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Abstract Time series modeling has great potential as a tool

for damage detection. However, there are still a number of

issues that need to be addressed before it can be effectively

used for damage detection in the context of structural health

monitoring (SHM). This paper presents a novel time series

method directly derived from equation of motion (EOM) for

damage detection. One of the unique advantages of the pro-

posed method is that the order of the time series model is

determined from the EOM, and thus, it is fixed, which could

facilitate an easier automation and improve the computational

efficiency. For the proposed method, fixed-order time series

models are created for different sensor clusters using the output

only vibration data from baseline and unknown states of the

structure. Then, two different damage features (DFs) are

developed from these models to identify the existence and

location of the damage. To verify thismethod, an experimental

steel grid structure with different damage cases applied is uti-

lized. Two different DFs using fit ratios and coefficients are

used todetect damage, and the results are compared. It is shown

that the proposed method could identify the existence and

locationof damage and assess the relative severity successfully

in most cases using either fit ratios or coefficients as DFs.

Keywords Structural health monitoring � Damage

detection � Time series analysis � Sensor clustering

1 Introduction

Existing infrastructures are subjected to various potential

risks, such as aging, fatigue, corrosion, overloading, and so

on. These potential risks result in different levels of dam-

age, which may cause the failure of members or even

collapse of the entire structure. As infrastructure systems

age and approach (or suppress) their design life, these

problems become more significant. Taking bridges as an

example, in the past, hundreds of bridges have failed due to

all kinds of reasons. One of the critical reasons is poor

maintenance, such as for Mianus River Bridge in the

United States, Somerton Bridge in Australia, and CPR

Bonnybrook Bridge in Canada [1–3]. Now, there are over

600,000 highway bridges in the US and more than 30 % of

these bridges have exceeded their 50-year design life [4].

According to FHWA [5], nearly 10 % of these bridges are

structurally deficient and 14 % are functionally obsolete. In

Canada, condition of the infrastructures is also downgrad-

ing [6]. Mirza and Haider [7] indicated that nearly 80 % of

existing bridges need repair to some extent. Recent years,

many challenging bridges were successfully designed and

constructed, but how to keep them safe and reliable with

minimum costs during their lifecycle is still a big problem.

In this context, structural health monitoring (SHM) is

considered as a valuable tool to increase safety and relia-

bility, as well as to optimize maintenance operations during

the service life of the infrastructure systems, offering con-

siderable savings in life-cycle cost. SHM refers to a process

of damage detection and condition assessment for aerospace,

civil, and mechanical structures [8]. The importance of

developing robust and automated SHM systems has been

widely recognized in recent decades [9–15].

Damage detection is a very critical component of SHM

given that the existence and location of damage should be
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identified, so that effective preventive actions could be taken

[16]. Generally speaking, damage refers to the changes

introduced into a systemwhich lead to a decrease in its current

and future performance. In structural systems, damagemay be

related to changes in thematerial and/or geometric properties,

boundary conditions, and so on. According to Rytter [16], any

damage detection method should focus on the following four

objectives: (1) identifying the existence of damage; (2)

localizing the damage; (3) determining the severity of dam-

age; and (4) estimating the remaining useful life. These

objectives belong to four different levels and are arranged in

order of difficulty. Current damage detection methods mainly

concentrate on levels 1, 2, and 3.Among all the objectives, the

location of damage is paramount, because it is a prerequisite to

conduct more detailed investigations and eventually under-

stand the root cause of the damage.

Recent years, all kinds of methods based on different

theories, such as modal frequencies, mode shapes or model

updating,were developed by researchers [17–20].Among all

the methods, time series based methods [21–25] have drawn

a lot of attention due to its advantages for computational

efficiency and automation. Time series analyses are in gen-

eral used to process time series data to extract the statistical

characteristics of the data sets. Early in their development,

these methods had been mainly used in economics and

electrical engineering. In structural engineering, the time

series model is initially used for system identification and

modal analysis [26]. Gradually, the potential of time series

analysis as a valuable tool for damage detection has been

recognized by researchers. Dating back to 2000, Bodeux and

Golinval [27] illustrated an autoregressive moving-average

vector (ARMAV)-based method for system identification

and damage detection on the ‘‘Steel-Quake’’ benchmark

structure. The prediction error method was used to estimate

the parameters of the ARMAV model on the basis of output

data. The damage was identified based on the evaluation of

the uncertainties of the parameters. However, as an early

study, authors only attempted to identify the existence of the

damage. In 2001, Sohn et al. [21] demonstrated an approach

using time series analysis and outlier analysis. First, the time

series analysis based on autoregressive models (ARmodels)

and autoregressive models with exogenous inputs (ARX

models) were carried out. Then, an outlier analysis based on

Mahalanobis distance is conducted to extract the DF.

Applying this method to the strain gage data of a surface-

effect fast patrol boat, the method could distinguish different

structural conditions. However, no information about loca-

tion and severity was provided by this method. By applying

the autoregressive moving-average (ARMA) model to the

vibration signals, Nair et al. [22] proposed a new DF as a

function of the first three AR coefficients. Then, a hypothesis

test including the t test was used to detect damage. Further-

more, to discern the location of damage, two different

localization indices were introduced and the accuracies of

results were compared. The results of applying themethod to

analytical and experimental data of the ASCE benchmark

structure were encouraging, since the method was able to

detect and locate damage correctly. Gül and Catbas [28]

tested a statistical pattern recognition methodology in the

context of time series analysis using different laboratory

structures. The results showed that this methodology worked

well inmost cases. However, they also identified some issues

that would have to be resolved before applying this approach

in a realistic structure, such as the determination of the

threshold. Gül and Catbas [29] introduced the concept of

sensor cluster for the first time to improve the robustness of

time series method for damage detection. In their study,

coefficients and fit ratios of ARX models are used as DFs,

respectively. Then, the DFs are verified first in a 4-DOF

mass–spring system and then in an international benchmark

problem. Their results demonstrated that the difference of fit

ratio can identify the location and extent of damage suc-

cessfully. Van Le and Nishio [30] conducted correlation

coefficient analysis and outlier detection algorithm on the

displacement and temperature data collected from a GPS

monitoring system in a cable-stayed bridge. They then

applied ARIMA model to those data to investigate the pos-

sibility of using such data for global damage detection. In

2014, Yao and Pakzad [31] created two DFs, i.e., the

Mahalanobis distance of autoregressive coefficients and the

Cosh distance of autoregressive spectra, to detect damage in

a 10-DOF system. Analytical sensitivity analyses were

conducted to derive the sensitivity of these DFs with respect

to structural damage and measurement noise level. They

showed that theseDFsweremore sensitive to damage than to

noise. Roy et al. [32] developed a type of DF based on

Kolmogorov–Smirnov test statistical distance and residual

error of a set of ARX models. Evaluating the DFs in two

numerical structures and an experimental structure, they

observed that their DFs can satisfactorily localize damage in

the presence of damping, multiple damages, and parametric

uncertainties. Kim et al. [33] conducted a field experiment on

a real Gerber-truss bridge to detect artificially induced

damage. The authors first utilized Mahalanobis–Taguchi

system (MTS) on modal parameters and then the indicators

proposed by Nair et al. [22]. Their results showed that Nair’s

indicator is superior to the modal parameters for damage

detection.

As discussed above, the researchers in this area have

conducted a lot of work and made great achievements.

However, due to the complexity of civil infrastructure

systems, environmental, and operational conditions, a

number of issues still need to be resolved before they can

be applied to real-life structures.

In most of the time series based methods, the order of time

series models is often determined either by experience or by
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the quality of models. The models would vary for different

applications. In this paper, a fixed-order time series model is

proposed for damage detection and localization. The sensor

clustering approach for damage detection was introduced by

Gül andCatbas [29], and themainnovelty of this present paper

is that the time series models are derived directly from the

equation of motion (EOM) yielding to a fixed-order time

seriesmodels. Themodel proposedbyGül andCatbas [29] did

not explicitly consider the velocity and displacement data in

the development of the time series models, whereas these

parameters are included in the proposed models presented in

this paper. These significant improvements in the model

results in a consistent form of the time series models for any

application andwould be very beneficial for automation of the

system. Based on the proposed models, two different DFs are

developed and referred to as DFFR and DFCOEFF, which stand

for theDFs usingfit ratio and coefficients.This is anothermain

difference of the present paper with Gül and Catbas [29],

where the damage features based on the model coefficients

could not be used for damage detection, since they were too

sensitive tomeasurement noise. Itwill be seen in the following

sections that the proposed method could identify the location

and severity of damage for a steel grid structure successfully

using either fit ratios or coefficients as DFs.

2 Outline of damage detection method
and underlying theory

2.1 Introduction to time series model

Time series modeling has been widely used in different fields

including SHM. In this study, time seriesmodels are used tofit

the dynamic response of a structure. In this section, a brief

discussion about the autoregressive moving average model

with eXogenous inputs (ARMAX model) and the autore-

gressive model with eXogenous inputs (ARX model) used in

this paper is presented. More details of these time series

models can be referred to Ljung [34] and Box et al. [35].

The basic form of an ARMAX model is shown in:

yðtÞ þ a1yðt � DtÞ þ � � � þ anayðt � naDtÞ
¼ b1uðt � DtÞ þ � � � þ bnbuðt � nbDtÞ
þ eðtÞ þ d1eðt � DtÞ þ � � � þ dnceðt � ncDtÞ; ð1Þ

where y(t), u(t), and e(t) are output, input, and error terms

of the model, respectively, and a1; . . .ana ; b1; . . .

bnb ; d1; . . .dnc are the parameters of the model. It is usually

convenient to use the more concise form as in:

AðqÞyðtÞ ¼ BðqÞuðtÞ þ DðqÞeðtÞ; ð2Þ

where A(q), B(q), and D(q) are the polynomials including

coefficients of the model:

AðqÞ ¼ 1þ a1q
�1 þ � � � þ anaq

�na

BðqÞ ¼ b1q
�1 þ b2q

�2 � � � þ bnbq
�nb

DðqÞ ¼ 1þ d1q
�1 þ d2q

�2 � � � þ dncq
�nc

ð3Þ

where q is a backshift operator. For example, a variable

X(t) at time t multiplied by qj is equal to X(t-jDt). The
orders of the polynomials are denoted by na, nb, and nc.

Several other time series models are special cases of the

ARMAX model. For example, the model is called an AR

process if nb and nc are both zero, and an MA process if na
and nb are zero. If only nc is set to zero, the model is defined

as ARX model, which is used in the following sections. The

form of an ARXmodel is expressed in Eq. 4 or Eq. 5. All the

parameters have the same definitions as for ARMAXmodel:

yðtÞ þ a1yðt � DtÞ þ � � � þ anayðt � naDtÞ
¼ b1uðt � DtÞ þ � � � þ bnbuðt � nbDtÞ þ eðtÞ

ð4Þ

AðqÞyðtÞ ¼ BðqÞuðtÞ þ eðtÞ: ð5Þ

2.2 Least squares criterion

The first step to use an ARX model is to estimate its

coefficients. In practice, least-squares criterion (LSC) is

often used to estimate the coefficients of the ARX model. If

data from previous time are used to represent the response

at time t, the form in Eq. 6 could be obtained according to

Eq. 4:

yðtÞ ¼ �a1yðt � DtÞ � � � � � anayðt � naDtÞ þ b1uðt � DtÞ
þ � � � þ bnbuðt � nbDtÞ þ eðtÞ: ð6Þ

The predicted value of y(t) could be calculated using:

ŷðtÞ ¼ �a1yðt � DtÞ � � � � � anayðt � naDtÞ þ b1uðt � DtÞ
þ � � � þ bnbuðt � nbDtÞ: ð7Þ

A more concise form of Eq. 7 is presented below:

ŷðtÞ ¼ uT tð Þh ð8Þ

where

u tð Þ ¼ ½�yðt � DtÞ � � � �yðt � naDtÞ uðt � DtÞ � � � uðt � nbDtÞ �T

ð9Þ

h ¼ ½ a1 a2 � � � ana b1 � � � bnb� T ð10Þ

where u(t) is the regression vector consisting of known

time series, and h includes the coefficients to be estimated.

Therefore, the error between true and predicted values of

y(t) can easily be derived using the following:

eðtÞ ¼ yðtÞ � ŷðtÞ ¼ yðtÞ � uT tð Þh: ð11Þ

It can be seen that e(t) is actually the error term of the

ARX model and it depends on the coefficients of the
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model. Therefore, the least square criterion could be writ-

ten in:

VMðhÞ ¼
1

M

XM

t¼1

1

2
½yðtÞ�uT tð Þh�2; ð12Þ

where M stands for the number of points used in the model.

Since Eq. 12 is a quadratic criterion, analytic form of h to
minimize VM(h) could be derived, which is shown in Eq. 13:

hLSM ¼ argminVMðhÞ

¼ 1

M

XM

t¼1

uðtÞuTðtÞ
" #�1

1

M

XM

t¼1

uðtÞyðtÞ
" #

: ð13Þ

There are also other search methods to determine a best

model. Detailed derivations of other estimation methods

can refer to Ljung [34].

2.3 ARX models based on different sensor clusters

The dynamic responses (accelerations, velocities, and dis-

placements) of a structure are governed by the EOM.Changing

over the time and strongly depending on prior states and

external inputs, these data can be considered as typical time

series. Therefore, it is expected that the time series modeling is

suitable tofit thesedataandextract the statistical characteristics.

However, different orders and coefficients would lead to dif-

ferent ARX models and the validity of models varies a lot

according to different orders. The EOM of a structure under

dynamic loading is investigated to determine proper orders of

the ARX model. Equation 14 represents the basic form of an

EOM for an N degrees of freedom (DOFs) system:

M€xðtÞ þ C _xðtÞ þKxðtÞ ¼ fðtÞ ð14Þ

where M, C, and K represent the N by N mass, damping

and stiffness matrices of the system. The vectors €xðtÞ; _xðtÞ
and x(t) represent acceleration, velocity and displacement

at a certain time t. The external forcing vector on the

system is denoted by f(t).

If we write Eq. 14 in matrix form (see Eq. 15), it is seen

that some transformations can be conducted on this EOM.

The first step is to write the ith row of Eq. 15 separately

(shown as Eq. 16):

m11 � � � m1N

..

. . .
. ..

.

mN1 � � � mNN

2
664

3
775

€x1

..

.

€xN

8
><

>:

9
>=

>;
þ

c11 � � � c1N

..

. . .
. ..

.

cN1 � � � cNN

2
664

3
775

_x1

..

.

_xN

8
><

>:

9
>=

>;

þ
k11 � � � k1N

..

. . .
. ..

.

kN1 � � � kNN

2
664

3
775

x1

..

.

xN

8
><

>:

9
>=

>;
¼

f1

..

.

fN

8
>><

>>:

9
>>=

>>;
ð15Þ

mi1€x1ðtÞ þ � � � þ miN €xNðtÞð Þ þ ci1 _x1ðtÞ þ � � � þ ciN _xNðtÞð Þ
þ ki1x1ðtÞ þ � � � þ kiNxNðtÞð Þ ¼ fiðtÞ ð16Þ

mi1 x
:...

1ðtÞþ � � �þmiN x
:...

NðtÞð Þþ ci1 x
:...

1ðtÞþ �� �þ ciN x
:...

NðtÞð Þ
þ ki1€x1ðtÞþ �� �þ kiN €xNðtÞð Þ¼ €f iðtÞ: ð17Þ

Considering that measuring high-speed displacement and

velocity data are usually not practical in most of the real life

SHM applications, some efforts are made to eliminate these

terms from Eq. 16. First, Eq. 17 is derived by taking the

second derivative of Eq. 16. Then, the central difference

technique is introduced to replace x
:...

iðtÞ with €xiðt þ DtÞ�ð

€xiðt � DtÞÞ=2Dt and x
:...

i
ðtÞ with €xiðt þ DtÞ � 2€xiðtÞð þ€xiðt �

DtÞÞ
.
ðDtÞ2 [36]. Then, Eq. 18 is obtained with only accel-

erations. For free vibration, the force terms are zero, since the

vibration is caused by initial conditions. Rearranging Eq. 18

and putting €xiðt þ DtÞ to the left of the equal sign as an output
and all other terms to the right side as inputs, it is expected a

form in Eq. 19 similar to the ARX model in Eq. 4:

mii

ðDtÞ2
þ cii

2Dt

 !
€xiðt þ DtÞ¼ �

X

j¼1:N;j6¼i

mjj

ðDtÞ2
þ cjj

2Dt

 !
€xjðt þ DtÞ

þ
X

j¼1:N

2mij

ðDtÞ2
� kij

 !
€xjðtÞ þ

X

j¼1:N

cij

2Dt
� mij

ðDtÞ2

 !
€xjðt � DtÞ:

ð19Þ

mi1

€x1ðt þ DtÞ � 2€x1ðtÞ þ €x1ðt � DtÞð Þ
ðDtÞ2

þ � � � þ miN

€xNðt þ DtÞ � 2€xNðtÞ þ €xNðt � DtÞð Þ
ðDtÞ2

 !

þ ci1
€x1ðt þ DtÞ � €x1ðt � DtÞ

2Dt
þ � � � þ ciN

€xNðt þ DtÞ � €xNðt � DtÞ
2Dt

� �

þ ki1€x1ðtÞ þ � � � þ kiN€xNðtÞð Þ ¼ €f iðtÞ

ð18Þ
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Comparing Eq. 19 with Eq. 4, the final form of the ARX

model for the ith row of the Eq. 15 can be seen in the

following equation:

€xiðtÞ ¼ b1i1€x1ðtÞ þ � � � þ b1i;i�1€xi�1ðtÞ þ b1i;iþ1€xiþ1ðtÞ þ � � �
þ b1iN€xNðtÞ þ b2i1€x1ðt � DtÞ þ � � � þ b2iN €xNðt � DtÞ
þ b3i1€x1ðt � 2DtÞ þ � � � þ b3i1€xNðt � 2DtÞ þ eðtÞ: ð20Þ

Obviously, the ARX models for all the rows of Eq. 15

can be derived in the same way. When a structure is ide-

alized as a multi-degree-of-freedom system, its stiffness

and mass matrices are both sparse matrices and only the

accelerations from some adjacent DOFs are adopted in

each ARX model. Here, the sensor considered as output in

the ARX model is defined as the reference channel and all

the other sensors adjacent to this one are classified as the

corresponding neighbor channels forming the sensor clus-

ter. The orders of coefficients in ARX model are directly

determined by comparing Eq. 19 with Eq. 20, and they

would be fixed for any type of structures. Thus, for an N-

DOF system, N different sensor clusters could be

constructed.

To further clarify the proposed approach schemati-

cally, a simple 3-DOF mass spring system is taken as an

example (shown in Fig. 1). For the first sensor cluster,

the reference channel is the first DOF and the sensor

cluster includes signals from DOFs 1 and 2. The second

sensor cluster is created with the reference channel of

DOF 2 and contains DOFs 1, 2, and 3 adjacent to the

reference channel. Similarly, the third sensor cluster’s

reference channel is DOF 3 and the cluster comprises

DOFs 2 and 3. For the total three DOFs, three sensor

clusters are created and each ARX model corresponds to

one sensor cluster.

2.4 Extraction of damage features

After creating the ARX models for the sensor clusters, two

different DFs extracted from the ARX models are intro-

duced to detect damage: (1) DFFR and (2) DFCOEFF. DFFR
is defined as the difference of fit ratios. FR, i.e., fit ratio, is

defined as normalized root mean squared error expressed as

percentage, as presented in Eq. 21, in which ymeasured is the

measured output data, ymodel is simulated output data,

�ymeausured is average of measured output data. As shown in

Eq. 22, FR1
i is obtained by fitting the damaged data to the

ith ARX model based on baseline data, and FR2
i is defined

as the fit ratio obtained by fitting the damaged data to the

ith ARX model based on damaged data. As the damage

changes the properties of the structure, the ARX models

based on baseline data cannot fit the damaged data as well

as the ARX models based on damaged data. The difference

between these fit ratios is expected to represent the change

in the properties of the system when damage occurs:

DFiFR ¼ 100 1� ymeasured � ymodelk k
ymeasured � �ymeausuredk k

� �
ð21Þ

DFiFR ¼
FRi

1 � FRi
2

�� ��
FRi

2

; ði 2 sensor clustersÞ: ð22Þ

DFCOEFF is based on the idea that if the ARX model can

well fit the dynamic responses, the corresponding coeffi-

cients should reflect the physical properties of the structure

as can be observed from Eq. 19. The damage caused by

stiffness change is expected to be identified by calculating

the square sum of the difference of the coefficients related

to the stiffness. DFCOEFF is defined as:

DFiCOEFF ¼
XN

j¼1

ðb2ij;H�b2ij;DÞ
2 � 100; ði 2 sensor clustersÞ;

ð23Þ

Fig. 1 Explanation of the sensor clustering schematically
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where b2ij stands for the coefficients for €xjðt � DtÞ in the ith

sensor cluster. The subscripts H and D represent the ARX

models based on healthy and damaged data. The overall

process for the method using two different DFs can be seen

in Figs. 2 and 3.

3 Experimental case study: a steel grid type
structure

3.1 Introduction to the benchmark problem

and implementation of the method

To investigate the capabilities of the proposed approach

described in last section, it is applied to experimental data

obtained from a bridge health monitoring benchmark

problem developed and led by a research group at the

University of Central Florida, USA [37]. The structure

chosen as the benchmark problem is a steel grid, which

enables researchers to test their methods before applying to

real-life structures. As shown in Fig. 4, the specimen has

two clear spans with two continuous girders across the

middle supports. The girders are 5.49 m in longitudinal

direction and the width of the structure is 0.92 m. The

whole grid is supported by six 1.07 m tall columns. More

details about the specimen can be found in Catbas et al.

[37], and Gül and Catbas [29, 38].

As mentioned above, this grid structure is designed to be

easily changeable to test the performance of various dam-

age detection methods for different damaged states. In

Fig. 5, the details of the grid structure can be seen. With

the specially designed connections and supports, different

boundary conditions (pin supports, roller supports, fixed

supports, and semi-fixed supports) and damaged states

(bolts removal, supports removal, and gusset plate

removal) can easily be introduced.

Fig. 2 Process of the time series based method using DFFR

Fig. 3 Process of the time series based method using DFCOEFF
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The nodes which connect the girders and beams are

numbered in Fig. 5. A number of sensors could be

installed on this structure. For the purpose of dynamic

tests, 12 accelerometers were installed in vertical

direction at each node (except N7 and N14 for practical

limitations during the tests). The accelerometers used in

this study were IPC/seismic-type accelerometers. The

parameters of the accelerometers were: 0.01–1200 Hz

frequency range, 1000 mV/g sensitivity and ±2.5 g

measurement range. A VXI system from Agilent Tech-

nologies was used as the acquisition system to record the

response. MTS-Test software was used for the purpose

of acquisition control [23]. The sampling frequency for

this experiment was 400 Hz.

For this study, four different kinds of damage were

introduced. The detailed photos of the damage are shown

in Fig. 6.

1. Damage Case 1: Scour (roller support removal) at N4.

2. Damage Case 2: Boundary restraint (fixing the roller

supports) at N7 and N14.

3. Damage Case 3: Moment release (removal of all 24

bolts at the connection) and plate removal at N3.

4. Damage Case 4: Moment release (removal of 8 bolts

connecting the transverse member to the main girder at

each connection) at N3 and N10.

For the experiments, impact tests were conducted to

simulate free vibration. The structure was excited by an

Fig. 4 Steel grid model used

for experiments [23]

Fig. 5 Details of the steel grid

structure (adapted from [23])
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instrumented impact hammer at N2, N5, N6, and N12

separately. For each damage case, 20 tests were carried out

with five continuous ones at one excitation location. The

sampling frequency, 400 Hz, is more than twice as the

frequency for the 15th mode of the structure [23]. Thus, at

least 15 modes could be identified in this structure, which

is considered as a reasonable number for damage detection

of bridge type structures. Figure 7 shows the experimental

vibration data from the baseline (undamaged) structure at

all 12 nodes. The total measured time period was 10 s, but

only the data for the first 5 s were used for damage

detection. To eliminate the effect of initial conditions, the

first 100 data points (0.25 s) were not used.

For the implementation of the proposed damage

detection method, the acceleration data from the support

locations (N1, N4, N8, and N11) were practically zero

and created instability in the models, since these sensors

were on the supports. Eventually, as shown in Table 1, 8

sensors clusters with N2, N3, N5, N6, N9, N10, N12, and

N13 as reference channels were formed to detect

potential damage.

The following sections demonstrate the results and

interpretations of the implementation of the proposed

method with two different kinds of DFs. In Sect. 3.2, the

difference of fit ratios is first considered as DFFR. The

results for impact at N12 are taken as an example (see

Fig. 8) and for all other impact locations are used to

investigate the influence of impact locations on the per-

formance of the method. Section 3.3 presents the results

obtained by using the function of coefficients as DFCOEFF.

Only results for impact at N12 are shown for Sect. 3.3.

3.2 Analysis and result interpretations

for the method using fit ratios as DFFR

In general, a threshold value for the baseline condition

should be determined to minimize the false negative and

false positive alarms. For real-life applications, this

threshold can be calculated using long-term data to elimi-

nate the noise introduced by varying environmental and

operational conditions and to separate damaged state from

healthy state. In this study, the threshold is determined by

Fig. 6 Detailed photos of damage simulations: a Damage Case 1; b Damage Case 2; c Damage Case 3; d Damage Case 4 [23]
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comparing two healthy states. Since the experimental tests

used in this study are conducted in laboratory conditions,

the threshold value is expected to be smaller compared to a

real-life application.

Considering ten sets of healthy data as baseline state and

the other ten sets as unknown states, the DFFR can be

obtained by applying the proposed damage detection

method. Figure 9 shows all the DFFR for the healthy case.

It is easy to observe that almost all the DFs are below 0.9,

so here the threshold is determined as 0.9 with 79 out of the

80 points below it. Note that a more rigorous statistical

analysis or machine learning approach should be conducted

for determining the threshold for real-life applications

[39–41].

3.2.1 Damage detection using DFFR for Damage Case 1

(DC1): scour (support removal) at N4

The DFFR for Damage Case 1 are shown in Fig. 10. Since

this is significant global damage, all the DFFR are above the

threshold. Although this global damage has influence on all

the nodes in the structure, the proposed method still locates

the damage through the values of DFFR. It is shown in

Fig. 10 that the DFFR for N3 and N5 (actually they are very

close due to the symmetry) are significantly larger than

other nodes due to direct effect of the removal of roller
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Fig. 7 Experimental

acceleration data for the

baseline structure

Fig. 8 Location of the excitation

Table 1 Sensor clusters for the steel grid structure

Sensor

cluster

Output of the

ARMAX model

Inputs of the

ARMAX model

1 N2 N2, N3, N9

2 N3 N2, N3, N5, N10

3 N5 N3, N5, N6, N12

4 N6 N5, N6, N13

5 N9 N2, N9, N10

6 N10 N3, N9, N10, N12

7 N12 N5, N10, N12, N13

8 N13 N6, N12, N13
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support at N4. Interestingly, the acceleration data for N4

are not even used in any sensor clusters, but the damage is

still reflected by the DFFR from the neighboring sensors. In

addition, the indirect effects of the damage on N2 and N6

also lead to high DFFR at these nodes. Note that the DFFR
are around 40 for N3 and N5.

3.2.2 Damage detection using DFFR for Damage Case 2

(DC2): boundary restraint (fixing the roller

supports) at N7 and N14

Damage Case 2 is a less severe case than the previous

damage case, but it is still a relatively significant global

damage case. All the DFFR for this case (Fig. 11) are above

the threshold also, because it is global damage affecting the

entire structure significantly. Due to the boundary condi-

tion change at supports N7 and N14, the DFFR for the

closest nodes N6 and N13 are higher than DFFR for all

other nodes (note that N7 and N14 were not instrumented).

Due to the influence of damage, the nodes N5 and N12 are

also higher than others (but lower than N6 and N13,

because they are farther from damage). These results

demonstrate that the method has ability to reflect the

location of damage using the values of DFFR. Note that the

DFFR for N13 are around 24 and for N6 are about 20. These

values are smaller than those in Damage Case 1 showing

that less severe damage occurs. The slight differences for

DFFR in N6 and N13 for different trials may be caused by

some experimental variations.

3.2.3 Damage detection using DFFR for Damage Case 3

(DC3): moment release (removal of bolts) and plate

removal at N3

Damage Case 3 is localized damage due to the removal of

plate and bolts at N3. Figure 12 shows the DFFR for each

node. In this figure, only DFFR for N2, N3, N9, and N10 are

above the threshold, in which the DFFR for N3 are the

largest. All these evidences point out the correct location of

the damage at N3. Moreover, due to the localized damage,

other DFFR are below the threshold. Also note that the

maximum DFFR in Damage Case 1 were around 40 and

around 24 in Damage Case 2, but in this case, the maxi-

mum DFFR is only about 6. This can be explained as that

much less severe damage has happened in Damage Case 3.

This is the case since such damage caused by removing

bolts and a plate is localized and has less influence than the

change of boundary conditions.

3.2.4 Damage detection using DFFR for Damage Case 4

(DC4): moment release (removal of bolts) at N3

and N10

Damage Case 4 introduces relatively minor damage by

removing bolts at N3 and N10, and the DFFR for all 8

sensor clusters are shown in Fig. 13. Obviously, the

removal of bolts at one node is a localized damage, but the

combination of such damage at two nodes is expected to
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have a more spread influence (actually, six out of eight

sensors are adjacent to the damage in terms of sensor

clusters). This can be the reason of why all the DFFR are

above the threshold, which shows the existence of damage.

In this case, the highest DFFR is about 5, the smallest in all

four damage cases, which shows the severity of the dam-

age. However, it is acknowledged that the levels of the

DFFR are higher than expected and the location of damage

is not well identified, but all these DFFR are very close and

do not show false-positive results. The main reason to this

failure can be the fact that the minor damage may have

affected its adjacent nodes very similarly, which is difficult

to distinguish.

3.2.5 Influence of the impact location on damage detection

using DFFR

In the last sections, the results obtained using the data with

N12 as the impact location demonstrate that the method

successfully identify, localize, and estimate the severity of

the damage. However, in practice, different impact locations

would lead to different vibration and dynamic response from

the same structure. To investigate the influence of impact

location on the damage detection results using the time

series based method, dynamic responses obtained by excit-

ing the structure at N2, N5, and N6 are used in this section

(shown in Fig. 14).

Figures 15, 16, 17, and 18 show the DFFR adopting data

from different impact locations. In these figures, data sets

1–5 stand for the results for excitation at N2, data sets 6–10

represent the results for excitation at N5, and data sets

11–15 demonstrate the results for excitation at N6. Note

that the results for excitation at N12 were already presented

in the previous section.

As shown in Fig. 15, the results for support removal at N4 in

DamageCase 1 are presented. TheDFFR forN3 andN5 are still

the highest as presented before. The indirect effects of the

damage on N2 and N6 for all three excitation locations are

obvious. Although the relationship of DFFR between nodes is

clear, the significance of difference still varies according to

difference impact locations. For data sets 6–10 (impact location

at N5), the values of DFFR are lower than other sets, but the

highest DFFR of about 45 is still larger than the corresponding

DFs for impact location 5 in Damage Case 2 (approximately

35). The difference of DFFR ismainly caused by the reason that

the impacts at different locations excite differentmodes, so that

the goodness of fit of the ARX models would change accord-

ingly; however, this does not affect the overall relationship of

DFFR between sensor clusters.

Figure 16 shows the DFFR obtained by applying the

method to Damage Case 2. In this figure, it can be seen that

the method shows the DFFR for N6 and N13 as the highest

for all three impact locations despite some difference in the

levels. Similarly, N5 and N12 are also standing out due to

the indirect effect of the damage. All the other DFFR are

relatively low. Note that for data sets 1–10, the DFFR for

N3 and N10 are higher than for N2 and N9, but the case is

inversed for data sets 11–15. This means that the impact

location may slightly affect the relationship between DFFR
for the nodes far from the damage.

Figure 17 shows the results for Damage Case 3, which is

plate and bolts removal at N3. For all three impact loca-

tions, DFFR for N3 stand out exposing the correct location

of damage. It is also seen that all other DFFR are relatively

low, but their relations to the threshold are undetermined.

When the excitation is at N2, half of the DFFR for other

nodes are above the threshold, but this is not very obvious

to the results for excitation at N5 and N6. This problem can

be solved by determining the threshold separately for dif-

ferent impact locations.

In Fig. 18, the results for Damage Case 4 (bolts removal

at N3 and N10) are shown. For three different excitation

locations, all the DFFR are all above the threshold, which is

consistent with the results for impact at N12. However, the
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location of damage is still not detected for these three

impact locations. This means that the results cannot be

improved by choosing a more proper impact location.

Overall, it is shown that the location of the impact has

only slight influence on the DFFR for the nodes closest to the

damage location, and this influence does not affect the

performance of the method for damage detection and

localization. However, it can be seen that different impact

locations still result in slightly different DFFR, which could

be interpreted as better or worse results. This issue could be

overcome by carrying out tests several times for different

impact locations and analyzing the results comprehensively.

3.3 Analysis and result interpretations

for the method using coefficients as DFCOEFF

In this section, the same sensor clustering-based ARX

models are used to fit the acceleration data. However,

DFCOEFF are applied using the square sum of the difference

of the coefficients in ARX models as explained before. To

distinguish the damaged state from the healthy state, the

threshold is introduced which is still determined by com-

paring two healthy states. The DFCOEFF using the differ-

ence of coefficients are shown in Fig. 19. According to the

observation, the threshold is set to 0.5 with 79 of the 80

points below it.

Fig. 14 Excitations at N2, N5, and N6
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3.3.1 Damage detection using DFCOEFF for Damage Case

1 (DC1): scour (support removal) at N4

Since Damage Case 1 introduces a global damage caused

by the removal of support at N4, the DFCOEFF for all the

nodes are above the threshold (Fig. 20). Among them, the

DFCOEFF for N3 and N4 are the highest, because they are

closest to the damage. The indirect effect at N2 and N5 is

also observed. For this case, the peak value of DFCOEFF is

about 22, which will show that this damage is more severe

than the change of boundary conditions in Damage Case 2

shown in the next section. Therefore, it is concluded that

the method using DFCOEFF can simultaneously identify the

location and estimate the severity for this case.

3.3.2 Damage detection using DFCOEFF for Damage Case

2 (DC2): boundary restraint (fixing the roller

supports) at N7 and N14

Figure 21 plots the results for Damage Case 2. It is shown

that the DFCOEFF for N6 and N13 are still higher than

others because of fixing the roller supports at N7 and N14.

The highest DFCOEFF shown in this case is 8.6. N2 and N9

have the lowest DFCOEFF, since they are farthest form the

damage. However, N5 and N12 do not show higher

DFCOEFF than N3 and N10 even though they are closer to

the damage. Although the indirect effect is not identified,

the direct influence of damage on N6 and N13 still reveals

the location of damage successfully.

3.3.3 Damage detection using DFCOEFF for Damage Case

3 (DC3): moment release (removal of bolts)

and plate removal at N3

Figure 22 shows the results for the localized damage due to

the removal of plate and bolts simultaneously at N3 for

Damage Case 3. As shown in the figure, only the DFCOEFF
for N3 are clearly above the threshold, and all the other

DFCOEFF are around or below the threshold, which accu-

rately locates the damage. It is noted that the maximum

DFCOEFF is 4.1, which is less than Damage Cases 1 and 2.

This is consistent with the results for the DFFR discussed in

the previous sections.
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Fig. 19 DFCOEFF for determining the threshold under free vibration
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3.3.4 Damage detection using DFCOEFF for Damage Case

4 (DC4): moment release (removal of bolts) at N3

and N10

Damage Case 4 is introduced by removing bolts at N3 and

N10. The DFCOEFF for this case are shown in Fig. 23. It is

seen that all the DFCOEFF are above the threshold based on

the same reason as in Sect. 3.2.4. The maximum of

DFCOEFF is 3.4 showing this damage is the least severe.

However, the highest DFCOEFF is not for N3 or N10, which

means that the damage is still not clearly located even if the

coefficients are used as DFs.

4 Conclusions

In this paper, a new damage detection methodology is pro-

posed by creating ARX models for different sensor clusters

using the equations of motion of a structure. A unique

advantage of the proposed method is that the order of the

ARXmodels fixed, since it is directly derived from theEOM,

offering opportunities for an easier automation and improved

computational efficiency. Then, two different types of DFs

derived from these models were introduced. DFFR was based

on the idea that the ARX models created for one state of the

structure is no longer fit for another state. DFCOEFF related

the change in coefficients to the change in stiffness. The

proposed methodology is applied to experimental data

obtained from a grid-type steel structure where different

damage cases were simulated. Based on the results presented

in the paper, it is concluded that both two kinds of DFs can

identify and locate the damage in the steel grid structure and

estimate the relative severity successfully, but DFFR using fit

ratios can provide more successful results for some cases.

Although the results using DFCOEFF are not particularly

superior to results obtained using DFFR in the current form,

this damage feature is still very important, since it may be

extensible to build a direct relationship between the change

in coefficients and stiffness. However, there are still some

limitations in theseDFs. In this paper, it is shown that theDFs

do not perform very well for combined damage and the

damage that has more global effect. In the future, different

combinations of coefficients and different statistical meth-

ods can be used to locate damage more accurately, or dis-

tinguish between the changes in mass and stiffness. Authors

are also working on extending current research to ambient

vibration data using some techniques, such as random

decrement (RD) [42]. Another future research direction is to

test the proposedmethod using experimental data from other

laboratory and field structures.
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