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Abstract In situ measured data concerning a large civil

engineering structure, such as a building, a bridge or a dam,

are often incomplete because of the cost of their acquisi-

tion. To overcome the spatial incompleteness of a mea-

sured mode shape, many modal expansion methods have

been developed. However, the accuracy of the expanded

mode shapes corresponding to high frequencies that are

obtained using traditional modal expansion methods, such

as Guyan expansion, IRS, and spline interpolation is not

good enough. To overcome this difficulty, this work pro-

poses an approach of spline interpolation using a pseudo-

story for modal expansion. Based on the expanded first

mode shape, the damage location index (DLI) is defined for

locating damage. Two structures, a uniform structure (a

cantilever beam) and a non-uniform structure (a seven-

story shear building), are used to demonstrate the feasi-

bility of using the proposed approach for locating damage

to structures.

Keywords Structural health monitoring � Locating
damage � Modal expansion � Incomplete measurements

1 Introduction

Structural health monitoring is the in situ nondestructive

sensing and analysis of the characteristics of a structure,

including the structural response to external excitations, for

the purpose of detecting changes that may indicate damage

or degradation. However, detecting structural damage and

identifying damaged elements in a large complex structure

is challenging because in situ measurements of a large civil

engineering structure, such as a building, a bridge or a dam,

are invariably imprecise (because of noise corruption) and

commonly incomplete (for reasons of cost).

Among structural health monitoring techniques [1],

mode shape-based methods [2, 3] and flexibility-based

methods [4–6] have the potential to locate structural

damage. Mode shapes or flexibility can only be obtained

using many sensors. However, even when a large number

of sensors are utilized, the measurement of modal charac-

teristics is typically incomplete. Issues of optimal sensor

placement (OSP) and modal expansion thus arise, partic-

ularly if the intention is to monitor a network of structures.

OSP techniques use information from sensing nodes that

are sufficiently sensitive to detect changes in modal

parameters [7, 8]. The effective independence (EI) method,

proposed by Kammer [9], is one of the most widely used

OSP techniques. EI searches sensor locations based on the

quantitative information (Fisher Information) about target

modes and eliminates less significant locations from the

candidate sensing locations.

Modal expansion is a technique for overcoming the

spatial incompleteness of measured mode shapes. Guyan
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[10] developed the static expansion method in which the

mass and stiffness matrices are partitioned into sub matri-

ces relating to the master and slave degrees of freedom

(DOFs). This method is widely used because it is simple

and provides accurate results for lower-order mode shapes;

the errors increase with the order of the mode shapes. The

type and number of master DOFs significantly influences

modal expansion. As an extension of the Guyan reduction

process, the improved reduced system (IRS) [11] takes into

account some of the effects of the eliminated DOFs that

cause distortion in the Guyan reduction process.

The objective of this paper is to develop an approach for

locating damage to structures using incomplete measure-

ments. Two OSP methods, EI and the uniform spacing

method, were studied and compared. Based on the sensor

configuration, the mode shapes are expanded using the

Guyan expansion, IRS, and the proposed approach (spline

interpolation using a pseudo-story). Modal assurance cri-

teria [12] between the expanded mode shape from the

optimal sensor configuration and the targeted mode shape

are then used to examine the performance of the modal

expansion methods. Based on the expanded first mode

shape, the damage location index (DLI), is defined for the

purpose of locating damage. Additionally, two structures, a

uniform structure (a cantilever beam) and a non-uniform

structure (a seven-story shear building), are used to

demonstrate the feasibility of the proposed method for

locating damage to structures.

2 Optimal sensor placement

The objective of the optimal sensor placement (OSP)

problem is to minimize the number of sensors and to locate

them to estimate target dynamic modes of structures such

that the sensor management cost is minimized and the

structural modal parameters are accurately estimated.

2.1 Effective independence method

Effective independence (EI) method [9] is one of the most

widely used OSP techniques for optimally locating N

sensors. The Fisher information matrix [13] associated with

candidate sensor locations is evaluated to quantify the

contribution to the independence of the target modes and,

then, used to maximize the spatial independence of the

target modes by ranking the contribution of each sensor

location.

The measured response, y, of the structure to vibration

can be estimated by combining the contributions of m

target modes as,

y ¼ Uqþ w ð1Þ

where U 2 Rn�m is the target mode shape matrix for

n candidate sensor locations; q is the modal contribution

factor that is associated with m target modes, and w is the

stationary random noise vector with a mean of zero.

An unbiased estimator bq ¼ ðUTUÞ�1UT is utilized to

evaluate the error in the estimation of the response to

vibration. The covariance of the error between the modal

contribution factor q and the unbiased estimator bq is

identical to the inverse of the Fisher information matrix F:

J ¼ E½ðq� bqÞðq� bqÞT � ¼ 1

r2
UTU

� ��1

¼ F�1 ð2Þ

where r is the standard deviation of the stationary random

noise vector, w. The Fisher information matrix measures

the amount of information that the mode shape matrix

conveys for a specific sensor set. Therefore, the best esti-

mate bq is achieved when the Fisher information matrix, F,

is maximized.

The EI method solves this optimization problem by

examining the contribution of the candidate sensor nodes to

the independence of the target modes and eliminating

sensor positions that reduce the determinant of F. To

evaluate the contribution of the candidate sensor locations

to the independence of the target modes, the effective

independence distribution (EID) vector, ED; is introduced

as [9].

ED ¼ ½Uw� � ½Uw�k�1t ð3Þ

where w and k are the eigenvector and eigenvalue of F,

respectively; t is a column vector of m unity values to sum

all fractional contributions to the independence of the tar-

get modes at each sensor location, and � denotes a term-

by-term matrix multiplication, which transforms the dot

product Uw into absolute identification space, to quantify

the contribution to the independence of the target modes at

each sensor location.

The ith element of ED represents the fractional contri-

bution to the independence of the target modes at the ith

sensor location. A candidate sensor location that has the

lowest value of the index ED is eliminated, and this pro-

cedure is repeated until the number of remained sensors

equals to a preset value.

3 Modal expansion methods

Modal expansion is a technique for overcoming the spatial

incompleteness of a measured mode shape. Three modal

expansion approaches, Guyan expansion, the improved

reduced system (IRS), and spline interpolation, were

compared. The performance of the modal expansion

approach was studied using the modal assurance criteria
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(MAC) value between the expanded mode shape that is

obtained with the optimal sensor configuration and the

targeted mode shape.

3.1 Guyan expansion

Guyan expansion [10] may be the most popular and sim-

plest modal expansion approach. State and force vectors, x

and f, and mass and stiffness matrices, M and K, are split

into sub vectors and matrices that are related to the master

DOFs, which are retained, and the slave DOFs, which are

eliminated. If no force is applied to the slave DOFs, then

Mmm Mms

Msm Mss

� �

€xm
€xs

� �

þ Kmm Kms

Ksm Kss

� �

xm
xs

� �

¼ fm
0

� �

ð4Þ

The subscripts m and s specify master and slave coor-

dinates, respectively. Neglecting the inertia terms in the

second set of equations yields,

Ksmxm þKssxs ¼ 0 ð5Þ

which may be used to eliminate the slave DOFs, yielding,

xm
xs

� �

¼ I
�K�1

ss Ksm

� �

xm ¼ Tsxm ð6Þ

where Ts is the static transformation between the full state

vector and the master coordinates, so the expanded mode

shapes are,

Um

Us

� �

¼ I
�K�1

ss Ksm

� �

Um ¼ TsUm: ð7Þ

Importantly, the master DOFs remain unchanged as seen

in the upper part of this equation:

Um ¼ IUm ð8Þ

and the deleted DOFs are estimated as

Us ¼ �K�1
ss KsmUm ð9Þ

However, since this technique is based only on the static

stiffness of the system, themode shape expansionmay not be

accurate. Of course, the Guyan expansion process will not

yield acceptable results unless the DOFs suffice to specify

the mass inertia of the system. If enough DOFs are available,

then theGuyan expansion processwill yield reasonably good

results but will never yield exact results because the for-

mulation of the transformation matrix is approximate.

3.2 Improved reduced system

As an extension of the Guyan reduction process, the

improved reduced system (IRS) [11] takes into account

knowledge of system inertial effects. The development is

based on the fact that the static structural model that

incorporates distributed forces can be condensed to a

reduced system and solution. The displacements of the

reduced system are then expanded and adjusted for the

eliminated forces, yielding an exact static solution for the

complete system. A first-order approximation of the eigen-

system is obtained using a Guyan/Irons reduced model

approach, which is based on the static condensation, with no

adjustment for the eliminated distributed inertia forces. The

modal vectors of the approximate solution can be adjusted in

a similar manner as in the static solution, yielding an

improved set of eigenvectors. Finally an estimate of the

transformation matrix from full space to reduced space can

be obtained for the IRS system. The resulting equations are

summarized below but are not detailed herein.

TIRS ¼ Ts þ Tl ð10Þ

Where

Tl ¼
0 0
0 K�1

ss

� �

MnTsM
�1
R KR ð11Þ

MR ¼ TT
SMnTS ð12Þ

KR ¼ TT
SKnTS ð13Þ

Mn and Kn are the mass and stiffness matrices of the

system, respectively; MR and KR are the reduced mass and

stiffness matrices of the system, respectively. The expan-

ded mode shapes are

Um

Us

� �

¼ TIRSUm ð14Þ

3.3 Spline interpolation

Spline interpolation is an extensively used curve-fitting

method that minimizes total curvature and maximizes the

straightness of an approximate curve [14]. The modal

ordinates of the non-measurable or non-measured locations

are interpolated using the piecewise pth order (p = 3 is

used herein) of the spline, which minimizes the residual

sum of squares, S, defined as

S ¼
X

i yi � sðxiÞ½ �2 ð15Þ

where xi is the ith sensing location; yi is the sensor data

obtained at the ith sensing location, and s is the polynomial

function of order p for each segment of an approximate

curve. The compatibility equations are defined using the

continuities of the all derivatives up to the (p-1)th

derivative of the whole shape function at sensor locations.

To handle the unknown coefficients for piecewise poly-

nomial functions, additional modal ordinates are extrapo-

lated linearly outside the investigated span. The continuous

piecewise functions are determined using the continuity of

modal ordinates and their derivatives.
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Notably, the accuracy of spline interpolation is not good

enough for mode shapes corresponding to high frequencies.

To overcome this difficulty, this work proposes an

approach that combines spline interpolation with a pseudo-

story to obtain mode shapes; it extends mode shapes to the

location of the pseudo-story to reduce the spline interpo-

lation error. The pseudo-story is not a real part of a

structure, which is located above the top story for a shear

building and beside the free end for a cantilever beam. The

distance between the pseudo-story and the first sensor

(counting from the sensor closest to the pseudo-story to

that farthest) is assumed to be equal that between the first

two sensors. The location of the pseudo-story is assumed to

be xps: Therefore, the ith mode shape vector, extended to

the location of the pseudo-story, becomes

Ui ¼ Uiðx1Þ Uiðx2Þ � � �UiðxmÞ UiðxpsÞ½ �T :

Based on the assumption that the first mode shape vector

U1 ¼ U1ðx1Þ U1ðx2Þ � � �U1ðxmÞ U1ðxpsÞ½ �T

is known, UiðxpsÞ (for i = 2,…, m) can be obtained by

exploiting the orthogonality relations between the ith mode

and the first mode. That is, UiðxpsÞ (for i = 2,…, m) can be

obtained by minimizing the following objective function G.

G Uiðxpf Þ
� 	

¼ abs UT
1Ui

� 	

for i ¼ 2; . . .;mð Þ ð16Þ

After UiðxpsÞ is obtained, the second to the mth mode

shapes can be obtained by spline interpolation. Remark-

ably, compared with Guyan expansion and IRS, mode

(shape) expansion by spline interpolation in cases of

incomplete measurement requires no approximate mass

and (or) stiffness matrices. Objective function G in Eq. (16)

was minimized herein using the line search algorithm,

which is briefly introduced as follows.

In optimization algorithms, for given xk, the iterative

scheme is

xkþ1 ¼ xk þ akdk ð17Þ

where ak and dk are the step size and direction vector,

respectively. Line search finds ak such that the objective

function f in the direction dk is minimized, so

f ðxk þ akdkÞ ¼ min
a[ 0

f ðxk þ adkÞ ð18Þ

This line search is called an exact line search or an

optimal line search, and ak is called the optimal step size. If

ak set such that the objective function has an accept-

able descent so satisfies

f ðxkÞ � f ðxk þ akdkÞ[ 0 ð19Þ

then this line search is called an inexact line search, an

approximate line search, or an acceptable line search.

Since, in practice, a theoretically exact optimal step size

generally cannot be found, and finding a step size that is

very close to exact step size is very expensive, an inexact

line search with a lower computational load is greatly

favored.

The framework for the line search is as follows. First,

determine or specify an initial search interval that contains

the minimizer; then iteratively apply some section tech-

niques or interpolations to reduce the interval until the size

of the interval is less than some specified tolerance.

3.4 Modal assurance criterion

One of the most popular tools for quantitatively comparing

modal vectors is the modal assurance criterion (MAC) [12].

The MAC for the ith target mode between an estimated

mode shape vector with expansion ðUiÞ and an exact mode

shape ðbUiÞ is calculated as,

MACi ¼
U

T

i
bUi


 �2

U
T

i Ui


 �

bUT
i
bUi


 � ð20Þ

The MAC takes value between 0 (representing no con-

sistent correspondence) and 1 (representing a consistent

correspondence).

4 Damage location strategy

Among all structural properties, the mode shape may be the

most useful for locating structural damage because it is

related to the locations of structural elements. The accuracy

of the first mode shape that is obtained by the aforemen-

tioned modal expansion approaches greatly exceeds those

of other such shapes. Therefore, locating structural damage

using the difference between the first mode shapes in

undamaged and damaged states may be feasible. The

normalized difference between the first mode shapes in

undamaged and damaged states, called the first mode dif-

ference function Udiff ;k
� 	

, is defined as

Udiff ;k ¼
UU

1 � UD;K
1

� 	

max absðUU
1 � UD;K

1 Þ
� 	 ð21Þ

where UU
1 and UD;k

1 are the first mode shapes in undamaged

and damaged (damaged at element k) states, respectively.

A sequence of trial reveals that the first mode difference

function varies little with the extent of damage to a

structure at a fixed location. However, it varies consider-

ably with the location of damage to a structure. This

important characteristic applies to the first mode shape that

is obtained by spline interpolation. Accordingly, Eq. (21)
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can be rewritten as follows for the first mode shape that is

obtained by spline interpolation.

Udiff ;k
spline ¼

UU
spline;1 � UD;k

spline;1


 �

max abs UU
spline;1 � UD;k

spline;1


 �
 � ð22Þ

A database of the first mode difference function, which

is called the basis matrix of the first mode difference, can

be constructed as a basis for locating damage. If a shear

building structure has n stories (or n lateral translation

DOFs), then the basis matrix of the first mode difference

ðXÞ is given by,

X ¼ Xdiff ;1
spline;basis Udiff ;2

spline;basis � � � Udiff ;n
spline;basis

h i

ð23Þ

The kth column of X is the first mode difference func-

tion for damage to the kth story of the shear building.

Comparing the first mode difference function for damage

to an unknown story of the shear building Udiff
spline;case


 �

with those in each column of X allows the damage to the

shear building to be located. Based on the difference

between Udiff
spline;case


 �

and Udiff ;j
spline;basis (for j = 1, …, n), a

damage location index (DLI) is defined as follows.

DLIðkÞ ¼
Xn

j¼1
abs Udiff ;k

spline;basisðjÞ � Udiff
spline;caseðjÞ


 �

ðfor k ¼ 1; . . .nÞ ð24Þ

Theoretically, DLI should reach its minimum value at

the exact damage location. Figure 1 schematically depicts

the proposed method for locating damage.

5 Simulation examples

To confirm the feasibility of the proposed approach for

locating damage, two structures—a uniform structure (a

cantilever beam) and a non-uniform structure (a seven-

story shear building)—were numerically studied.

5.1 Description of example structures

5.1.1 Cantilever beam

As presented in Fig. 2, the assumed structural properties of

the analytical model of a massless cantilever beam are as

follows; lumped mass mj = 2000 kg (j = 1, …, 10) and

stiffness kj = 290 kN/m (j = 1, …, 10). Axial and shear

deformations of the beam are neglected. Table 1 presents the

effective modal masses of the cantilever beam. Generally,

the constructed (real) structural properties differ from the

designed ones. The designed cantilever beam is specified as

CB1. The structural properties (mass and stiffness) of CB1

are assumed to be those that were specified above. Two

constructed (real) cantilever beams, CB2 and CB3, are

considered. The structural properties of CB2 and CB3 are

assumed to be as follows: the structural properties [the

massesmj (j = 1,…, 10) and the stiffness values kj (j = 1,…,

10)] of CB2 and CB3 equal those of CB1, but randomly

increased or decreased by 10 and 20%, respectively.

5.1.2 The seven-story shear building

The structural properties of the seven-story shear building, as

presented in Fig. 3, are assumed to be as follows: the first six

story masses are 2000 kg; the seventh story mass is 1000 kg;

thefirst story stiffness is 2000 kN/m; the second story stiffness

is 1800 kN/m, and the third to the seventh story stiffness

values are 600 kN/m. Table 2 presents the effective modal

masses of the seven-story shear building. The designed seven-

story shear building is specified as SB1. The structural prop-

erties (mass and stiffness) of SB1 are assumed to be those

specified above. Two constructed shear buildings, SB2 and

SB3, are considered. The structural properties of SB2 andSB3

are assumed to be as follows: the structural properties [the

massesmj (j = 1,…,7) and the stiffness values kj (j = 1,…,7)]

of SB2andSB3 equal those ofSB1, but randomly increased or

decreased by 10 and 20%, respectively.

5.2 Modal expansion

5.2.1 Performance comparison of EI method and uniform

spacing method

First, the performances of the two OSP methods, the EI

method and the uniform spacing method, are studied. The

mode shapes of CB1 and SB1 that are obtained by spline

interpolation are investigated. Figures 4, 5, and 6 compare

the first three mode shapes of CB1 that are obtained by

spline interpolation with two, three, and four sensors,

respectively. Table 3 compares the MAC values for the

first three modes of CB1. Figures 7, 8, and 9 compare the

first three mode shapes of SB1, obtained using spline

interpolation with two, three, and four sensors, respec-

tively. Table 4 compares the MAC values for the first three

modes of SB1. The results reveal that the interpolation

more accurately approximates the target mode shape when

the sensors are located uniformly. However, uniform

spacing is not always better for non-uniform structures for

all possible numbers of sensors. The EI method performs

worse because it considers overall modal information in

determining OSP, so the sensors are placed too close to, or

too far from, each other. Therefore, accurate modal infor-

mation at a location without a nearby sensor cannot be

obtained. Based on these findings, the uniform spacing

method is used in the following to locate sensors.
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5.2.2 Performance of spline interpolation with a pseudo-

story in determining mode shapes

Second, the performance of the spline interpolation with a

pseudo-story in determining mode shapes was studied.

Tables 5 and 6 present the MAC values between exact

mode shapes and estimated ones of CB1 and SB1,

respectively. The results reveal that the MAC values

between the exact second and third mode shapes and

estimated ones that are estimated using spline interpolation

with a pseudo-story exceed those without a pseudo-story

for both CB1 and SB1. The MAC value is a measure of the

accuracy of the estimated mode shape. The accuracy of the

mode shape that is estimated by spline interpolation is

increased using a pseudo-story. The minimum number of

required sensors can be determined from minimum MAC

value. The results reveal that the minimum number of

sensors is sometimes reduced when using spline interpo-

lation with a pseudo-story to estimate mode shapes.

Comparing Table 5 with Table 6 reveals that MAC values

between exact mode shapes and estimated ones that are

estimated by spline interpolation with a pseudo-story of

CB1 are larger than those of SB1 in most situations. One

The First mode difference 
function ( )

Yes

Designed parameters Present parameters

k=1

Obtaining mode shapes using 
incomplete measurements

Modal expansion using 
spline interpolation

Calculating 

If k=n ?

Basis matrix of the first 
mode difference

No, k=k+1

Identifying damage location from minimum value of DLI

Calculating Damage Location Index (DLI)

Obtaining mode shapes using 
incomplete measurements

Modal expansion using 
spline interpolation

Calculating 

Fig. 1 Schematic diagram of

the proposed damage location

approach

x1 x2 x3 x4 x5 x6 x7 x8 x10x9

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Fig. 2 The cantilever beam model

Table 1 The effective modal mass of the cantilever beam

Effective modal mass

The

first

mode

The first

two

modes

The first

three

modes

The first

four

modes

The first

five

modes

The first

six

modes

The first

seven

modes

The first

eight

modes

The first

nine

modes

The first

ten

modes

Cumulative

proportion of

total mass

84.79

%

93.93

%

97.02

%

98.45

%

99.20

%

99.61

%

99.83

%

99.94

%

99.99

%

100

%
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possible reason may be that the uniformity of structural

properties (including stiffness and mass) strongly affects

the convergence of line search. The performance of spline

interpolation with a pseudo-story in estimating mode

shapes of a uniform structure is better than that in esti-

mating those of a non-uniform structure. A larger variance

of structural properties (stiffness and mass) corresponds to

poorer performance of spline interpolation with a pseudo-

story in estimating mode shapes.

5.2.3 Comparison of modal expansion methods

The performance of the proposed modal expansion

approach (spline interpolation with a pseudo-story) is

compared with those of Guyan expansion and IRS. Herein,

the structural properties of CB1 are taken as the approxi-

mate structural properties in the mode shape expansion for

a cantilever beam (uniform structure). Table 7 lists the

MAC values between the actual mode shapes and esti-

mated ones that are expanded using Guyan expansion, IRS,

and the proposed modal expansion approach for the first

three mode shapes of CB2 and CB3. The results reveal that

the IRS method performs best for CB2. However, the

proposed modal expansion approach performs best for

CB3. Since the stiffness values of CB2 and CB3 are those

of CB1 but randomly increased or decreased by 10 and

20%, respectively, the results reveal that, for uniform

structures, the proposed modal expansion approach is much

more effective when the difference between the designed

(approximate) structural properties and the real ones is

large.

Similarly, the structural properties of SB1 are taken as

the approximate structural properties in the mode shape

expansion for the seven-story shear building. Table 8 lists

the MAC values between the actual mode shapes and

estimated ones that are expanded using Guyan expansion,

IRS, and the proposed modal expansion approach for the

first three mode shapes of SB2 and SB3. The results indi-

cate that the IRS method performs best for both SB2 and

SB3. In fact, the performances of the proposed modal

expansion approach and the IRS method are approximately

the same for SB3. Therefore, for non-uniform structures,

the proposed modal expansion approach is also effective

when the difference between the designed (approximate)

structural properties and the real ones is large. Remarkably,

the mode shape can be expanded using the proposed modal

expansion approach even when the structural properties are

unknown; neither Guyan expansion nor IRS has this

ability.

5.3 Locating structural damage

5.3.1 Verification of the first mode difference function

to be a baseline for damage localization

After obtaining mode shape using spline interpolation with

pseudo-story, these mode shapes can be used for damage

localization. The first mode difference function is used as a

baseline for locating damage in this study. At first whether

the changes of the first mode difference function for dif-

ferent damage extent at a certain location of a structure are

slight is verified. In this study, damage was simulated by

x1

x2

m1

m2

m3

m4

m5

m6

m7

k1

k7

k6

k5

k4

k3

k2

x3

x4

x5

x6

x7

Fig. 3 The seven-story shear building model

Table 2 The effective modal mass of the seven-story shear building model

Effective modal mass

The first

mode

The first two

modes

The first three

modes

The first four

modes

The first five

modes

The first six

modes

The first seven

modes

Cumulative proportion of

total mass

73.87

%

85.92

%

93.48

%

97.41

%

98.33

%

98.40

%

100

%
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reducing the stiffness (ki) of the affected ith element and

single damage location was considered. The MAC thresh-

old is set to be 0.99 to determine the minimum number of

sensors. From Tables 7 and 8, we can see that MAC values

between the true mode shapes and the expanded ones that

are expanded by the proposed modal expansion approach

for CB2, CB3, SB2, and SB3 are larger than 0.99 when the

number of sensor is 3. Therefore, the minimum number of

sensors is set to be 3. Uniform spacing method is used for

sensor placement. Figure 10 shows the first mode differ-

ence functions of CB1 for stiffness reduction of the 3rd,

5th, and 8th elements. Stiffness reduction of each element

varies from 10 to 90 percent every 10 percent. Likewise,

Fig. 11 shows the first mode difference functions of SB1

for stiffness reduction of the 3rd, 5th, and 7th stories

(represent low, medium, and high stories, respectively).
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Stiffness reduction of each floor varies from 10 to 90

percent every 10 percent. Except Fig. 11a, Figs. 10 and 11

indicate that the first mode difference function has only a

slight variance with damage (stiffness reduction) for the

same damage location and a large variance with damage

location. Figure 11a shows that the first mode difference

function of SB1 damaged at the third story has a large

variance for the first two DOFs (or stories) and a slight

variance for other DOFs (or stories); thus, the result of the

first mode difference function of SB1 damaged at the third

story is still acceptable.

Mode shapes that are obtained by spline interpolation

with a pseudo-story can be used for locating damage to a

structure. The first mode difference function is used as a

baseline for locating damage in this work. First, whether

the first mode difference function varies with the extent
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of structural damage at a fixed location is studied. In this

work, damage was simulated by reducing the stiffness

(ki) of the affected ith element at a single damage

location. The MAC threshold is set to be 0.99 to

determine the minimum number of sensors. From

Tables 7 and 8, the MAC values between the actual first

mode shapes and the expanded ones that are expanded

using the proposed modal expansion approach for CB2,

CB3, SB2, and SB3 exceed 0.99 when three sensors are

used. Therefore, the minimum number of sensors is set

to three. The uniform spacing method is used for placing

the sensors. Figure 10 plots the first mode difference

functions of CB1 for a reduction of the stiffness of the

3rd, 5th, and 8th elements. The stiffness reduction of
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Table 3 Case CB1: best sensor

configuration of EI method to

observe mode shape using

spline interpolation and

comparison of MAC to

uniformly spaced method

No. of sensor OSP method Sensor location MAC

Mode 1 Mode 2 Mode 3

2 EI method (8, 9) 0.9994 0.6902 0.0330

Uniform spacing (5, 10) 0.9997 0.8834 0.0408

3 EI method (7, 8, 9) 1.0000 0.9711 0.0255

Uniform spacing (3, 6, 10) 1.0000 0.9866 0.7452

4 EI method (6, 7, 8, 9) 1.0000 0.9813 0.8787

Uniform spacing (3, 5, 8, 10) 1.0000 0.9993 0.9426

(a)

(b)

(c)

0

1

2

3

4

5

6

7

D
eg

re
e 

of
 F

re
ed

om

Mode Amplitude

The First Mode Shape

EI Uniform Spacing Exact Sensor Location (EI) Sensor Location (Uniform Spacing)

0

1

2

3

4

5

6

7

D
eg

re
e 

of
 F

re
ed

om

Mode Amplitude

The Second Mode Shape

EI Uniform Spacing Exact Sensor Location (EI) Sensor Location (Uniform Spacing)

0

1

2

3

4

5

6

7

D
eg

re
e 

of
 F

re
ed

om

Mode Amplitude

The Third Mode Shape

EI Uniform Spacing Exact Sensor Location (EI) Sensor Location (Uniform Spacing)

Fig. 7 Comparison of the first

three mode shapes of SB1

estimated by using spline

interpolation with two sensors

a the first mode b the second

mode c the third mode

J Civil Struct Health Monit (2016) 6:817–838 827

123



each element varies from 10 to 90 percent in steps of 10

percent. Likewise, Fig. 11 plots the first mode difference

functions of SB1 for a reduction of the stiffness of the

3rd, 5th, and 7th stories (representing low, medium, and

high stories, respectively). The stiffness of each story is

reduced by 10–90 percent in steps of 10 percent. Fig-

ures 10 and 11 (excluding Fig. 11a) show that the first

mode difference function varies only slightly with extent

of damage (stiffness reduction) at a fixed location but

varies considerably with damage location. Figure 11a

reveals that the first mode difference functions of SB1

with different extent of damage at the third story differ

from each other greatly for the first two degrees (stories)

but slightly for other degrees (stories), so the first mode

difference function of SB1 with different extent of

damage at the third story is acceptable.
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5.3.2 Damage location

Constructed (real) structural parameters are unknown,

whereas designed ones are known. Therefore, in this

work, to locate damage, the basis matrix of the first

mode difference is computed for various degrees of

damage from the designed structural parameters. Then,

the first mode difference function was computed from

the first mode shape of the damaged structure to locate

the damage. The DLI can be computed and the damage

located from the minimum DLI value. To confirm the

feasibility of using DLI for locating damage, 15 and

20% damage to each of the elements of CB2, CB3, SB2,

and SB3 were simulated. Tables 9 and 10 present the

DLI values for 15 and 20% damage, respectively, to

each element of CB2. Tables 11 and 12 present the DLI
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values for 15 and 20% damage, respectively, to each

element of CB3. The results reveal that DLI can suc-

cessfully locate all locations of damage to CB2 and CB3.

Tables 13 and 14 present the DLI values for 15 and 20%

damage, respectively, to each element of SB2. Tables 15

and 16 present the DLI values for 15 and 20% damage,

respectively, to each element of SB3. The results reveal

that DLI can successfully locate damage to SB2 and SB3

in most cases, but not when the first story or the sixth

story of SB2 or SB3 is damaged, because the mode

shape that is estimated by spline interpolation with a

pseudo-story is not close to the actual mode shape at the

location where the structural property of interest (mass

or stiffness) is changed.

To simulate a situation in the real world, the assumption

is made that the mode shape of CB3 is contaminated by

measurement noise with an error of 1, 0.1, 0.02, and 0.01%.

Tables 17, 18, 19 and 20 present DLI values for 20%

damage to each element of CB3 with mode shape errors of

1, 0.1, 0.02, and 0.01%, respectively. The results reveal

that DLI is effective in locating damage only when the

mode shape error is less than 0.01%. Since responses of

real structures are supposed to be high noise corrupted,

further research could investigate how to improve DLI

method to locate damage for the real structures using high

noise corrupted measurements. Because the first mode

shape is not sensitive to damage, so it must be accurately

obtained for DLI to be used to locate damage.

Table 4 Case SB1: best sensor

configuration of EI method to

observe mode shape using

spline interpolation and

comparison of MAC to

uniformly spaced method

No. of sensors OSP method Sensor location MAC

Mode 1 Mode 2 Mode 3

2 EI method (1, 3) 0.9542 0.0436 0.0615

Uniform spacing (3, 7) 0.9881 0.8460 0.0513

3 EI method (1, 3, 5) 0.9979 0.6867 0.0518

Uniform spacing (2, 4, 7) 0.9980 0.7864 0.7337

4 EI method (1, 2, 3, 5) 0.4252 0.5715 0.4268

Uniform spacing (2, 4, 6, 7) 0.9982 0.9916 0.7969

Table 5 Case CB1 with sensor configuration of uniform spacing: comparison of MAC values between actual mode shapes and estimated ones

using spline interpolation with and without a pseudo-story

No. of sensor Sensor location Using pseudo story strategy Location of pseudo story MAC

Mode 2 Mode 3

2 (5, 10) No / 0.6902 0.0408

Yes 15 0.9495 0.0501

3 (3, 6, 10) No / 0.9866 0.7452

Yes 14 0.9971 0.9703

4 (3, 5, 8, 10) No / 0.9993 0.9426

Yes 12 0.9998 0.9514

Table 6 Case SB1 with sensor

configuration of uniform

spacing: comparison of MAC

values between actual mode

shapes and estimated ones using

spline interpolation with and

without a pseudo-story

No. of sensor Sensor location Using a pseudo-story Location of pseudo story MAC

Mode 2 Mode 3

2 (4, 7) No / 0.8460 0.0513

Yes 10 0.8741 0.7060

3 (2, 4, 7) No / 0.7864 0.7337

Yes 10 0.9288 0.8189

4 (2, 4, 6, 7) No / 0.9916 0.7969

Yes 8 0.9918 0.9306
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6 Conclusions

The work develops an approach for locating damage to

structures from incomplete measurements. Two structures,

a uniform structure (a cantilever beam) and a non-uniform

structure (a seven-story shear building), are presented to

demonstrate the feasibility of using the proposed approach

to locate damage to structures. The following important

conclusions are drawn from the results herein.

1. The performance of uniform spacing method is better

than the EI method for uniform structures, but not

always better for non-uniform structures. The EI

Table 7 Comparison of Guyan

expansion, IRS, and the

proposed modal expansion

approach for CB1

Status of the structure No. of sensor Modal expansion method MAC

Mode 1 Mode 2 Mode 3

CB2 2 Guyan expansion 0.9993 0.8991 0.0807

IRS 1.0000 0.9867 0.0127

The proposed method 0.9996 0.9497 0.0000

3 Guyan expansion 0.9997 0.9840 0.8881

IRS 1.0000 0.9997 0.9849

The proposed method 1.0000 0.9976 0.9745

4 Guyan expansion 0.9999 0.9943 0.8747

IRS 1.0000 0.9999 0.9912

The proposed method 1.0000 0.9964 0.9487

CB3 2 Guyan expansion 0.9985 0.8583 0.1256

IRS 0.9996 0.9675 0.0320

The proposed method 0.9999 0.9797 0.0210

3 Guyan expansion 0.9991 0.9766 0.9078

IRS 0.9996 0.9888 0.9787

The proposed method 0.9997 0.9943 0.9760

4 Guyan expansion 0.9997 0.9898 0.8983

IRS 0.9999 0.9974 0.9860

The proposed method 0.9999 0.9983 0.9868

Table 8 Comparison of Guyan

expansion, IRS, and the

proposed modal expansion

approach for SB1

Status of the structure No. of

sensor

Modal expansion method MAC

Mode 1 Mode 2 .Mode 3

SB2 2 Guyan expansion 0.9952 0.9656 0.0362

IRS 0.9997 0.9794 0.0197

The proposed method 0.9877 0.8718 0.7086

3 Guyan expansion 0.9985 0.9557 0.7844

IRS 0.9998 0.9769 0.9396

The proposed method 0.9975 0.9291 0.8304

4 Guyan expansion 0.9997 0.9738 0.8438

IRS 1.0000 0.9987 0.9247

The proposed method 0.9971 0.9275 0.8405

SB3 2 Guyan expansion 0.9946 0.9348 0.0444

IRS 0.9993 0.9135 0.0341

The proposed method 0.9918 0.9275 0.2182

3 Guyan expansion 0.9989 0.9678 0.8509

IRS 0.9997 0.9886 0.9720

The proposed method 0.9961 0.9612 0.9808

4 Guyan expansion 0.9997 0.9788 0.7061

IRS 0.9997 0.9896 0.7995

The proposed method 0.9998 0.9402 0.7423
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(a)

(b)

(c)

Fig. 10 The first mode

difference function of CB1 for a

reduction of the stiffness of

a the 3rd element b the 5th

element c the 8th element
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(a)

(b)

(c)

Fig. 11 The first mode

difference function of SB1 for a

reduction of the stiffness of

a the 3rd story b the 5th story

c the 7th story
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Table 9 Damage location index values for 15% damage to each element of CB2

Testing case Damage index DI (k) Damage location k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 Predicted Exact

CB2_1_15% 0.02 0.37 1.09 11.53 12.40 12.14 10.20 10.69 9.07 8.60 1 1

CB2_2_15% 0.38 0.02 0.73 11.24 12.11 11.85 10.24 10.60 8.98 8.40 2 2

CB2_3_15% 1.07 0.68 0.04 10.70 11.57 11.31 10.33 10.45 8.82 8.02 3 3

CB2_4_15% 11.52 11.22 10.65 0.03 1.30 2.66 8.02 7.81 6.50 5.91 4 4

CB2_5_15% 12.39 12.09 11.53 1.25 0.02 1.40 8.77 8.55 7.11 6.50 5 5

CB2_6_15% 12.13 11.83 11.27 2.65 1.41 0.03 8.64 8.42 6.72 6.01 6 6

CB2_7_15% 10.16 10.21 10.30 8.07 8.80 8.67 0.07 1.32 4.09 5.82 7 7

CB2_8_15% 10.68 10.59 10.46 7.87 8.61 8.48 1.33 0.06 2.79 4.52 8 8

CB2_9_15% 9.07 8.98 8.81 6.54 7.14 6.75 4.12 2.78 0.03 1.73 9 9

CB2_10_15% 8.61 8.40 8.00 5.91 6.51 6.03 5.84 4.51 1.73 0.01 10 10

Note CB2_j_15% (j = 1*10) represents 15% damage to the jth element of CB2

Table 10 Damage location index values for 20% damage to each element of CB2

Testing case Damage index DI (k) Damage location k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 Predicted Exact

CB2_1_20% 0.10 0.29 1.01 11.49 12.35 12.09 10.26 10.73 9.11 8.59 1 1

CB2_2_20% 0.47 0.09 0.63 11.19 12.06 11.80 10.31 10.63 9.01 8.38 2 2

CB2_3_20% 1.13 0.75 0.05 10.67 11.53 11.28 10.39 10.51 8.85 8.02 3 3

CB2_4_20% 11.51 11.21 10.64 0.13 1.23 2.60 8.13 7.92 6.58 5.99 4 4

CB2_5_20% 12.37 12.07 11.51 1.28 0.11 1.37 8.85 8.63 7.17 6.56 5 5

CB2_6_20% 12.11 11.81 11.24 2.63 1.39 0.07 8.68 8.46 6.76 6.05 6 6

CB2_7_20% 10.10 10.15 10.25 8.08 8.81 8.69 0.16 1.35 4.13 5.86 7 7

CB2_8_20% 10.76 10.67 10.60 8.01 8.74 8.61 1.16 0.20 2.96 4.69 8 8

CB2_9_20% 9.10 9.01 8.83 6.58 7.18 6.80 4.05 2.72 0.08 1.79 9 9

CB2_10_20% 8.60 8.39 8.00 5.92 6.52 6.05 5.83 4.49 1.72 0.02 10 10

Note CB2_j_20% (j = 1*10) represents 20% damage to the jth element of CB2

Table 11 Damage location index values for 15% damage to each element of CB3

Testing case Damage index DI (k) Damage location k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 Predicted Exact

CB3_1_15% 0.01 0.37 1.10 11.54 12.41 12.15 10.22 10.71 9.09 8.62 1 1

CB3_2_15% 0.33 0.05 0.77 11.29 12.15 11.90 10.26 10.64 9.02 8.44 2 2

CB3_3_15% 1.04 0.65 0.07 10.74 11.60 11.34 10.35 10.47 8.85 8.05 3 3

CB3_4_15% 11.47 11.17 10.60 0.11 1.31 2.68 8.08 7.86 6.54 5.98 4 4

CB3_5_15% 12.32 12.02 11.46 1.20 0.10 1.45 8.79 8.57 7.12 6.51 5 5

CB3_6_15% 12.15 11.85 11.28 2.56 1.32 0.09 8.69 8.48 6.78 6.09 6 6

CB3_7_15% 10.08 10.13 10.23 8.09 8.82 8.69 0.19 1.36 4.14 5.87 7 7

CB3_8_15% 10.80 10.71 10.66 8.07 8.81 8.68 1.07 0.28 3.04 4.77 8 8

CB3_9_15% 9.11 9.01 8.84 6.59 7.20 6.82 4.03 2.70 0.10 1.81 9 9

CB3_10_15% 8.60 8.39 8.00 5.92 6.53 6.05 5.82 4.48 1.70 0.04 10 10

Note CB3_j_15% (j = 1*10) represents 15% damage to the jth element of CB3
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method performs worse because it considers overall

modal information in determining OSP, so the sensors

are placed too close to, or too far from, each other.

Therefore, accurate modal information at a location

without a nearby sensor cannot be obtained.

2. The accuracy of the mode shape that is estimated by

spline interpolation is increased using a pseudo-story.

3. The first mode difference function varies only slightly

with the degree of damage (stiffness reduction) at a

fixed location but greatly with the location of damage,

and so can be used for locating damage.

4. DLI can successfully locate damage to uniform

structures but it does not work in locating some

damage to non-uniform structures because the mode

Table 12 Damage location index values for 20% damage to each element of CB3

Testing case Damage index DI (k) Damage location k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 Predicted Exact

CB3_1_20% 0.21 0.53 1.25 11.61 12.48 12.22 10.13 10.62 9.08 8.61 1 1

CB3_2_20% 0.28 0.18 0.82 11.28 12.14 11.89 10.11 10.52 8.90 8.38 2 2

CB3_3_20% 1.02 0.64 0.16 10.70 11.57 11.31 10.22 10.36 8.74 7.98 3 3

CB3_4_20% 11.53 11.23 10.66 0.08 1.33 2.69 7.96 7.74 6.45 5.85 4 4

CB3_5_20% 12.41 12.11 11.54 1.23 0.05 1.42 8.72 8.51 7.08 6.46 5 5

CB3_6_20% 12.14 11.84 11.28 2.67 1.42 0.04 8.62 8.40 6.70 5.99 6 6

CB3_7_20% 10.12 10.17 10.26 8.10 8.84 8.71 0.13 1.27 4.05 5.78 7 7

CB3_8_20% 10.61 10.52 10.39 7.88 8.62 8.49 1.40 0.12 2.72 4.45 8 8

CB3_9_20% 9.03 8.94 8.77 6.56 7.16 6.75 4.15 2.81 0.06 1.70 9 9

CB3_10_20% 8.59 8.38 7.98 5.91 6.52 6.04 5.86 4.52 1.75 0.03 10 10

Note CB3_j_20% (j = 1*10) represents 20% damage to the jth element of CB3

Table 13 Damage location

index values for 15% damage to

each element of SB2

Testing case Damage index DI (k) Damage location k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 Predicted Exact

SB2_1_15% 0.47 0.35 6.95 6.68 6.48 6.55 5.57 2 1

SB2_2_15% 0.59 0.42 6.91 6.57 6.53 6.53 5.50 2 2

SB2_3_15% 6.74 6.68 0.67 0.85 7.42 6.97 5.10 3 3

SB2_4_15% 6.71 6.57 1.38 0.41 6.97 6.52 4.65 4 4

SB2_5_15% 5.92 5.99 7.55 6.85 0.30 2.02 4.23 5 5

SB2_6_15% 6.91 6.89 8.14 7.44 0.96 1.15 3.35 5 6

SB2_7_15% 5.69 5.60 5.91 5.21 3.47 1.56 0.65 7 7

Note SB2_j_15% (j = 1*7) represents 15% damage to the jth story of SB2

Table 14 Damage location

index values for 20% damage to

each element of SB2

Testing case Damage index DI (k) Damage location k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 Predicted Exact

SB2_1_20% 0.31 0.15 7.11 6.78 6.30 6.44 5.57 2 1

SB2_2_20% 0.45 0.29 7.06 6.66 6.36 6.42 5.49 2 2

SB2_3_20% 6.41 6.36 0.95 1.18 7.01 6.56 4.69 3 3

SB2_4_20% 6.53 6.39 1.64 0.56 6.66 6.21 4.34 4 4

SB2_5_20% 5.93 6.00 7.58 6.88 0.27 1.96 4.17 5 5

SB2_6_20% 6.93 6.91 8.18 7.48 1.01 1.11 3.31 5 6

SB2_7_20% 5.68 5.59 5.90 5.20 3.49 1.58 0.64 7 7

Note SB2_j_20% (j = 1*7) represents 20% damage to the jth story of SB2
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shape that is obtained using spline interpolation with a

pseudo-story does not closely fit the exact mode shape

where structural property of interest (mass or stiffness)

is changed.

5. DLI is effective for locating damage only when the

mode shape error is less than 0.01%. Therefore, the

first mode shape must be obtained with high accuracy

for the use of DLI to locate damage to a structure.

6. The proposed approach is only applicable to structures

with ‘‘|’’ or ‘‘-’’ shape, for example, structures in

simulation examples. How the proposed approach is

Table 15 Damage location

index values for 15% damage to

each element of SB3

Testing case Damage index DI (k) Damage location k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 Predicted Exact

SB3_1_15% 0.40 0.28 7.00 6.73 6.43 6.52 5.58 2 1

SB3_2_15% 0.55 0.39 6.95 6.60 6.49 6.50 5.50 2 2

SB3_3_15% 6.82 6.76 0.57 0.80 7.44 6.99 5.12 3 3

SB3_4_15% 6.81 6.67 1.36 0.29 6.95 6.50 4.63 4 4

SB3_5_15% 5.98 6.05 7.56 6.86 0.21 2.02 4.23 5 5

SB3_6_15% 7.00 6.98 8.13 7.43 1.055 1.057 3.26 5 6

SB3_7_15% 5.70 5.61 5.88 5.18 3.50 1.59 0.62 7 7

Note SB3_j_15% (j = 1*7) represents 15% damage to the jth story of SB3

Table 16 Damage location

index values for 20% damage to

each element of SB3

Testing case Damage index DI (k) Damage location k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 Predicted Exact

SB3_1_20% 0.55 0.39 6.93 6.60 6.51 6.53 5.51 2 1

SB3_2_20% 0.65 0.49 6.90 6.51 6.55 6.51 5.45 2 2

SB3_3_20% 5.78 5.73 1.65 1.76 7.11 6.62 4.74 3 3

SB3_4_20% 5.90 5.76 2.17 1.25 6.73 6.24 4.36 4 4

SB3_5_20% 5.84 5.91 7.55 6.85 0.40 1.99 4.18 5 5

SB3_6_20% 6.83 6.81 8.19 7.50 0.94 1.18 3.38 5 6

SB3_7_20% 5.66 5.57 5.92 5.22 3.50 1.59 0.64 7 7

Note SB3_j_20% (j = 1*7) represents 20% damage to the jth story of SB3

Table 17 Damage location index values for 20% damage to each element of CB3 with 1% mode shape error

Testing case Damage index DI (k) Damage location k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 Predicted Exact

CB3_1_20% 3.08 6.77 6.53 2.27 7.09 7.26 5.50 7.50 7.31 5.91 4 1

CB3_2_20% 2.96 7.41 7.14 2.81 7.42 7.84 5.64 8.05 7.45 6.27 4 2

CB3_3_20% 4.10 7.49 7.28 3.79 8.58 7.99 7.07 8.25 8.88 7.41 4 3

CB3_4_20% 6.65 7.80 8.69 5.43 10.10 8.38 8.62 7.63 10.54 9.12 4 4

CB3_5_20% 4.84 7.49 7.45 4.42 8.59 7.53 7.28 7.83 8.98 7.57 4 5

CB3_6_20% 6.74 3.91 4.75 3.48 6.08 4.32 5.56 3.81 6.36 5.05 4 6

CB3_7_20% 4.45 7.47 7.20 3.95 7.41 7.54 6.33 7.59 7.44 6.73 4 7

CB3_8_20% 5.19 7.32 7.04 4.58 7.75 7.38 6.98 7.44 7.70 7.20 4 8

CB3_9_20% 7.07 6.22 7.04 5.88 8.58 6.71 8.18 5.92 8.60 8.10 4 9

CB3_10_20% 5.18 7.14 7.08 4.81 8.37 7.29 7.55 7.46 8.53 7.30 4 10

Note CB3_j_20% (j = 1*10) represents 20% damage to the jth element of CB3
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Table 18 Damage location index values for 20% damage to each element of CB3 with 0.1% mode shape error

Testing case Damage index DI (k) Damage location k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 Predicted Exact

CB3_1_20% 5.22 2.29 4.64 9.98 9.32 9.36 11.64 9.51 7.37 10.08 2 1

CB3_2_20% 3.52 0.94 2.48 9.62 8.63 8.69 11.35 9.22 7.08 11.10 2 2

CB3_3_20% 5.16 2.06 3.80 9.67 8.68 8.74 11.51 9.38 7.24 10.30 2 3

CB3_4_20% 6.92 7.99 7.03 3.16 3.10 3.67 4.60 3.19 3.89 5.95 5 4

CB3_5_20% 7.86 9.37 8.17 3.03 2.97 3.40 3.58 2.48 3.90 5.56 8 5

CB3_6_20% 6.45 8.53 6.88 2.31 1.53 1.96 3.17 1.73 2.75 6.15 5 6

CB3_7_20% 11.71 9.97 10.80 9.72 9.74 9.78 8.67 8.41 7.59 6.98 10 7

CB3_8_20% 8.37 7.70 8.23 8.14 7.43 7.99 6.95 6.38 4.83 5.44 9 8

CB3_9_20% 6.85 5.66 5.94 6.71 5.81 5.80 6.59 5.26 3.19 6.13 9 9

CB3_10_20% 5.54 7.67 6.11 3.08 1.90 2.19 3.47 1.89 1.85 6.09 9 10

Note CB3_j_20% (j = 1*10) represents 20% damage to the jth element of CB3

Table 19 Damage location index for 20% damage to each element of CB3 with 0.02% mode shape error

Testing case Damage index DI (k) Damage location k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 Predicted Exact

CB3_1_20% 1.67 1.08 1.16 11.07 11.56 11.85 9.90 8.99 8.71 6.54 2 1

CB3_2_20% 1.75 1.09 0.73 11.32 11.80 12.09 10.44 9.53 9.26 6.86 3 2

CB3_3_20% 2.86 2.01 0.58 10.15 10.63 10.92 10.64 9.58 9.12 6.05 3 3

CB3_4_20% 11.72 11.25 10.41 0.60 1.82 2.16 8.40 8.70 8.46 7.20 4 4

CB3_5_20% 12.53 12.07 11.23 1.24 0.44 0.93 9.33 9.57 9.18 7.39 5 5

CB3_6_20% 11.90 11.43 10.59 2.56 1.12 0.89 8.92 9.16 8.75 6.42 6 6

CB3_7_20% 10.49 10.44 10.62 7.47 8.05 7.61 1.85 2.94 3.33 7.04 7 7

CB3_8_20% 10.07 10.03 10.30 8.09 8.66 8.22 2.48 2.12 1.89 5.78 9 8

CB3_9_20% 9.97 9.58 8.93 5.85 5.78 5.42 6.60 5.19 4.03 2.48 10 9

CB3_10_20% 9.85 9.26 8.59 6.07 5.16 4.74 9.51 8.11 7.09 3.36 10 10

Note CB3_j_20% (j = 1*10) represents 20% damage to the jth element of CB3

Table 20 Damage location index for 20% damage to each element of CB3 with 0.01% mode shape error

Testing case Damage index DI (k) Damage location k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 Predicted Exact

CB3_1_20% 0.20 0.36 1.21 11.45 12.40 12.05 10.08 10.31 9.55 10.07 1 1

CB3_2_20% 0.46 0.16 0.78 11.06 12.00 11.66 10.08 10.28 9.38 9.75 2 2

CB3_3_20% 0.96 0.55 0.33 10.67 11.61 11.27 10.13 10.32 9.25 9.51 3 3

CB3_4_20% 11.16 10.97 10.15 0.28 1.18 2.78 8.14 8.26 6.43 5.41 4 4

CB3_5_20% 11.93 11.74 10.91 1.10 0.48 1.70 8.72 8.85 6.87 5.49 5 5

CB3_6_20% 11.62 11.42 10.60 2.85 1.79 0.37 8.80 8.92 6.94 4.70 6 6

CB3_7_20% 10.06 10.10 9.87 7.22 7.92 8.00 1.02 1.54 3.36 6.16 7 7

CB3_8_20% 10.28 10.32 10.11 7.80 8.50 8.58 1.49 0.85 2.43 5.24 8 8

CB3_9_20% 9.10 9.08 8.67 6.25 6.86 6.70 3.90 2.95 0.79 2.76 9 9

CB3_10_20% 8.52 8.42 7.77 5.69 6.20 5.82 6.12 5.07 2.27 1.51 10 10

Note CB3_j_20% (j = 1*10) represents 20% damage to the jth element of CB3

J Civil Struct Health Monit (2016) 6:817–838 837

123



applicable to more complicated real structures would

be investigated on the basis of this research.
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