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Abstract In this paper, an iterated square-root central

difference Kalman particle filter method (ISRCDKF-PF) is

used for the estimation of the state variables and model

parameters of nonlinear structural systems. In the current

work, we propose to extend our previous work (Mansouri

et al. in J Civil Struct Health Monit 5(4):493–508, 2015) to

deal with non-parametric Monte Carlo sampling-based

method and propose to use an enhanced PF technique

which incorporates the latest observations into a prior

updating scheme using the ISRCDKF algorithm. Various

conventional and state-of-the-art state estimation methods

are compared for the estimation performance, namely the

unscented Kalman filter (UKF), the square-root central

difference Kalman filter (SRCDKF), the iterated unscented

Kalman filter (IUKF), the iterated square-root central dif-

ference Kalman filter (SRCDKF), the conventional particle

filter (PF), the unscented Kalman particle filter (UKF-PF),

the SRCDKF-PF, the iterated unscented Kalman particle

filter (IUKF-PF) and the developed ISRCDKF-PF, in two

comparative studies through two examples, one using

synthetic data and the other using simulated three DOF

damped system data. In the first comparative study, the

state variables are estimated from noisy measurements of

these variables, and the comparison of the different esti-

mation techniques is performed by computing the root

mean square error (RMSE) of the state with respect to the

noise-free data. In the second comparative study, both the

state variables and the model parameters are simultane-

ously estimated, and the impact of the used measurement

noise, and number of estimated states/parameters on the

performances of the estimation techniques are investigated.

The ISRCDKF-PF algorithm consists of a PF based on

ISRCDKF to obtain a better importance proposal distri-

bution. This proposal is able to integrate the latest obser-

vation into the state density, then it can improve the

posteriori density. The results of both comparative study

show that PF, UKF-PF, SRCDKF-PF, IUKF-PF and

ISRCDKF-PF provide improved estimation performance

over the UKF, SRCDKF, IUKF, ISRCDKF. The results

also show that ISRCDKF-PF provides improved estimation

performance over IUKF-PF, even with abrupt changes in

estimated states, and both of them provide better accuracy

than the conventional PF, UKF-PF and SRCDKF-PF.

These advantages of the ISRCDKF-PF are due to the fact

that it uses an optimal proposal distribution which make

efficient use of the latest observation by using the

ISRCDKF algorithm.

Keywords Iterated square-root central difference

Kalman filter � Particle filter � State and parameter

estimations � Structural health monitoring � Civil
engineering infrastructure

1 Introduction

Structural health monitoring (SHM) is an emerging field

which aims at implementing damage detection and char-

acterization strategies in various engineering structures and

systems. Examples of such systems include buildings,
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pipelines, highways, stadiums, and others. SHM is imple-

mented by placing sensors on these structures to collect

data that can be used to make important decisions about the

condition and characteristics of these structures and sys-

tems. With the advancements in instrumentation and data

acquisition techniques, monitoring of engineering struc-

tures has become cheaper, more feasible, and gained more

popularity. In modal parameter estimation, the SHM sys-

tem can be ill-conditioned due to uncertainties in the

measurements [2, 3]. The potential errors in structural

model updating combined with aleatory uncertainty in

modal parameter estimation often results in inconsistencies

between the real structural behavior and the finite element

model predictions [4, 5]. However, in most of the published

research in SHM, the ill-conditioned state and the presence

of uncertainty are not considered [6]. It is also known that

the dynamic responses of the structures are excitation

amplitude dependent. Different levels of excitation ampli-

tudes were reported to result in different modal damping

ratios [7]. These inconsistencies in conjunction with the

noisy data lead to analytical models that are sometimes far

from the real behavior of the structure. This would result in

wrong decisions by the SHM decision-makers and of

course not contributing to the fundamental goals of the

SHM process. There have been numerous SHM studies on

the various uncertainty and quantification parameters such

as [8–13]. Many researchers have agreed that the Bayesian

approach is ‘‘relatively’’ strong for system identification

and it is capable of addressing the uncertainty to some

extent. Bayesian techniques for SHM have been researched

for ambient modal identification [8, 12, 14–16], recursive

filtering [17], acoustic emission-based monitoring [18, 19],

distributed fiber Bragg sensors [14], optimal sensor place-

ment [20], reliability assessment [21], seismic excitations

[22], and artificial neural networks [23]. Not only in civil

engineering structures, but also in aerospace and mechan-

ical engineering structures, the emphasis in SHM research

has been heavily on developing methods to better estimate

the modal parameters through recorded data [2, 3]. How-

ever, there are some distinctions between the mechanical

systems and civil structures for the application of some

estimation methods. In addition, the SHM measurements

are usually contaminated with errors hiding the important

structural parameters [4, 5, 24, 25]. In an attempt to clean

the contaminated data, filtering operation is conducted with

Bayesian approximation techniques available in the liter-

ature. The classical Kalman filter (KF) was developed in

the 1960s [26], and has been widely used in various

engineering and science applications, including communi-

cations, control, machine learning, neuroscience, and many

others. When the model describing the system is assumed

to be linear and Gaussian, the KF provides an optimal

solution [27]. It is known that the KF is computationally

efficient; however, it is limited by the non-universal linear

and Gaussian modeling assumptions. To relax these

assumptions, the extended Kalman filter (EKF) [28], the

unscented Kalman filter (UKF) [29, 30], the central dif-

ference Kalman filter (CDKF) [31], the square-root

unscented Kalman filter (SRUKF) [32], the square-root

central difference Kalman filter (SRCDKF) [33], the iter-

ated unscented Kalman filter (IUKF) [34] and the iterated

square-root unscented Kalman filter (ISRUKF) [1] have

been developed.

The objectives of the current paper are threefold: (1) to

develop an iterated square-root central difference Kalman

particle filter (ISRCDKF-PF) algorithm for nonlinear and

non-Gaussian estimation. In the case of the conventional

PF, the latest observation is not used for the computation of

the weights of the particles since the sampling distribution

is equal to the prior function. This selection of the sampling

distribution simplifies the evaluation, but can cause filter-

ing divergence. In those cases where the likelihood distri-

bution is too narrow compared to the prior one, very few

particles will have significant weights. Hence, a proposal

sampling distribution that takes the latest observation into

account is required. In this paper, the sampling distribution

is evaluated using the ISRCDKF. Hence, the ISRCDKF-PF

algorithm consists of a PF based on ISRCDKF to generate

the optimal importance proposal distribution. The

ISRCDKF-PF algorithm allows the particle filter to incor-

porate the latest observations into a prior updating

scheme using the estimator of the posterior distribution that

matches the true posterior more closely by using the

ISRCDKF algorithm. (2) To investigate the effects of

practical challenges (such as measurement noise and

number of estimated states/parameters) on the perfor-

mances of the techniques. To study the effect of mea-

surement noise on the estimation performances, several

measurement noise levels will be considered. Then, the

estimation performances of the techniques will be evalu-

ated for different noise levels. Also, to study the effect of

the number of estimated states/parameters on the estima-

tion performances of all the techniques, the estimation

performance will be studied for different numbers of esti-

mated states and parameters. (3) To apply the proposed

technique to estimate the state variables as well as the

model parameters through two examples, one using syn-

thetic data and the other using simulated three DOF

damped system data. The performances of the estimation

techniques will be compared to each others by computing

the execution times as well as the estimation root mean

square error (RMSE) with respect to the noise-free data.

The rest of the paper is organized as follows. We first

discuss related work and the motivation for the need to

develop the scheme in Sect. 2. In Sect. 3, the state esti-

mation problem is presented. Then, in Sect. 4, some state
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estimation methods and the developed iterated square-root

central difference Kalman filter method are described.

After that, in Sect. 5, the performance of the various state

estimation techniques are compared for their application to

estimate the state variables and model parameters in

structural health monitoring system. Conclusions are pre-

sented in Sect. 6.

2 Related work

Several works based on Bayesian inference are used for

state estimation in SHM systems. Mariani and Ghisi [35]

used the UKF to perform the joint estimation of model

parameters and state components of the softening single

degree-of-freedom structural systems. While, the work in

[36] showed that the UKF gives better state estimation and

parameter identification than the EKF for higher degree of

freedom systems and it is also robust to measurement noise

levels. Eleni and Andrew [37] compared the UKF and PF

methods and evaluated their efficiencies through a three-

DOF damped system data.

The UKF and CDKF methods give good and similar

estimation accuracies. However, in those techniques, the

computation of the matrix square root of the state covari-

ance at each time step when generating the sigma point is a

costly operation. To get more numerical stability, the square

root forms of the UKF and CDKF methods are numerically

derived. In the SRUKF and SRCDKF methods, the square-

root of the state covariance is directly propagated and

updated in Cholesky factored form, using various linear

algebra techniques such as the QR decomposition and the

Cholesky factor updating. The SRCDKF method has equal

or slightly better estimation accuracy when compared to the

standard UKF, but with the benefit of having a reduced

computational cost and an increased numerical stability (the

covariance matrices are guaranteed to be positive definite).

Otherwise, the iterative form of the UKF method gives

better performance than the non-iterative one, because in the

iterative schemes the observation equation is updated sev-

eral times using the measurements at a single sample step,

as a result the newest state estimation we get every time will

be more precise. Hence, the IUKF method is more precise

than the UKF method and the SRCDKF method is mar-

ginally better than the UKF method. In the same sense,

ISRCDKF method is practically a computationally (poten-

tially) more efficient of the IUKF method [34]. The

ISRCDKF method employs an iterative procedure within a

single measurement update step by resampling the sigma

points till a termination criterion, based on the minimization

of the maximum likelihood estimate, is satisfied. Further-

more, the ISRCDKF method propagates and updates the

square root of the state covariance iteratively and directly in

Cholesky factored form. In addition to providing reduction

in the computational complexity, ISRCDKF has as

increased numerical stability and better (or at least equal)

performance when compared to the other algorithms.

Unfortunately, for most nonlinear systems and non-Gaus-

sian noise observations, closed-form analytic expressions of

the posterior distribution of the state vector are untract-

able [38]. To overcome this drawback, a non-parametric

Monte Carlo sampling-based method called particle filter

(PF) [39, 40] has recently gained popularity. The PF

approximates the posterior probability distribution by a set

of weighted samples, called particles [39, 41]. PF is widely

used in nonlinear and non-Gaussian systems for several

filtering applications such as estimation, prediction, mod-

eling and monitoring [42]. In case of standard PF, the latest

observation is not considered for the evaluation of the

weights of the particles as the importance function is taken

to be equal to the prior density function [43, 44]. This choice

of importance sampling function simplifies the computation

but can cause filtering divergence. In cases where the like-

lihood function is too narrow compared to the prior func-

tion, very few particles will have significant weights [30,

45]. Hence, a better proposal distribution that takes the latest

observation into account is desired in order to gain better

performance [45, 46]. In the current work, we extend our

previous work [1] to deal with non-parametric Monte Carlo

sampling-based method and propose to use an ISRCDKF-

PF technique, which consists of a PF based on ISRCDKF to

generate the optimal importance proposal distribution. The

ISRCDKF-PF method allows the PF to incorporate the latest

observations into a prior updating scheme using ISRCDKF-

based approximated posterior distribution.

3 State estimation problem

Next, we present the formulation of the state estimation

problem.

3.1 Problem formulation

Consider a generic discrete-time nonlinear dynamic system

described by the following dynamic state-space model

(DSSM):

xkþ1 ¼ f ðxk; uk; h; vkÞ
yk ¼ hðxk; uk; h;wkÞ;

�
ð1Þ

where k is the discrete time index, xk 2 R
n is the state

vector, yk 2 R
m is the measurement vector, h 2 R

q is the

system parameters vector, uk 2 R
p is the input vector, f and

h are, respectively, the state and the observation functions,

and vk 2 R
n and wk 2 R

m are mutually independent i.i.d

noise processes.
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In this paper, the input vector uk is assumed to be

known. However, the vector of system parameters h is

taken to be unknown and it will be jointly estimated with

the state vector. For the sake of computational expediency,

we assume that the unknown system parameter vector

evolves artificially in time according to a random walk as

follows:

hk ¼ hk�1 þ gk�1; ð2Þ

where rk�1 is a sequence of i.i.d zero-mean Gaussian ran-

dom variables. In such estimation problems, the state

vector and the system parameter vector are usually con-

catenated into a single higher-dimensional joint state vec-

tor, zk 2 R
nþq, defined as:

zk ¼ xTk hTk
� �T ð3Þ

Using the augmented state vector, the process equation of

the DSSM (1) can be expanded to:

zkþ1 ¼
xkþ1

hkþ1

� �
¼

f ðxk; uk; vk; hkÞ
hk þ gk

� �
ð4Þ

Also, defining the augmented noise vector as

~wk ¼ vTk gTk
� �T

, the DSSM (1) can be written as:

zkþ1 ¼ f ðzk; uk; ~wkÞ
yk ¼ lðzk; uk; vkÞ;

�
ð5Þ

where f and l are differentiable nonlinear functions.

4 Description of state estimation methods

4.1 Square-root central difference Kalman filter

(SRCDKF) method

For nonlinear system, the EKF recursively calculates the

mean and the covariance Pk of the random variable,

while the UKF calculates the matrix square-root

SkS
T
k ¼ Pk, at each time step. However, the SRCDKF

directly propagate the square-root covariance matrix Sk
avoiding the computational complexity to refactorize at

each time step [32]. The SRCDKF firstly initializes the

mean of the state vector and the square root of it

covariance.

ẑ0 ¼ E½z0�; ð6Þ

and

S0 ¼ chol E ðz0 � ẑ0Þðz0 � ẑ0Þ0
� �� �

: ð7Þ

The Cholesky factorization produces an upper triangular

matrix from the decomposition of a symmetric, positive-

definite matrix into the product of a lower-triangular matrix

and its transpose. This new matrix is utilized directly to

generate the sigma points:

Wk�1 ¼ ẑk�1 ẑk�1 þ hSk�1 ẑk�1 � hSk�1½ �; ð8Þ

where ẑk�1 ¼ ẑk�1 �v½ �, Sk�1 ¼ diag Sk�1 Sv½ � and h is a

scaling parameter equal to the kurtosis of the prior random

variable. The optimal value of h for Gaussian random

variables is h ¼
ffiffiffi
3

p
.

Next, the sigma points are propagated through the

nonlinear process system to predict the current attitude

based on each sigma point.

Wkjk�1 ¼ f Wk�1½ �: ð9Þ

Then the state mean and square-root covariance are esti-

mated from the transformed sigma points using,

ẑ�k ¼
X2L
i¼0

W
ðmÞ
i Wi;kjk�1; ð10Þ

and

S�k ¼ qr

ffiffiffiffiffiffiffiffiffiffiffi
W

ðc1Þ
1

q
ðW1:L;kjk�1 �WLþ1:2L;kjk�1Þ

��
ffiffiffiffiffiffiffiffiffiffiffi
W

ðc2Þ
1

q
ðW1:L;kjk�1 þWLþ1:2L;kjk�1 � 2W0;kjk�1Þ

�

;

ð11Þ

where W
ðc1Þ
i ¼ 1

4h2
, W

ðc2Þ
i ¼ h2�1

4h4
, W

ðmÞ
0 ¼ h2�L

h2
, W

ðmÞ
i ¼ 1

2h2
.

The next step, the sigma-point for measurement update

is generated as,

Wkjk�1 ¼ ẑkjk�1 ẑkjk�1 þ hSkjk�1 ẑkjk�1 � hSkjk�1

� �
;

ð12Þ

where ẑkjk�1 ¼ ẑkjk�1 �w
� �

, Skjk�1 ¼ diag Skjk�1 Sw
� �

:
The measurements sigma points are propagated through

the measurement model:

Ykjk�1 ¼ h Wkjk�1

� �
: ð13Þ

To predict the measurements, the expected measurement

ŷ�k and square-root covariance of ~yk ¼ yk � ŷ�k (called the

innovation) are calculated as:

ŷ�k ¼
X2L
i¼0

W
ðmÞ
i Yi;j: ð14Þ

~yk ¼ yk � ŷ�k ; ð15Þ
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S~yk ¼ qr

ffiffiffiffiffiffiffiffiffiffiffi
W

ðc1Þ
1

q
ðY1:L;j � YLþ1:2L;jÞ

��
ffiffiffiffiffiffiffiffiffiffiffi
W

ðc2Þ
1

q
ðY1:L;j þ YLþ1:2L;j � 2Y0;jÞ

�

:

ð16Þ

In order to find out how much to adjust the predicted state

mean and covariance based on the actual measurement, the

Kalman gain matrix Kk is calculated as follows:

Pzkyk ¼ W
ðc1Þ
i S�k ½Y1:L;j � YLþ1:2L;j�T : ð17Þ

Kk;j ¼ Pzkyk=S
T
k =Syk : ð18Þ

Then, updated state mean and covariance are expressed

using the actual measurement and the Kalman gain matrix

as:

ẑk ¼ ẑ�k þKkðyk � ŷ�k Þ: ð19Þ

U ¼ KkS�yk : ð20Þ

Sk ¼ cholupdate S�k ;U;�1
� �

; ð21Þ

where Sv ¼
ffiffiffiffiffiffi
Rv

p
is the square root of the process noise

covariance matrix, Sw ¼
ffiffiffiffiffiffi
Rw

p
is the square root of the

measurement noise covariance matrix, chol - is Cholesky

method of matrix factorization, qr is QR matrix decom-

position and cholupdate is a Cholesky factor updating.

The benefit of the ISRCDKF method lies in its ability to

provide accuracy-related advantages over other estimation

methods since it re-linearizes the measurement equation by

iterating an approximate maximum a posteriori estimate

around the updated state, instead of relying on the pre-

dicted state. Next, ISRCDKF is presented.

4.2 Iterated square-root central difference Kalman

filter (ISRCDKF) method

With the success of IUKF method development [34] and

the superiority of SRCDKF, an improved performance

would be expected if the iterates are implemented in

SRCDKF. With the potential problems experienced with

the IUKF method, precaution should be taken for effective

performance of the iterated filter [47]. The development of

the ISRCDKF method is due to the need to overcome this

issue, utilizing a different iteration strategy.

In the ISRCDKF method, we apply the iterations on the

process of measurement update where the updated state

estimation is calculated using the predicted state and the

observation. Instead of relying on the predicted state, the

observation equation is re-linearized over times by iterating

an approximate maximum a posteriori estimate, so the state

estimate will be more accurate.

In the iterated measurement update step of the SRCDKF

approach, the new sigma points are generated at each

iteration from the latest estimation of the posterior state

distribution.

The square-root central difference approach is applied

again with the state estimation ẑk which will be expressed

as zj in the iteration and indicates the state estimation in the

jth iteration. Then, the state estimate is performed by the

measurement value. This is how the ISRCDKF works.

After the estimated mean ẑk
� and the covariance matrix

S�k are obtained, zj is obtained by the filtering algorithm.

The sampling points are re-generated based on zj and S�k by

the following equation:

Wj ¼ zj zj þ hS�k zj � hS�k
� �

ð22Þ

The new generated sample points pass through the mea-

surement equation:

Yj ¼ h Wj

� �
; ð23Þ

ŷ�j ¼
X2L
i¼0

W
ðmÞ
i Yi;j; ð24Þ

~yk ¼ yk � ŷ�k ; ð25Þ

S~yk ¼ QR

ffiffiffiffiffiffiffiffiffiffiffi
W

ðc1Þ
1

q
ðY1:L;j � YLþ1:2L;jÞ

ffiffiffiffiffiffiffiffiffiffiffi
W

ðc2Þ
1

q
ðY1:L;j

��

þ YLþ1:2L;j � 2Y0;jÞ
�


;

ð26Þ

Pzkyk ¼ W
ðc1Þ
i S�k ½Y1:L;j � YLþ1:2L;j�T : ð27Þ

Then, the Kalman gain Kk is be re-calculated:

Kk;j ¼ Pzkyk=S
T
k =Syk : ð28Þ

Next, the state estimate update is improved using yj instead

of ŷk:

ẑk ¼ ẑ�k þKkðyk � ŷ�j Þ: ð29Þ

Finally, the covariance matrix is re-calculated:

U ¼ KkS�yk ; ð30Þ
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Sk ¼ cholupdate S�k ;U;�1
� �

: ð31Þ

The algorithm of the ISRCDKF method can be summa-

rized in Algorithm 1.

4.3 Conventional particle filter (PF) method

A particle filter is an implementation of a recursive Bayesian

estimator [30, 48]. Bayesian estimation relies on computing

the posterior pðzkjy0:kÞ, which is the density function of the

unobserved state vector, zk, given the sequence of the

observed data y0:k � fy0; y2; . . .; ykg. In a Bayesian context,
the task of state estimation can be formulated as recursively

calculating the predictive distribution pðzkjy0:k�1Þ and the

filtering distribution pðzkjy0:kÞ as follows [30],

pðzkjy0:k�1Þ ¼
Z
R

n

pðzkjzk�1Þpðzk�1jy0:k�1Þdzk�1;

pðzkjy0:kÞ ¼
pðykjzkÞpðzkjy0:k�1Þ

pðykjy0:k�1Þ
;

ð32Þ

where the normalizing constant pðykjy0:k�1Þ¼
R
R

z pðykjzkÞ
pðzkjy0:k�1Þdzk.

The nonlinear nature of the system model leads to

intractable integrals when evaluating the marginal state dis-

tribution, pðzkjzk�1Þ. Therefore, Monte Carlo approximation

is utilized,where the joint posterior distribution, pðz0:kjy0:kÞ, is
approximated by the point-mass distribution of a set of

weighted samples (particles) fzðiÞ0:k; ‘
ðiÞ
k gNi¼0, i.e., [30, 49]:

p̂Nðz0:kjy0:kÞ ¼
XN
i¼0

‘
ðiÞ
k d

z
ðiÞ
0:k

ðd z0:kÞ=
XN
i¼0

‘
ðiÞ
k ; ð33Þ

where d
z
ðiÞ
0:k

ðd z0:kÞ denotes the Dirac function, ‘
ðiÞ
k are the

corresponding importance weights and N is the total

number of particles. Based on the same set of particles, the

marginal posterior probability of interest, pðzkjy0:kÞ, can
also be approximated as follows [30, 42]:

p̂Nðzkjy0:kÞ ¼
XN
i¼0

‘
ðiÞ
k d

z
ðiÞ
k

ðd zkÞ=
XN
i¼0

‘
ðiÞ
k : ð34Þ

In this Bayesian importance sampling (IS) approach, the

particles fzðiÞ0:kg
N
i¼0 are sampled from the following distri-

bution (called also Importance density) [42],
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pðz0:kjy0:kÞ ¼ pðzkjzk�1Þ

¼
Z

Nðzkjlk; kkÞpðlk; kkjzk�1Þdlkdkk; ð35Þ

where lk defines the expectation of the state zk and kk
defines the covariance matrix of the state zk.

Resampling is performed whenever the effective sample

size Neff drops below a certain threshold Nthreshold, where a

smaller Neff means a larger variance for the weights, hence

more degeneracy.

Then, the estimate of the augmented state bzk can be

approximated by a Monte Carlo scheme as follows [49]:

bzk ¼ XN
i¼0

‘
ðiÞ
k z

ðiÞ
k ; ð36Þ

where ‘
ðiÞ
k is given by [49]:

‘
ðiÞ
k / pðy0:kjzðiÞ0:kÞpðz

ðiÞ
0:kÞ

pðzðiÞ0:kjy0:kÞ
: ð37Þ

A common problem with the sequential importance sam-

pling-based particle filter is the degeneracy phenomenon.

This degeneracy implies that a large computational effort is

devoted to updating particles whose contribution to the

approximation of pðzkjy0:kÞ is almost zero. A suit-

able measure of degeneracy of the algorithm is the estimate

effective sample size N̂eff , which is introduced in [48] and

[50], and is defined as,

N̂eff ¼
1PN

i¼0ð‘
ðiÞ
k Þ2

; ð38Þ

where ‘
ðiÞ
k are the normalized weights obtained using (37).

The conventional PF algorithm for state/parameter

estimation is summarized in Algorithm 2.

Particle filtering suffers from one major drawback. Its

efficient implementation requires the ability to sample from

pðzkjzk�1Þ, which does not take into account the current

observed data, yk, and thus many particles can be wasted in

low likelihood (sparse) areas [30]. This issue is addressed

by the iterated square-root central difference Kalman par-

ticle filter, which is described in next Section.

4.4 Iterated square-root central difference Kalman

particle filter (ISRCDKF-PF) Method

The choice of optimal proposal function is one of the most

critical design issues in importance sampling schemes. In

[49], the optimal proposal distribution p̂ðzkjz0:k�1; y0:kÞ is

obtained by minimizing the variance of the importance

weights given the states z0:k�1 and the observations data

y0:k. This selection has also been studied by other

researchers. However, this optimal choice suffers from one

major drawback. The particles are sampled from the prior

density pðzkjz0:k�1Þ and the integral over the new state need

to be computed. In the general case, closed-form analytic

expression of the posterior distribution of the state is

untractable [38]. Therefore, the distribution pðzkjz0:k�1Þ is
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the most popular choice of proposal distribution. One of the

advantages of PF is its simplicity in sampling from the

prior functions pðzkjz0:k�1Þ and the evaluation of weights

‘
ðiÞ
k (as presented in the previous section) [38]. However,

the latest observation is not considered for the computation

of the weights of the particles as the importance density is

taken to be equal to the prior density [43]. The transition

prior pðzkjz0:k�1Þ does not take into account the current

observation data yk, and many particles can be wasted in

low likelihood areas. This choice of importance sampling

function simplifies the computational complexity but can

cause filtering divergence [30, 45]. In cases where the

likelihood density is too narrow as compared to the prior

function, very few particles will have considerable weights.

Therefore, the distribution pðzkjz0:k�1Þ is the most popular

choice of proposal distribution. Although the ISRCDKF-PF

moves the prior toward the likelihood, which due to cre-

ating a better proposal distribution, this is done by gener-

ating an optimal importance proposal distribution by using

ISRCDKF method (as presented in Sect. 4.2). Hence, the

ISRCDKF-PF algorithm consists of a PF based on

ISRCDKF to generate the optimal importance proposal

distribution. The proposal distribution integrates the latest

observation into system state transition density.

The developed ISRCDKF-PF algorithm can be sum-

marized in Algorithm 3.

5 Simulation results

5.1 State and parameter estimations for a scalar

nonlinear system

Next, the estimation performance is evaluated and the

developed ISRCDKF-PF method is compared to UKF,

SRCDKF, IUKF, ISRCDKF, PF, UKF-PF, SRCDKF-PF

and IUKF-PF methods through a scalar nonlinear sys-

tem (40). The purpose of this section is to estimate the

state variable xk and the model parameter /1. The

equations representing the system can be written as

follows:
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xk ¼ /1xk�1 þ 1þ sinðxpðk � 1ÞÞ þ vk; ð39Þ

where vk is a Nðvk; 0; 10�4Þ Gaussian distribution modeling

the process noise, and x = 0.04 and /1 = 0.5 are scalar

parameters. The non-stationary observation model is given

by:

yk ¼
/2x

2
k þ nk for k\ ¼ 30

/3xk � 2þ nk for k[ 30;

�
ð40Þ

where /2 = 0.2 and /3 = 0.5. The observation noise, nk, is

drawn from a Gaussian distribution Nðnk; 0; 10�4Þ.
For all simulations, the number of sigma points is fixed

to 5 for all the techniques (L ¼ 2) and the particle filters

use 500 particles. The initial values of the augmented state

vector are fixed to zð0Þ ¼ ½x0 h0� ¼ ½1 0:1�.

5.1.1 Comparative study 1: estimation of state variables

from noisy measurements

Here, we compare the estimation accuracy of UKF,

SRCDKF, IUKF, ISRCDKF, PF, UKF-PF, SRCDKF-PF,

IUKF-PF and ISRCDKF-PF methods when they are uti-

lized to estimate the state variable of the system model.

Hence, it is considered that the state vector to be estimated

is zk ¼ xk, and the model parameter, /1, is assumed to be

known.

The simulation results for the estimation of state vari-

able xk using UKF, SRCDKF, IUKF, ISRCDKF, PF, UKF-

PF, SRCDKF-PF, IUKF-PF and ISRCDKF-PF methods are

shown in Figs. 1 and 2, respectively. Also, the perfor-

mance comparison of the state estimation techniques in

terms of RMSE is presented in Table 1. It is easily

observed from Figs. 1 and 2 as well as Table 1 that UKF is

outperformed by the alternative techniques. The results

also show that the ISRCDKF-PF method achieves a better

accuracy than the other methods.

5.1.2 Comparative study 2: simultaneous estimation

of state variables and model parameters

The estimation of the state variables and parameters were

performed using the state estimation techniques, UKF,

SRCDKF, IUKF, ISRCDKF, PF, UKF-PF, SRCDKF-PF,

IUKF-PF and ISRCDKF-PF. The estimation results for the

model parameters using these estimation techniques are

shown in Figs. 3, and 4, respectively.

It can be seen from the results presented in Figs. 3 and 4

that the IUKF-PF, SRCDKF-PF and ISRCDKF-PF meth-

ods outperform the UKF-PF method, and that the

ISRCDKF-PF shows relative improvement over all other

techniques. These results confirm the results obtained in the

first comparative study, where only the state variable is

estimated. The advantages of the ISRCDKF-PF over the

other techniques can also be seen through their abilities to

estimate the model parameters. For example, UKF, IUKF,

SRCDKF and ISRCDKF could took longer to estimate a

model parameters (see Figs. 3, 4).
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Fig. 1 Estimation of state variable using various state estimation techniques (UKF, SRCDKF, IUKF, ISRCDKF)
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5.1.3 Effect of number of state and parameter to estimate

on the estimation RMSE

To study the effect of the number of states and parameters

to be estimated on the estimation performances of UKF,

SRCDKF, IUKF, ISRCDKF, PF, UKF-PF, SRCDKF-PF,

IUKF-PF and ISRCDKF-PF, the estimation performance is

analyzed for different numbers of estimated states and
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Fig. 2 Estimation of state variable using various state estimation techniques (PF, UKF-PF, IUKF-PF, SRCDKF-PF, ISRCDKF-PF)

Table 1 Comparison of state estimation techniques

Technique xk (RMSE) Technique xk (RMSE)

PF 0.0344

UKF 0.0378 UKF-PF 0.0312

SRCDKF 0.0374 SRCDKF-PF 0.0308

IUKF 0.0367 IUKF-PF 0.0294

ISRCDKF 0.0360 ISRCDKF-PF 0.0288
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Fig. 3 Estimation of the model parameter (/1) using UKF, SRCDKF, IUKF and ISRCDKF
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parameters. The estimation of the state variable and

parameter is performed using the techniques, and the

simulation results for the state variable and the model

parameters are shown in Table 2. Table 2 compares the

estimation root mean square errors for the state variable xk
(with respect to the noise-free data) and the mean of the

estimated parameter /1 (true value of /1 ) at steady state

(i.e., after convergence of the parameter) using UKF,

SRCDKF, IUKF, ISRCDKF, PF, UKF-PF, SRCDKF-PF,

IUKF-PF and ISRCDKF-PF, respectively.

The results also show that the number of states and

parameters to estimate affects the estimation accuracy of

the state variable. In other words, the estimation RMSE of

xk increases from the first comparative study where only

the state variable xk is estimated to the case where the state

variable xk and one parameter /1 are estimated.

For example, the RMSEs obtained using ISRCDKF-PF

for xk in the first comparative study and the second

comparative study are 0.0288 and 0.0610, respectively,

which increase as the number of estimated parameters

increases (see Table 2). This observation is valid for the

other state estimation techniques.

5.2 State and parameter estimations for three

degree of freedom spring–mass–dashpot system

Here, we consider the example of sensor heterogeneity

arising from the fact that both acceleration and displace-

ment are measured at various locations of the structural

system. The availability of non-collocated data might often

arise in the identification of systems where the displace-

ment data may be provided through global positioning

systems. The performance of developed ISRCDKF-PF is

evaluated through the example of a three degree-of-free-

dom system, involving a Bouc–Wen hysteretic component,

where the availability of displacement and acceleration
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Fig. 4 Estimation of the model parameter (/1) using UKF-PF, IUKF-PF, SRCDKF-PF and ISRCDKF-PF

Table 2 Root mean square

errors of estimated state

variables and mean of estimated

parameter

Technique xk (RMSE) /1 (mean) Technique xk (RMSE) /1 (mean)

PF 0.4310 0.4166

UKF 0.0858 0.4838 UKF-PF 0.0664 0.4932

SRCDKF 0.0850 0.4845 SRCDKF-PF 0.0655 0.4936

IUKF 0.0790 0.4895 IUKF-PF 0.0619 0.4951

ISRCDKF 0.0784 0.4902 ISRCDKF-PF 0.0610 0.4958
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measurements for different DOFs is assumed. Three degree

of freedom spring–mass–dashpot system is illustrated in

Fig. 5, which is usually used in SHM literature for the

performance evaluation of state estimation techniques. In

the considered system, the first degree of freedom is

associated with a nonlinear hysteretic component [25].

The system can be modeled by the equation of motion as

follows:

M€xðtÞ þ C _xðtÞ þ RxðtÞ ¼ FðtÞ; ð41Þ

where M and C are the matrices of mass and damping, R is

the restoring force, x(t) is the vector of displacements, _xðtÞ
is the vector of velocities, €xðtÞ is the vector of

accelerometer measurements and F(t) is the vector of

excitation force.

The restoring force R can be expressed as:

R ¼ akixðtÞ þ ð1� aÞkirðtÞ; ð42Þ

where a ¼ kf
ki
is the ratio of post-yield kf to pre-yield ki

stiffness and r1ðkÞ is the Bouc–Wen hysteretic component

that can be written as follows:

_r1ðkÞ ¼ _x1 � bj _x1jjr1jn�1
r � cð _x1Þjr1jn; ð43Þ

where b, c and n are the Bouc–Wen hysteretic parameters.

The system can be represented by the following state

equation:

x1

x2

x3

2
64

3
75� [

m1 0 0

0 m2 0

0 0 m3

2
64

3
75

€x1

€x2

€x3

2
64

3
75þ

c1 þ c2 �c2 0

�c2 c2 þ c3 �c3

0 �c3 c3

2
64

3
75

�
_x1

_x2

_x3

2
64

3
75þ

k1 k2 �k3 0

0 �k2 k2 þ k3 �k3

0 0 �k3 k3

2
64

3
75

r1

x1

x2

x3

2
6664

3
7775 ¼

F1ðkÞ
F2ðkÞ
F3ðkÞ

2
64

3
75

ð44Þ

where r1ðkÞ is the Bouc–Wen hysteretic component with:

_r1ðkÞ ¼ _x1 � bj _x1jjr1jn�1
r � cð _x1Þjr1jn ð45Þ

b, c and n are the Bouc–Wen hysteretic parameters.

The state and observation formulations are detailed in

our previous work [1].

5.2.1 Generation of dynamic data

For dynamic data generation from the SHM system (46)

[25] is used to simulate the responses of the state as

functions of time by solving the differential Eq. (46) using

fourth-order Runge–Kutta Integration.

_y ¼

_y1

_y2

_y3

_y4

_y5

_y6

_y7

2
666666666664

3
777777777775

¼

_x1

_x2

_x3

_r1

€x1

€x2

€x3

2
666666666664

3
777777777775

¼

z5

z6

z7

z5 � 2jz5jjz4j2�1
z4 � 1z5jz4j2

�9z4 � 9z1 þ 9z2 � 0:5z5 þ 0:25z6 þ €vg

�9z1 � 18z2 þ 9z3 � 0:25z5 þ 0:5z6 þ 0:25zz � €vg

9z2 � 9z3 þ 0:25z6 � 0:25z7 � €vg

2
666666666664

3
777777777775

;

ð46Þ

where the state variables x1, x2, x3 are displacements and r1
is the hysteretic Bouc–Wen parameter.

It must be noted that these simulated states are

assumed to be noise free. They are contaminated with

zero mean Gaussian errors. The SHM parameters as

well as other physical properties are shown in Table 3.

Figure 6 shows the changes in the state variable

(displacement x1).

Fig. 5 Three degree of freedom spring–mass–dashpot system. Note

that the first degree of freedom is associated with a nonlinear

hysteretic component [25]

Table 3 SHM parameters and physical properties

Parameter Value Parameter Value Parameter Value

m1 1 m2 1 m3 1

c1 0.25 c2 0.25 c3 0.25

k1 9 k2 9 k3 9

b 2 c 1 n 2
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For all simulations, the following parameters are used. The

sampling frequency of theNorthridge earthquake acceleration

data that was used as ground excitation €vg, is 100 Hz

(T ¼ 0:01 s). The Northridge earthquake signal was filtered

with a low-frequency cutoff of 0.13 Hz and a high-frequency

cutoff of 30 Hz. A duration of 20 s of the earthquake record

was adopted [25]. The number of sigma points is fixed to 32

for all the techniques (L ¼ 16). Theprocess noise of 1 %RMS

noise-to-signal ratio was added. The observation noise level

was of 4 %RMSnoise-to-signal ratio. The initial values of the

augmented state vector zð0Þ ¼ ½x0 h0� are given by:
x0 ¼ 0 0 0 0 0 0 0½ �and

h0 ¼ 6 6 6 0:5 0:5 0:5 3 2 1½ �:

5.2.2 Comparative study 1: estimation of state variables

from noisy measurements

The purpose of this study is to compare the estimation

accuracy of UKF, SRCDKF, IUKF, ISRCDKF, PF, UKF-

PF, SRCDKF-PF, IUKF-PF and ISRCDKF-PF methods

when they are utilized to estimate the seven state variables

of the three degree of freedom spring–mass–dashpot sys-

tem model. Hence, it is considered that the state vector to

be estimated, zk ¼ xk ¼ x1 x2 x3 r1 v1 v2 v3½ �T , and the

model parameters, k1, k2, k3, c1, c2, c3, b, c, and n are

assumed to be known.

The simulation results for state estimations of seven

state variables x1, x2, x3, r1, v1, v2 and v3 using UKF,

SRCDKF, IUKF, ISRCDKF, PF, UKF-PF, SRCDKF-PF,

IUKF-PF and ISRCDKF-PF methods are shown in

Figs. 7a–d, 8a–d, 9a–d and 10a–d, respectively. Also, the

performance comparison of the state estimation techniques

in terms of RMSE are presented in Table 4 (mean RMSE

(MRMSE) for UKF=0.0328 , SRCDKF= 0.0326, IUKF=

0.0323, ISRCDKF= 0.0320,PF = 0.0326, MRMSE (UKF-

PF) = 0.0313, MRMSE (SRCDKF-PF) = 0.0312, MRMSE

(IUKF-PF) = 0.0307, and MRMSE (ISRCDKF-PF) =

0.0305. It is easily observed from Figs. 7, 8, 9a–d and

10a–d as well as Table 4 that PF is outperformed by the

alternative techniques (see Table 4). The results also show

that the ISRCDKF-PF method achieves a better accuracy

than the IUKF-PF method. Both ISRCDKF-PF and IUKF-

PF methods can provide improved accuracy over the UKF-

PF and SRCDKF-PF approaches.
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Fig. 7 Estimation of state variables using various state estimation techniques (UKF, IUKF, SRCDKF and ISRCDKF)
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Fig. 8 Estimation of state variables using various state estimation techniques (PF, UKF-PF, IUKF-PF, SRCDKF-PF and ISRCDKF-PF)
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Fig. 9 Estimation of state variables using various state estimation techniques (UKF, IUKF, SRCDKF and ISRCDKF)
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5.2.3 Comparative study 2: simultaneous estimation

of state variables and model parameters

The estimation of the state variables and parameters were

performed using the state estimation techniques, UKF,

SRCDKF, IUKF, ISRCDKF, PF, UKF-PF, SRCDKF-PF,

IUKF-PF and ISRCDKF-PF. The estimation results for the

model parameters using the estimation techniques (UKF,

SRCDKF, IUKF, ISRCDKF, PF, UKF-PF, IUKF-PF,

SRCDKF-PF and ISRCDKF-PF) are shown in

Figs. 11, 12, 13, 14 , 15 and 16, respectively.

It can be seen from the results presented in

Figs. 11, 12, 13, 14 , 15 and 16 that the UKF-PF, IUKF-

PF and SRCDKF-PF methods outperform the PF

,ISRCDKF, IUKF, SRCDKF, and UKF methods, and

that the ISRCDKF-PF shows relative improvement over

all other techniques. These results confirm the results

obtained in the first comparative study, where only the

state variables are estimated. The advantages of the

ISRCDKF-PF over the IUKF-PF (and the IUKF-PF over

the PF, the UKF-PF and the SRCDKF-PF) can also be

seen through their abilities to estimate the model

parameters. For example, UKF, SRCDKF, IUKF,

ISRCDKF, PF, UKF-PF, IUKF-PF and SRCDKF-PF

could took longer to estimate a model parameters (see

Figs. 11, 12, 13, 14, 15, 16). The ISRCDKF-PF, how-

ever, could estimate all the model parameters in all four

cases.
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Fig. 10 Estimation of state variables using various state estimation techniques (PF, UKF-PF, IUKF-PF, SRCDKF-PF and ISRCDKF-PF)

Table 4 Comparison of state

estimation techniques
Technique x1 x2 x3 r1 v1 v2 v3

UKF 0.0097 0.0124 0.0159 0.0117 0.0624 0.0593 0.0586

SRCDKF 0.0097 0.0123 0.0157 0.0114 0.0622 0.0589 0.0585

IUKF 0.0094 0.0122 0.0149 0.0111 0.0622 0.0583 0.0581

ISRCDKF 0.0093 0.0119 0.0147 0.0108 0.0620 0.0578 0.0576

PF 0.0096 0.0115 0.0141 0.0123 0.0654 0.0573 0.0585

UKF-PF 0.0091 0.0106 0.0129 0.0108 0.0614 0.0572 0.0573

SRCDKF-PF 0.0089 0.0105 0.0124 0.0109 0.0616 0.0573 0.0573

IUKF-PF 0.0087 0.0105 0.0123 0.0106 0.0610 0.0571 0.0556

ISRCDKF-PF 0.0081 0.0096 0.0123 0.0100 0.0609 0.0566 0.0554
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5.2.4 Root mean square error analysis

Some practical challenges, however, can affect the accu-

racy of estimated states and/or parameters. Such challenges

include the large number of states and parameters to be

estimated, and the presence of measurement noise in the

data. The effect of the these challenges on the perfor-

mances of the UKF, IUKF, SRCDKF, ISRCDKF, PF,
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Fig. 11 Estimation of the model parameters (k1, k2 and k3) using UKF, SRCDKF, IUKF and ISRCDKF
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Fig. 12 Estimation of the model parameters (k1, k2 and k3) using PF, UKF-PF, SRCDKF-PF, IUKF-PF and ISRCDKF-PF
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UKF-PF, IUKF-PF, SRCDKF-PF and ISRCDKF-PF for

state and parameter estimation are investigated.

(a) Effect of number of state and parameter to estimate

on the estimation RMSE

To study the effect of the number of states and parameters

to be estimated on the estimation performances of PF,

UKF-PF, IUKF-PF, SRCDKF-PF and ISRCDKF-PF, the

estimation is analyzed for different numbers of estimated
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states and parameters. Here, we will consider three cases,

which are summarized below. In all cases, it is assumed

that the seven states x1, x2, x3, r1, v1, v2 and v3 are

measured.

1. Case 1: the seven states x1, x2, x3, r1, v1, v2 and v3
along with the first parameter k1 will be estimated.

2. Case 2: the seven states x1, x2, x3, r1, v1, v2 and v3 along

with the two parameters k1 and k2 will be estimated.
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Fig. 15 Estimation of the model parameters (b, c and n) using UKF, SRCDKF, IUKF and ISRCDKF
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3. Case 3: the seven states x1, x2, x3, r1, v1, v2 and v3
along with all the model parameters k1, k2, k3, c1, c2,

c3, b, c, and n will be estimated. In case 3 where all

the parameters are estimated, we have added

constraint on the parameter n. In fact, in the

spring–mass–dashpot system, the nonlinear spring

is mathematically ill-defined for negative values of

n and physically the values of n cannot be smaller

than 1 [37]. So when generating the sigma points, if

the value of n is smaller than 1, we shift the mean

for the symmetric sigma points by the small amount

as follows: Zð16; iÞ ¼ ð1þ 0:5 � randÞ �
constraints:value (where i ¼ number of sigma points

and constraints.value = 1).

The estimation of the state variables and parameter(s) for

these three cases is performed using UKF, SRCDKF,

IUKF, ISRCDKF, PF, UKF-PF, IUKF-PF, SRCDKF-PF

and ISRCDKF-PF, and the simulation results for the state

variables and the model parameters for the three cases are

shown in Tables 5, 6 and 7. For example, for case 1,

Table 5 compares the estimation root mean square errors

for the seven state variables x1, x2, x3, r1, v1, v2 and v3
(with respect to the noise-free data) and the mean of the

estimated parameter k1 at steady state (i.e., after conver-

gence of parameter(s)) using UKF, SRCDKF, IUKF,

ISRCDKF, PF, UKF-PF, IUKF-PF, SRCDKF-PF and

ISRCDKF-PF, respectively. Tables 6 and 7 also present

similar comparisons for cases 2 and 3, respectively.

The results also show that the number of parameters to

estimate affects the estimation accuracy of the state vari-

ables. In other words, for PF the estimation RMSE of x1,

x2, x3, r1, v1, v2 and v3 increases from the first comparative

study (where only the state variables are estimated) to case

1 (where the states and one parameter, k1, are estimated),

case 2 (where the states and two parameters, k1 and k2, are

estimated) to case 3 (where the states and nine parameters,

k1, k2, k3, c1, c2, c3, b, c, and n, are estimated). For

example, the RMSEs obtained using PF for x1 in the first

comparative study and cases 1, 2, 3 of the second com-

parative study are 0.0096, 0.0119, 0.0128 and 0.0180,

respectively, which increase as the number of estimated

parameters increases (see Tables 5, 6, 7). This observation

is valid for the other state variables x2, x3, z1, v1, v2 and v3
and for the other state estimation techniques UKF-PF,

IUKF-PF, SRCDKF-PF and ISRCDKF-PF.

In Fig. 15, the initial value of the parameter n has

automatically been changed in all the filters as the UKF,

SRCDKF, IUKF et ISRCDKF. This change is due to the

constraint applied on that parameter n because it value

should not be smaller than 1.

It can also be shown from Tables 5, 6 and 7 that, for all

the techniques, estimating more model parameters affects

Table 5 Root mean square

errors of estimated state

variables and mean of estimated

parameter

Technique x1 x2 x3 r1 v1 v2 v3 k1

UKF 0.0110 0.0127 0.0156 0.0153 0.0677 0.0601 0.0605 8.9610

SRCDKF 0.0110 0.0124 0.0152 0.0154 0.0679 0.0594 0.0593 8.9613

IUKF 0.0109 0.0123 0.0150 0.0147 0.0683 0.0589 0.0590 8.9725

ISRCDKF 0.0106 0.0119 0.0143 0.0154 0.0690 0.0579 0.0571 8.9741

PF 0.0119 0.0139 0.0164 0.0210 0.0760 0.0585 0.0577 8.8551

UKF-PF 0.0103 0.0117 0.0137 0.0160 0.0694 0.0558 0.0560 8.9372

SRCDKF-PF 0.0099 0.0114 0.0134 0.0155 0.0683 0.0559 0.0558 8.9459

IUKF-PF 0.0098 0.0112 0.0133 0.0150 0.0677 0.0552 0.0554 8.9520

ISRCDKF-PF 0.0096 0.0109 0.0130 0.0147 0.0671 0.0547 0.0546 8.9578

Table 6 Root mean square

errors of estimated state

variables and mean of estimated

parameter

Technique x1 x2 x3 r1 v1 v2 v3 k1 k2

UKF 0.0106 0.0224 0.0310 0.0165 0.0739 0.0644 0.0668 8.8517 8.6560

SRCDKF 0.0106 0.0224 0.0308 0.0163 0.0738 0.0641 0.0670 8.8597 8.6936

IUKF 0.0105 0.0222 0.0302 0.0158 0.0753 0.0637 0.0665 8.8561 8.7339

ISRCDKF 0.0105 0.0220 0.0298 0.0155 0.0751 0.0632 0.0665 8.8728 8.7901

PF 0.0128 0.0267 0.0294 0.0180 0.0780 0.0671 0.0657 8.1775 8.3102

UKF-PF 0.0104 0.0217 0.0230 0.0147 0.0737 0.0638 0.0635 8.8825 8.7749

SRCDKF-PF 0.0103 0.0213 0.0229 0.0148 0.0731 0.0632 0.0629 8.8844 8.7909

IUKF-PF 0.0101 0.0196 0.0212 0.0142 0.0730 0.0610 0.0619 8.8880 8.826

ISRCDKF-PF 0.0101 0.0191 0.0205 0.0137 0.0727 0.0605 0.0614 8.9046 8.8166
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the estimation accuracy. The ISRCDKF-PF method, how-

ever, still provides advantages over other methods in terms

of the estimation accuracy. These advantages of the

ISRCDKF-PF are due to the fact that it uses a better pro-

posal distribution that takes the latest observation into

account by using ISRCDKF.

It can also be shown from Tables 5, 6 and 7 that, for all

the techniques, estimating more model parameters affects

the estimation accuracy. The ISRCDKF-PF method, how-

ever, still provides advantages over other methods in terms

of the estimation accuracy. These advantages of the

ISRCDKF-PF are due to the fact that it uses a better

proposal distribution that takes the latest observation into

account by using ISRCDKF.

(b) Effect of noise content on the estimation RMSE

It is assumed that a noise is added to the state variables. In

order to show the performance of PF, UKF-PF, IUKF-PF,

SRCDKF-PF and ISRCDKF-PF estimation algorithms in the

presence of noise, three different measurements noise val-

ues, 10�1, 10�2 and 10�3 are considered. The simulation

results of estimating the seven states x1, x2, x3, r1, v1, v2 and

v3 using PF, UKF-PF, IUKF-PF, SRCDKF-PF and

ISRCDKF-PF methods when the noise levels vary in {10�1,

10�2 and 10�3} are shown in Tables 8, 9, 11, 10 and 12.

Table 7 Root mean square

errors of estimated state

variables and mean of estimated

parameter

Technique x1 x2 x3 r1 v1 v2 v3

UKF 0.0160 0.0339 0.0448 0.0336 0.0870 0.0679 0.0831

SRCDKF 0.0161 0.0338 0.0449 0.0332 0.0869 0.0678 0.0827

IUKF 0.0163 0.0334 0.0441 0.0327 0.0867 0.0676 0.0825

ISRCDKF 0.0165 0.0330 0.0436 0.0325 0.0865 0.0671 0.0822

PF 0.0180 0.0490 0.0520 0.0257 0.1034 0.0797 0.0864

UKF-PF 0.0165 0.0323 0.0425 0.0321 0.0861 0.0662 0.0823

SRCDKF-

PF

0.0165 0.0317 0.0420 0.0313 0.0854 0.0656 0.0826

IUKF-PF 0.0164 0.0305 0.0422 0.0320 0.0856 0.0659 0.0820

ISRCDKF-

PF

0.0162 0.0297 0.0413 0.0309 0.0847 0.0664 0.0815

Technique k1 k2 k3 c1 c2 c3 b c n

UKF 9.3364 8.5977 8.6950 0.3913 0.3420 0.3382 1.2551 1.5088 1.4744

SRCDKF 9.2671 8.4281 8.7637 0.3902 0.3388 0.3301 2.5260 1.5754 2.2117

IUKF 9.3818 9.0316 8.7422 0.3899 0.3354 0.3304 1.3093 1.2214 1.5188

ISRCDKF 9.1402 9.4149 9.2875 0.3711 0.3339 0.3219 2.4496 1.4780 2.1592

PF 7.3935 7.5139 8.0480 0.6431 0.3553 0.3253 2.8813 1.7200 1.6164

UKF-PF 8.9639 8.2504 8.8166 0.3653 0.2807 0.3148 2.4384 1.3653 1.525

SRCDKF-PF 8.8793 8.8175 8.7905 0.3108 0.2521 0.3194 2.4529 1.2996 1.8357

IUKF-PF 9.1030 8.8322 8.8760 0.3063 0.2576 0.2876 2.4384 1.1594 1.1828

ISRCDKF-PF 8.8803 8.8410 8.8751 0.2594 0.2515 0.2520 2.2359 1.2301 1.9682

Table 8 Root mean square

errors (RMSE) of the estimated

states using PF for different

noise levels

Noise levels x1 x2 x3 r1 v1 v2 v3

10�1 0.0125 0.0259 0.0371 0.0356 0.1066 0.0797 0.0951

10�2 0.0096 0.0115 0.0141 0.0123 0.0654 0.0573 0.0585

10�3 0.0093 0.0099 0.0129 0.0107 0.0652 0.0560 0.0553

Table 9 Root mean square

errors (RMSE) of the estimated

states using UKF-PF for

different noise levels

Noise levels x1 x2 x3 r1 v1 v2 v3

10�1 0.0109 0.0133 0.0166 0.0129 0.0645 0.0622 0.0620

10�2 0.0091 0.0106 0.0129 0.0108 0.0614 0.0572 0.0573

10�3 0.0087 0.0101 0.0117 0.0102 0.0584 0.0522 0.0524
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In other words, for the PF, UKF-PF, IUKF-PF,

SRCDKF-PF and ISRCDKF-PF estimation techniques, the

estimation RMSEs of x1, x2, x3, r1, v1, v2 and v3 increase

from the first comparative study (noise variance = 10�1) to

case (where the noise value = 10�4). For example, the

RMSEs obtained using PF for x1 where the noise level in

f10�1, 10�2 and 10�3} are 0.0125, 0.0096 and 0.0093,

which increase as the noise variance increases (refer to

Tables 8, 9, 11, 10, 12). This observation is valid for the

other state variables x2, x3, r1, v1, v2 and v3 and for the

UKF-PF, IUKF-PF, SRCDKF-PF and ISRCDKF-PF

algorithms.

The results of the ISRCDKF-PF are consistent for dif-

ferent state and/or parameter initial conditions. This is

because, unlike other optimization techniques (which can

easily converge at a local minima), the ISRCDKF-PF is a

Monte Carlo-based technique which searches for the opti-

mum solution of the state and/or parameter by generating a

large number of samples that are used to approximate the

posterior density function. These randomly generated

samples that are used to approximate the posterior are

independent of the initial conditions, making the

ISRCDKF-PF robust to the choice of any initial conditions.

6 Conclusions

In this paper, the problem of state and parameter estimations

of structural systems were addressed using the developed

iterated square-root central difference Kalman particle filter

(ISRCDKF-PF). Various conventional and state-of-the-art

state estimation methods are compared for the estimation

performance (the unscentedKalman filter (UKF), the square-

root central difference Kalman filter (SRCDKF), the iterated

unscented Kalman filter (IUKF), the iterated square-root

central difference Kalman filter (SRCDKF), the conven-

tional particle filter (PF), the unscentedKalman particle filter

(UKF-PF), the square-root central difference Kalman parti-

cle filter (SRCDKF-PF), the iterated unscented Kalman

particle filter (IUKF-PF) and the developed ISRCDKF-PF)

in two comparative studies. In the first comparative study,

the displacements and the velocities state variables are

estimated from noisy measurements of these variables, and

the various estimation techniques are compared by com-

puting the estimation root mean square error with respect to

the noise-free data. In the second comparative study, the state

variables as well as themodel parameters are simultaneously

estimated. In this case, in addition to comparing the perfor-

mances of the various state estimation techniques, the effect

of the number of estimated model parameters on the accu-

racy and convergence of these techniques is also assessed.

The results of the second comparative study show that, for all

the techniques, estimating more model parameters affects

the estimation accuracy as well as the convergence of the

estimated states and parameters. The developed ISRCDKF-

PF method, however, still provides advantages over other

methods in terms of the estimation accuracy and

convergence.
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Table 10 Root mean square

errors (RMSE) of the estimated

states using SRCDKF-PF for

different noise levels

Noise levels x1 x2 x3 r1 v1 v2 v3

10�1 0.0108 0.0129 0.0157 0.0128 0.0639 0.0624 0.0623

10�2 0.0089 0.0105 0.0124 0.0109 0.0616 0.0573 0.0573

10�3 0.0084 0.0098 0.0103 0.0100 0.0544 0.0536 0.0534

Table 11 Root mean square

errors (RMSE) of the estimated

states using IUKF-PF for

different noise levels

Noise levels x1 x2 x3 r1 v1 v2 v3

10�1 0.0097 0.0119 0.0146 0.0124 0.0620 0.0583 0.0582

10�2 0.0087 0.0105 0.0123 0.0106 0.0610 0.0571 0.0556

10�3 0.0081 0.0096 0.0098 0.0100 0.0538 0.0535 0.0532

Table 12 Root mean square

errors (RMSE) of the estimated

states using ISRCDKF-PF for

different noise levels

Noise levels x1 x2 x3 r1 v1 v2 v3

10�1 0.0097 0.0116 0.0139 0.0120 0.0614 0.0575 0.0578

10�2 0.0081 0.0096 0.0123 0.0100 0.0609 0.0566 0.0554

10�3 0.0077 0.0092 0.0099 0.0095 0.0528 0.0533 0.0530
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