distance between a test sample

and the training set, and anomalies in the test set will

provide larger DIs. The null hypothesis H0 and alternative

hypothesis H1 for the hypothesis test are formulated as

follows:

H0 : E DI c0i
	 
� �

¼ 1 ð26Þ

H1 : E DI c0i
	 
� �

[ 1 ð27Þ

As for test statistics, the sample mean of DI from the test

set C0 shown in Eq. 28 is examined.

DI ¼ 1

nt

Xnt

i¼1

DIðc0iÞ ð28Þ
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The reproductive property of the v2-distribution shows

that the summation of the mDI(c0) also follows v2-distri-
bution as shown in Eq. 29 because the PDF of the mDI(c’)

follows the v2-distribution.

Xnt

i¼1

mDIðc0iÞ� v2 xjmntð Þ ð29Þ

Therefore, using significance level a for the hypothesis

test, the rejection region of the sample mean is definable as

shown below:

DI[
1

mnt
F�1ð1� ajmntÞ; ð30Þ

where F -1(p|m) is the inverse function with respect to x of

the following cumulative distribution function:

p ¼ FðxjmÞ ¼
Zx

0

v2 tjmð Þdt: ð31Þ

Equation 29 provides the variance of the sample mean

inversely proportional to nt as shown below:

E DI� 1
	 
2h i

¼ 2

mnt
ð32Þ

Equation 32 shows that providing more test samples

will yield stricter critical values of the rejection region. The

critical value of the rejection region given by Eq. 30 con-

verges to expectation 1 as nt goes to infinity. If a sufficient

amount of data is available, this method could be useful for

making a decision for damage or anomalies of the bridges.

On the other hand, the stricter the critical values are, the

easier it becomes to reject the null hypothesis even though

bridges are healthy. For practical use, therefore, it is rec-

ommended to examine validity of the critical values by

applying the proposed method to a data set from the bridge

in healthy condition independently from the training set as

presented in Sect. 3.

3 Field experiment

Field experiments were conducted with a moving vehicle

on an actual bridge. The target bridge for the field exper-

iment is a single lane simply supported by a through-type

steel Warren truss bridge as presented in Fig. 2a, b. The

bridge has 59.2 m span length, 8 m maximum height, and

3.6 m width. The vehicle used for the experiment is a two-

axle recreation vehicle (Serena; Nissan Motor Co. Ltd.)

with total weight of about 21 kN. During the experiment,

all traffic except the load vehicle was prohibited.

Eight uniaxial accelerometers were installed on the deck

of the bridge to measure vertical vibrations as presented in

Fig. 2b. Two optical sensors were installed at the respec-

tive ends of the bridge to detect the vehicle entrance and

exit. The sampling rate of each sensor was set as 200 Hz.

Five scenarios were considered in this study, as shown in

Table 1 and Fig. 3. Initially, The INT scenario represents

the intact bridge with no damage. For the DMG1 scenario,

a half-cut damage was applied to the vertical truss member

at the midspan (see Fig. 2b and Fig. 3), and for the DMG2

scenario, a full-cut damage was applied to the same

member. After examining DMG2, the damaged member

was repaired, which is denoted as the RCV scenario.

Finally, for DMG3 scenario, full cut was applied in a

vertical member at 5/8th-span (see Fig. 2b) after examining

the RCV scenario. Each experiment was conducted under

the vehicle running at about 40 km/h. The bridge vibration

under the passing vehicle was measured 10 times except

DMG1. For DMG1, bridge vibrations were measured 12

times.

Figure 4 presents the time series and PSD curves of

sensor A3 of INT, DMG1, and DMG2 scenarios acquired

(a) 

(b) 

P1

Passing direc

Ai: Acce
DMGi: 
Pi: Pier 

A1

tion

lerometer No. i (
damage scenario i
No.i 

 8@7400= 5920

A2 A3

A6 A7

DMG1
DMG2

Vert.)

0 mm  

A4 A5

A8

DMG3
P2

Fig. 2 Target bridge a photograph and b sensor deployment

Table 1 Scenarios considered in the field experiment

Scenario Description

INT Intact bridge

DMG1 Half cut in vertical member at midspan

DMG2 Full cut in vertical member at midspan

RCV Recovery of the cut member

DMG3 Full cut in vertical member at 5/8th-span
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from the experiment. According to the record of the optical

sensors (vertical dashed lines in Fig. 4), the time series is

separable at the moment of the vehicle exit from the bridge.

The time series after the exit of the vehicle can be

interpreted as a free vibration data because no external

loading significantly affected the bridge vibrations.

Empirically, free vibration data are known to enable

stable modal parameter identification because external

loading can be a source of uncertainty for identification.

However, the whole time series including excitation pro-

duced using a passing vehicle is still convenient for prac-

tical application because it requires no knowledge about

the exit times of vehicles. Therefore, this study examines

both free vibration (FV) data and whole vibration (WV)

data.

PSD curves in Fig. 4 demonstrated the difficulty of

making a decision about the possibility of damage in the

bridge from the Fourier spectra. The DI is, therefore,

adopted for each scenario. The INT scenario was adopted

as the training scenario for DMG1 and DMG2. For DMG3,

the RCV scenario was adopted as the training scenario

because the modal characteristics of the bridge might be

changed after repairing the damaged member. Considering

 INT DMG1 DMG2, 
DMG3 RCV 

Photo 

 
 

  

Sketch 

    

Half 
cut

Full 
cut Weld→ → → →

Fig. 3 Photographs and sketches of artificial damage

Fig. 4 Examples of acquired time series of A3 sensor and PSD curves: a Intact, b DMG1, and c DMG2
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over-fitting in statistical models, the performance of a

stochastic model on the training set is known to not always

satisfy predictive performance on newly observed data.

One effective approach used to confirm the validity of the

stochastic model is the use of validation samples that are

independent from training samples and have identical dis-

tributions with those of the training data. However, in this

experiment, the training data are limited, so leave-one-out

cross validation (CV) technique [16] is applied to assess

the DI validity, i.e. a CV sample of the DI is evaluated

using each of the samples in the training set as test data and

the remaining samples as a training set. The validity of the

DI is confirmed by checking whether the random distri-

bution of the CV samples is identical to the distribution

given in Eq. 25, or not. In this study, the sample means of

the CV samples are checked if they are not in the rejection

region to ensure the validity of damage detection.

4 Damage detection

4.1 Feasibility of damage detection using

the proposed damage indicator

Before starting damage detection, the order of the AR

model should be ascertained because the higher the AR

order is the more precise the dynamical model would be,

but requires more parameters to describe the model.

Especially when the number of training samples is limited,

a feature extraction by the PCA will be difficult for a higher

order AR model as the dimension of the vector space to be

investigated is higher than that of the training samples.

Nevertheless, finding the suitable AR order before moni-

toring of the bridge is troublesome. In this study, sensitivity

analysis with respect to the AR order is performed first.

However, it is difficult to extend this approach to other

bridges without information about damage. Therefore, for

the practical health monitoring, it is recommended to

examine several DIs according to different AR orders.

Figure 5 presents the sample means of the DI of the test

samples and the CV samples obtained from the FV data of

each scenario with respect to the AR order, where the

dimension of the principal subspace m was fixed to 2, and

demonstrated that the AR model that comprises 5–11 order

is suitable for the damage detection. Therefore, in the

following discussions, the AR order is fixed to 8, which

gives maximum sample means of DIs for every damage

scenario (see the vertical dashed line in Fig. 5).

Plots of DIs of the CV samples and test samples and their

sample means in a logarithmic scale are depicted in Fig. 6,

where m is fixed to 2. Those samples are obtained from the

WV data. The expectation given as E DI c0i
	 
� �

¼ 1 (see

Eq. 26) and the critical values of the rejection regions given

as 1
mnt

F�1ð1� ajmntÞ (see Eq. 30) are also presented in the

figure for the hypothesis test, where significance level a is set
to 1%. For every damage scenario, the sample means are

located in the rejection region. Damage is clearly detectable.

For both scenarios of INT andRCV, the samplemeans of CV

samples are not in the rejection region, but they are located

closer to the critical values than to the expected value.

Figure 7 depicts the DIs and the test statistics for the

damage detection estimated from FV data. Parameters

m and a were also fixed to 2 and 1%, respectively, in the

same way considered in Fig. 6. For DMG1 and DMG2, the

sensitivity of the DIs was improved considerably. It is

noteworthy that the vertical scale is larger than that of

Fig. 6. The sensitivity of the DIs for DMG3 was also

improved slightly. This observation showed that using free

vibration data improves performance of the proposed

damage detection method.

Fig. 5 Sample means of DI of FV data with respect to AR orders

Fig. 6 DIs and test statistics obtained from WV data
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The first and second principal components of the poly-

nomial coefficients that are obtained from both of WV and

FV data are shown as presented in Fig. 8, where the dataset

obtained from the INT scenario is referred as the training

set and the dataset from the other scenarios are referred as

the test set. Apparently, the principal components of each

scenario formed groups. For example, the blue circles

plotted in Fig. 8, which is relevant to INT scenario, were

distinguished from every other scenario for both of WV

data and FV data, which demonstrated that the changes in

the modal properties attributable to severing and recover-

ing the members of the bridge are well extracted using the

MAR model and PCA. Especially, the FV data caused

smaller variation of the principal components from the INT

scenario and more sensitive DIs for DMG1 and DMG2

than the WV data. Furthermore, apparently, the sample

groups are mutually separated, especially in the FV data. It

is noteworthy that the data measured from bridges under

traffic during testing are still useful to detect damage even

though the free vibration will provide better accuracy.

4.2 Comparison with existing indicator

A brief description about the NDSF is given as follows in

advance of making a comparison between the proposed DIs

and NDSFs. Using a time series of local acceleration at l-th

measurement point denoted as yl(k), vibration data can be

modeled using a univariate AR model described as the

following equation, which is a univariate version of Eq. 1:

yl kð Þ ¼
XP

i¼1

a
ðlÞ
i yl k � ið Þ þ elðkÞ ð33Þ

In that equation, a
ðlÞ
i denotes the ith AR coefficient with

respect to the lth measurement point. Also, el represents a

white-noise time series. The AR coefficients are identified

by solving the Yule–Walker equations (see Eqs. 6, 7)

derived from the univariate AR model. Each of the AR

coefficients, especially the low order AR coefficients, are

presumed to include the modal information of the target

structure. The NDSF defined in Eq. 34 [4, 5] has, therefore,

been investigated to detect bridge damage:

dl ¼ absða lð Þ
1 Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X3

i¼1

a
ðlÞ
i

vuut ð34Þ

where, abs(�) denotes the absolute value, and dl stands for

the NDSF with respect to the lth measurement point.

The NDSF is obtained independently from each mea-

surement point. Moreover, it is likely to be uncorrelated

with the NDSFs at the other measurement points. Existing

research showed that the sample means of CV samples of

MDs calculated from the NDSFs of the monitored bridge

Fig. 7 DIs and test statistics obtained from FV data

Fig. 8 Principal components of the polynomial coefficients: a from

WV data and b from FV data
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are tend to be much larger than expected [7], possibly

because the uncorrelated NDSFs caused over fitting prob-

lem. Therefore, to validate the hypothesis test discussed in

Sect. 2.5, the standard Euclidean distance (SED) in squared

units is given as the following equation, which is applied

instead of MD for damage detection:

SED ¼ 1

M

XM

l¼1

dl � l̂ð Þ2=r̂2l ; ð35Þ

where M denotes number of the measurement points; l̂ and

r̂2l , respectively, denote the expectation and the variance

estimated from the training data at each measurement

point. Assuming independent Gaussian distributions,

M 9 SED is presumed to be a v2-distribution with M de-

grees of freedom. Therefore, a hypothesis test for damage

detection can be formulated according to the discussion

presented in Sect. 2.5.

Figure 9 shows the sample means of the SED obtained

from the FVdata of each scenariowith respect to theARorder

in the manner discussed in Fig. 5. For the DMG1 and DMG2,

the AR model considered up to 6th order provides the maxi-

mum sample mean. For DMG3, the ARmodel considered up

to 3rd order provides the maximum value but the sample

means of both CV samples appear to be unstable with the AR

order. In the following discussions, therefore, the AR order is

fixed at 6 (see the vertical dashed line in Fig. 9).

The SEDs of the NDSFs are shown as presented in

Fig. 10, inwhich those SED andNDSF are obtained from the

five sensors deployed on the damage-introduced side of the

bridge, i.e. sensors A1–A5 presented in Fig. 2a. Sample

means and the critical values for the hypothesis test are also

considered, where the significant level a is also fixed to 1%.

The vertical axis is scaled linearly in Fig. 10. Figure 10a

presents anomalies detected in DMG1 and DMG2 scenarios,

but the anomalies were not detected using the test statistic in

the DMG 3 scenario. This observation corresponds to those

from a previous study considering the MD of the NDSFs

[13]. The sample means of CV samples were located close to

the critical values because of its outliers, e.g. NDSF seems

not precisely Gaussian distributed. Figure 10b shows that

anomalies of three damage scenarios are detected using the

hypothesis test for FVdata. However, the difference between

CV samples and the test samples was not significant. Com-

paring these results from NDSF to results from the novel DI,

one observes that the novel DI can improve damage detec-

tion performance.

5 Concluding remarks

This study proposed a damage detection method for a

bridge structure using the novel damage indicator (DI)

obtained from ambient vibrations of bridges. The novel DI

Fig. 9 Sample means of SEDs from FV data with respect to AR

orders

Fig. 10 SEDs of NDSF a from WV data and b from FV data
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was derived from a multivariate autoregressive (MAR)

model. The DI evaluated the stochastic distance of the

principal components between a set of reference samples

obtained from healthy bridge and unknown test samples

using the Mahalanobis distance (MD). Principal compo-

nent analysis (PCA) was also applied to extract damage-

sensitive features from the MAR model. Statistical

hypothesis testing based on a probability distribution of the

DI was applied for damage detection. Field experiments

were conducted on an actual steel truss bridge with truss

members that were severed artificially. The feasibility of

the proposed DI for damage detection was investigated.

Observations from sensitivity analysis showed that the

DI performance depends on the AR order. The proposed

damage detection method detected three damage patterns

clearly; especially damage detection performance was

improved using the free vibration data measured after the

vehicle exited the bridge. However, the forced vibration

data are still useful because damage was also detected

clearly.

The presented DI was compared with the existing

damage indicator, named Nair’s damage-sensitive feature

(NDSF). The hypothesis test for the NDSF is formulated in

the same way as the proposed method. The comparison

between the NDSF and the novel DI demonstrated that the

modal information included in a multivariate system might

help to improve damage detection performance by the

proposed DI.
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