
ORIGINAL PAPER

SHM of bridges: characterising thermal response and detecting
anomaly events using a temperature-based measurement
interpretation approach

Rolands Kromanis1 • Prakash Kripakaran2

Received: 15 July 2015 / Accepted: 18 February 2016 / Published online: 16 March 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract A major bottleneck preventing widespread use

of Structural Health Monitoring (SHM) systems for bridges

is the difficulty in making sense of the collected data.

Characterising environmental effects in measured bridge

behaviour, and in particular the influence of temperature

variations, remains a significant challenge. This paper

proposes a novel data-driven approach referred to as

Temperature-Based Measurement Interpretation (TB-MI)

approach to solve this challenge. The approach is com-

posed of two key steps—(1) characterisation of thermal

effects in bridges using a methodology referred to as

Regression-Based Thermal Response Prediction (RBTRP)

methodology, and (2) detection of anomaly events by

analysing differences between measured and predicted

structural behaviour. Measurements from a laboratory truss

structure that is setup to simulate a range of structural

scenarios are employed to evaluate the performance of the

TB-MI approach. The study examines how the predictive

capability of the RBTRP methodology is influenced by

dimensionality reduction and measurement down-sam-

pling, which are common pre-processing techniques used

to deal with high spatial and temporal density in mea-

surements. It also proposes a novel anomaly detection

technique referred to as signal subtraction method that

detects anomaly events from time-series of prediction

errors, which are computed as the difference between

in situ measurements and predictions obtained using the

RBTRP methodology. Results demonstrate that the TB-MI

approach has potential for integration within data inter-

pretation frameworks of SHM systems of full-scale

bridges.

Keywords Structural health monitoring � Thermal

effects � Data-driven methods � Anomaly detection �
Measurement interpretation

1 Introduction

Bridges are vital elements of a nation’s highway infras-

tructure. Their importance to the economy and society is

often evident during repair or replacement works from the

traffic disruptions and the consequent imposed costs on

businesses. Most highway bridges in the UK and in other

western countries were built during the modern engineer-

ing era, especially after WWII. The majority of them are

either close to or are past their designed working life [1–3].

For example, according to data from the Federal Highway

Administration’s National Bridge Inventory [4], 33 % of

bridges in USA have reached their design life. Of these

structures, 42 % are classified as functionally obsolete or

structurally deficient. Therefore new technologies and

methodologies that can support bridge owners and opera-

tors in their constant endeavour to keep their ageing assets

safe and serviceable are highly sought after.

Significant research has been devoted over the last few

decades to structural health monitoring (SHM), which

broadly refers to the subject of measuring and evaluating

the performance of structures in order to support structural

management. SHM has traditionally relied on a structural
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identification (St-Id) paradigm using physics-based (PB)

models where the goal is to use measurements to update a

numerical (e.g., finite element) model of the structure [5]

and then employ the model to make predictions on struc-

tural behaviour. Research has focused mostly on vibration-

based St-Id, i.e., the evaluation of dynamic properties

collected from forced or ambient vibrations using a priori

PB models [6]. In vibration-based St-Id, changes in struc-

tural performance are identified by relating changes in

stiffness to variations in vibration characteristics such as

modal frequencies. St-Id approaches based on static mea-

surements are also increasingly finding acceptance among

SHM researchers. In particular, displacement and strain

measurements collected during load tests have been suc-

cessfully employed to update numerical models [7, 8].

While PB models are important for understanding

structural behaviour, such models are unlikely to be readily

available for the majority of bridges. Their generation can

also be resource and time-intensive. Furthermore, com-

puted models may not replicate behaviour of real-life

structures due to uncertainties and approximations in the

modelling process [8]. For example, while the elastic

modulus of concrete generally varies with temperature,

humidity and age [9], these variations are seldom taken

into account in a PB model and in turn, affect the reliability

of the St-Id process. Incorporating effects of ambient

conditions, which are now recognized to significantly

affect structural behaviour, in PB models is also difficult

[10, 11]. Therefore robust approaches for measurement

interpretation that are generic and readily applicable

without requiring detailed a priori knowledge of structures

have tremendous value in the context of extracting infor-

mation from monitoring for bridge management.

Data-driven approaches, which rely purely on the col-

lected measurements for measurement interpretation, offer

great promise for long-term continuous monitoring. These

approaches, which employ non-physics based (NPB)

models such as those derived from machine learning

techniques [5], can detect deviations from normal structural

behaviour. Data-driven approaches generally consist of two

distinct phases. In an initial learning phase, patterns of

normal structural behaviour are defined from measure-

ments taken during a period when the structure is free of

damage. Previous research has shown that measurements

collected over a duration of at least 1 year, and in certain

cases, even more than a decade, may be required to

establish the patterns of normal structural behaviour [5].

Subsequently, in the long-term monitoring phase, new

measurements are compared against computed patterns to

detect deviations from normal behaviour.

Data-driven methods have typically been illustrated on

numerical models with damage often modelled as loss in

stiffness in a region close to the location of sensors [12].

Posenato et al. [13] investigated a number of data-driven

methods for anomaly detection and compared their capa-

bilities for detecting damage simulated in a numerical

model. This work used the trends introduced in measure-

ments by variations in seasonal temperatures for tracking

structural behaviour. Laory et al. [14] later showed that

removing seasonal temperature trends from measurements

detrimentally affects the performance of anomaly detection

techniques and that an ensemble approach to anomaly

detection that combines results from several algorithms is

capable of detecting anomalies faster and more reliably

[15]. Only a few studies have investigated their perfor-

mance on measurements from full-scale structures [16–18].

These have concluded that their excellent performance on

simulated data is seldom replicated on measurements from

real-life structures. Del Grosso and Lanata [19] investi-

gated the application of proper orthogonal decomposition

(POD) for damage detection on strain measurements from

long-term monitoring of post-tensioned concrete beams

that were exposed to ambient conditions. They found that

known damage events cannot be reliably identified by POD

due primarily to the effects of variations in ambient con-

ditions and in particular, those due to changes in temper-

ature distributions.

There are two different approaches to handling envi-

ronmental effects in measurements. The first, which has

limited success, treats environmental effects as undesirable

noise in measurements and removes these effects from

measured response using numerical techniques [17, 20].

The second approach, which offers more promise, is to

explicitly account for the effects of each ambient parameter

on response within the St-Id process. Kulprapha and

Warnitchai [21] developed techniques for calibrating PB

models using temperature and response measurements and

showed that such models accurately represent measured

behaviour. Kromanis and Kripakaran [22] have proposed a

data-driven methodology, referred to as regression-based

thermal response prediction (RBTRP) methodology, in

which regression models that accept temperature mea-

surements as input for predicting response are derived from

measured response and temperature distributions. The

methodology was successfully illustrated on measurements

from a laboratory-scale and a full-scale bridge supporting

the idea of predicting structural response from distributed

temperature measurements.

This paper integrates the RBTRP methodology pre-

sented in [22] within a comprehensive approach for mea-

surement interpretation that characterises thermal response,

and subsequently analyses the predicted thermal response

in combination with measured response using anomaly

detection techniques. This approach is referred to as the

Temperature-Based Measurement Interpretation (TB-MI)

approach. The underlying concept in this approach was
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illustrated in a preliminary study using simulated mea-

surements obtained from a numerical model in [23]. This

paper however uses real measurements from a laboratory

truss structure, which has been specifically set up to

investigate thermal effects in bridges under a range of

structural scenarios. It also focuses on tasks related to

measurement pre-processing such as dimensionality

reduction and measurement down-sampling, which are

often required to deal with the high spatial and temporal

density in measurement sets from full-scale bridges. In this

study, dimensionality reduction of measurements is per-

formed using principal component analysis (PCA); the

effect of number of principal components chosen to rep-

resent measurements on performance of the RBTRP

methodology is investigated in detail. The optimal mea-

surement sampling frequencies essential to capture the full

variability in thermal response of bridge are also evaluated.

These factors have never before been investigated in detail

in the field of SHM, and particularly in the context of

characterising thermal effects in measurements. This

research lastly also proposes a novel anomaly detection

technique to detect anomaly events from the time-series of

prediction errors, which are computed as the difference

between predicted and measured structural behaviour. The

performance of this technique called the signal subtraction

method is evaluated on measurements from the laboratory

truss.

2 Thermal response of bridges

The response of a structural system is determined by inputs

to the system such as forces and ambient conditions, and its

structural properties. Knowledge of structural conditions,

material properties and applied forces (e.g., traffic, tem-

perature) will therefore enable evaluation of structural

response. Variations in environmental conditions and in

particular temperatures have a major influence on the

structural response of bridges. Real-life bridges experience

complex temperature distributions that can vary nonlin-

early in all three spatial dimensions [24–26]. Potgieter and

Gamble [26] showed using measurements from an existing

box girder bridge that stresses and forces due to nonlinear

temperature distributions are often of magnitudes compa-

rable to those due to live loads. These are also confirmed

by real measurements from full-scale structures wherein

time-series of response measurements often resemble those

of measured ambient temperatures. In contrast, traffic loads

are seen to have relatively little effect on overall quasi-

static structural response [7]. To illustrate this fact, bridge

response measured over 1 day is plotted in relation to

ambient temperatures in Fig. 1 for two structures. The

figure shows tilt measurements from the footbridge at the

National Physical Laboratory (NPL) and measurements of

bearing displacement of the Cleddau Bridge. The plots

show clearly that structural response closely follows the

diurnal temperature cycle implying that temperature vari-

ations play a key role in determining deformations in these

structures. The effects of traffic loads can be considered as

noise superimposed on the thermal response.

We therefore hypothesize that the quasi-static structural

response of a bridge, in general, may be approximated as

its thermal response, and that characterizing the thermal

response is sufficient to enable interpretation of measure-

ments from long-term monitoring. The proposed data

interpretation approach, which is referred to from hereon as

temperature-based measurement interpretation (TB-MI)

approach, builds on this premise. It investigates to what

extent correlations between temperature distributions and

structural response can help assess structural performance

of bridges.

2.1 TB-MI approach

This research builds on an approach referred to as the

RBTRP methodology [22] that has been developed to

characterize structural response from measured tempera-

ture distributions. It couples the RBTRP methodology with

anomaly detection techniques to create the TB-MI

approach. A schematic of the envisioned approach is

shown in Fig. 2. The steps within the TB-MI approach are

further described in detail in Fig. 3. The approach employs

a three stage process, which includes (1) collection of

distributed measurements for a reference training period,

(2) application of RBTRP methodology, and (3) interpre-

tation of predictions from RBTRP methodology. The

RBTRP methodology is used to predict the thermal

response of the structure, which is then employed in con-

junction with real-time measurements of structural

response for detecting anomalous structural behaviour.

Data can be visualized by engineers at any stage of the

interpretation process.

2.2 Prediction of thermal response

The RBTRP methodology, illustrated in a flow chart in

Fig. 3, consists of two phases. In the first phase, which is a

learning phase, data from monitoring is processed to gen-

erate regression models that estimate structural response

from distributed temperature measurements. In the second

phase, which involves the application of models to real-

time performance monitoring, predicted response is com-

pared with collected measurements for subsequent analysis

using anomaly detection techniques. These two phases are

described in further detail below.
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1. Model generation phase: the model generation phase is

a key step for successful application of the RBTRP

methodology. The aim is to generate one or more

statistical models for each sensor location such that

they are capable of predicting the corresponding

structural response from knowledge of temperature

distributions. The model generation phase involves a

series of iterations over the following interlinked steps:

(a) Selection of a reference set: the reference set

refers to a set of measurements that are repre-

sentative of the baseline conditions of the

structure. The duration corresponding to the

Fig. 1 Plot of measurements of bearing displacement from the Cleddau Bridge (left) and tilt from the NPL footbridge (right) over 1 day in

relation to diurnal changes in ambient temperature

Fig. 2 Schematic diagram of

temperature-based measurement

interpretation (TB-MI)

approach

Fig. 3 Flow chart illustrating

TB-MI approach
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measurements chosen for the reference set is

called the reference period. A reference period

that is sufficiently large, usually at least 1 year

in order to cover the expected daily and seasonal

variability in measurements is chosen.

(b) Data pre-processing: outliers are removed from

measurements using inter-quartile range (IQR)

analysis. IQR identifies outliers in a window of

values from within a time-series as those values

that differ significantly from the median value.

Consequently, values in a time-series that repre-

sent gradual and permanent shifts, such as due to

damage or deterioration, will not be considered

outliers.However sudden and temporary shifts (of

lengths smaller than the size of the moving

window) may be considered outliers. This is not

a major limiting factor since such events are often

temporary occurrences such as abnormal loading

or an extreme event, which do not permanently

alter structural performance. Moving average

methods and low-pass filters are also applied to

remove measurement noise. Measurement time

histories are then down-sampled, as needed, to

reduce the size of the data-set. Measurements are

often collected at high frequencies, e.g., the

bearing displacements of the Cleddau Bridge

[Fig. 1 (left)] are recorded every second. How-

ever, since quasi-static changes in both temper-

ature and response are gradual, all measurements

may not be required for model training. Down-

sampling measurements can decrease the time

required to train regression models while having

negligible impact on prediction accuracy. This

also helps prevent over-training of regression

models and enables better generalization of the

relationship between thermal response and tem-

perature measurements. The effect of down-

sampling on prediction accuracy is systematically

evaluated within the RBTRP methodology. It

starts with a low measurement sampling fre-

quency and then doubles the sampling frequency

iteratively to determine the optimal measurement

sampling frequency for response prediction, i.e.,

the sampling frequency above which improve-

ment in prediction accuracy is negligible.

(c) Dimensionality reduction: the dimensionality of

the data-sets are reduced using principal com-

ponent analysis (PCA), which is a widely-

employed statistical technique that takes advan-

tage of inherent correlations between variables

in the data-set. It involves finding a set of

principal component (PC) vectors that define an

orthogonal transformation from the original set

of linearly-correlated variables to a new set of

uncorrelated variables. In this research, the first

few PC vectors of the temperature measure-

ments that capture almost all the variability in

the original data are chosen to transform the raw

temperature measurements to a low-dimensional

PC space.

(d) Generation of statistical models: training and test

data-sets are composed from the data in the PC

space corresponding to the reference period.

While the size of the training sets will vary

depending on the down-sampling rate, the data-

sets will generally capture the full variability in

the measurements since the duration of the

reference period is left unchanged. Regression-

based models are generated through an iterative

process of training and testing on these two data-

sets. The inputs to the regression models are

mainly the PC equivalents of the temperature

measurements taken at the current measurement

time-step. Data from the PC space corresponding

to temperatures from prior measurement time-

steps can also be provided as input to the models

to incorporate thermal inertia effects. The term

thermal inertia refers to the phenomenon of

temperatures in certain parts of a structure lagging

behind ambient temperatures and temperatures in

other regions of the structure. Thermal inertia is

common in concrete and masonry bridges, which

are more voluminous than metallic structures and

have high thermal mass. Thermal inertia effects

are accounted in response by providing the PC

equivalents of both current (Di) and former

temperature (Di-j) measurements (in the PC

space) as input to the regression models. Here,

i refers to the most recent measurement time-step

and i-j to one that is j time-steps prior to i.Di and

Di-j are the PC equivalents of the measurement

sets corresponding to the two time-steps.

(e) Model evaluation: the above-mentioned steps are

performed iteratively for various kinds of regres-

sion models such as multiple linear regression

(MLR) and support vector regression (SVR) to

evaluate their appropriateness for thermal

response prediction for the structure. The RBTRP

methodology selects the regression model with

the highest prediction accuracy or an ensemble of

models that are observed to demonstrate good

performance over the validation period is chosen

for thermal response prediction at a given sensor

location. Therefore response at each sensor loca-

tionwithin a SHM system could be predicted with

a specific regression model or a certain ensemble
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of models. This paper however employs results

obtained using only SVR models for thermal

response prediction since an earlier study [22]

comparing performance of various regression

algorithms for thermal response prediction

demonstrated its superior performance. Readers

interested in a more detailed description of the

RBTRP methodology can also refer to that study

[22].

2. Regression model application: the regression models

identified in the model generation phase are employed

for prediction of thermal response from real-time

distributed measurements of temperatures. As will be

shown in the next section, analysis of model predic-

tions and measured response can support detection of

anomalous structural behaviour, and thereby enable

tracking structural performance.

3 Data-driven anomaly detection

Themain goal of a real-time anomaly detectionmethodology,

in the context of SHM, is to identify deviations in structural

behaviour from collectedmeasurements. Measurements from

the reference period, i.e., the data used for training regression

models, are assumed to represent the structure in its baseline

(normal) state. The objective of anomaly detection is then to

recognize deviations in system behaviour from this baseline

condition. Since this often requires analysis of time-series of

measurements, such methodologies draw upon existing

knowledge in the domain of signal processing. Anomalies in

time-series are often classified as either.

1. Outliers, which are often due to temporary factors

unrelated to the main parameters of the system under

observation, or

2. Novel trends, which imply shifts from current condi-

tion to new states.

Derivation of prediction error (PE) signals: the first step

towards anomaly detection is to compare predictions from

regression models computed using the RBTRP methodol-

ogy with measurements of structural response, and thereby

derive prediction errors (PEs). PEs are computed as the

differences between measured and predicted response as

shown below:

Dys ¼ ps � ms ð1Þ

where Dys is prediction error and ps and ms are predicted

and measured response, respectively, at a sensor s. As more

and more measurements are collected, PEs are corre-

spondingly evaluated and these are chronologically

sequenced to form a time-series. The time-series of PEs are

from hereon referred to as PE signals.

Treatment of PE signals: PE signals like any other time-

series can be noisy and contain outliers. Therefore they are

pre-processed using the same procedures as for treating

measurements. PE signals are first cleansed using outlier

removal techniques such as IQR analysis and three sigma

(three-r) analysis [13]. Then de-noising or data smoothing

methods such as moving average techniques [27] are

applied to the signals. However, smoothing the signals may

lead to loss of information that is critical to detecting

anomalies. Therefore selection of smoothing technique and

values for its related parameters such as length of the

moving window needs to be done with care.

Interpretation of PE signals: there are two fundamen-

tally different approaches to detecting anomalous structural

behaviour from PE signals. PE signals corresponding to

various sensor locations can either be analysed individually

or be analysed in groups. A simple example of the former

approach, which is also called as univariate analysis, is the

most popular method of setting threshold limits on the PE

for a sensor location which when exceeded is said to be

indicative of damage near that sensor location. The latter

approach, also termed multivariate analysis, relies on the

implications of the bridge acting as a well-connected

structural system. Damage to one or more components

usually alters existing correlations between responses at

various locations on the structure. In large and complex

structures that have vast numbers of sensors, clustering

sensors into groups according to their correlations and then

analysing measurements from these clusters for changes in

correlations can help detect damage [28].

In this study, PE signals are analysed using a novel

numerical technique: signal subtraction method (SSM).

SSM belongs to the class of multivariate signal analysis

techniques. It exploits correlations between two sensor

locations for damage detection. In SSM, two PE signals are

linearly combined to generate a new signal, which is then

analysed for anomaly detection. Mathematically the pro-

cess of combining two signals in SSM can be described

using the following equation:

Tkl ¼
wk

rk

� �
Dyk �

wl

rl

� �
Dyl ð2Þ

Tkl is the new signal (SSM signal) resulting from the

subtraction process. Dyk and Dyl are values of the PE sig-

nals corresponding to sensors k and l respectively. rk and rl
are scaling factors for the two PE signals. These are equal

to the range of signal values in the reference period, i.e.,

the difference between the maximum and minimum values

in the reference period. wk and wl are weights specified

according to the accuracies of the sensors at the
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corresponding locations and the accuracy of the model for

thermal response prediction. In this study, measurements

from all elements are assumed to be equally important.

Therefore weights of all PE signals are equal to 1. Using

SSM on all sensor combinations may not be computa-

tionally viable due to the combinatorial explosion in

computational complexity. The number of combinations Cq

from q sensors taken two at a time is given by:

Cq ¼
q!

2! q� 2ð Þ! ð3Þ

However, a small number of sensor combinations can be

chosen based on engineering judgment. Sensors whose

measurements are strongly correlated are potential candi-

dates for SSM.

The reference period chosen for SSM is the same as the

one used for training the regression models in Sect. 2.2.

Features computed for the reference period are used to

determine threshold limits that describe normal structural

behaviour. Threshold bounds, for example, can be defined in

terms of the variability of the signal during the reference

period; the bounds can be prescribed as [l - nr, l ? nr]
where n is a positive integer and r and l are the standard

deviation and the mean of the signal for the reference period.

While defining threshold bounds closer to the mean value of

the signal, i.e., keeping n too small, will increase the likeli-

hood of false-positives and false-negatives, larger threshold

bounds, i.e., increasing the value for n, will imply that only

damage events of high severity are detected [20]. SSM sig-

nals during the reference period are expected to be normally

distributed, especially when considering how these signals

are derived.When a signal is representing aGaussian process

[15, 29], values for n are commonly set to 3 and 6, which

correspond to confidence levels of 99.73 % and 99.99 %

respectively. An anomaly is said to be detected when the

tracked feature of an anomaly detection technique continu-

ously exceeds the predefined threshold bounds.

4 Continuous monitoring experiment

In this research, an aluminium structure representing a

warren truss, typically used for short-span railway bridges,

is designed and manufactured specifically to serve as a test-

bed for the validation of the proposed TB-MI approach.

This section presents the experimental setup and results of

application of the proposed approach to measurements

collected from this structure.

4.1 Test-bed

The truss shown in Fig. 4 is continuously monitored in the

structures laboratory at the University of Exeter [30]. It is

composed of (1) channel sections for the top chord, bottom

chord and the outer diagonal members, and (2) flat rect-

angular bars for inner diagonal members and vertical ele-

ments. All members of the truss are made of aluminium.

Aluminium is chosen over steel for the structure since it

has a much higher value for coefficient for thermal

expansion (a = 23.1 9 10-6 K-1), almost twice as for

steel. Therefore, thermal strains in an aluminium structure

of the same size will be nearly double that for a steel

structure. This is beneficial when attempting to understand

temperature effects using small-scale models in the labo-

ratory. Results obtained from analysing measurements

from this truss structure can also be scaled up for steel

structures both aluminium and steel follow linear-elastic

material models albeit with very different values for elastic

moduli.

Each end of the bottom chord is bolted to a steel shoe

(see detail in a cyan box in Fig. 4). The shoe is fixed on

four threaded rods which are cast in a concrete block. The

shoes are adjusted so that a 25 mm clearance is provided

between concrete blocks and the bottom chord. The con-

crete blocks are firmly fixed to the iron floor. The left

support of the truss is always fully fixed (i.e., clamped to

prevent both rotations and translations). The right support

can be configured to act as a fully fixed support or as a

roller (see detail in a blue box in Figs. 4, 5). The bottom

and top chords have splice connections. These are to the

left of mid-span of the truss (see detail in a yellow box in

Fig. 4). All joints including the splices are made up of six

bolts. None of the connections are likely to be perfectly

pinned. In fact, all of them are expected to behave as semi-

rigid connections. A typical configuration of bolts used in

connections where two diagonal elements and one vertical

element are connected to top or bottom chord is shown in a

green box in Fig. 4.

Structural response of the test-bed is monitored with 10

foil strain gauges (gauge length 6.35 mm). Distributed

temperatures are measured with 31 thermocouples. The

geometry and principal dimensions of the truss together

Fig. 4 A photograph of the truss, with zoomed-in views of connec-

tion and support details
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with locations of sensors and heaters are provided in Fig. 5.

The figure also indicates the joints that have been damaged

in order to simulate anomaly events and the possible con-

figurations of boundary conditions (pinned or released).

The following joints are selected for simulating damage in

this study:

1. J-1 and J-2: at these joints, two diagonal elements

and one vertical element are connected to the bottom

and top chords respectively.

2. J-3: this joint is a splice connection on the bottom

chord.

3. J-4: this joint is between an outer diagonal element

and the bottom chord.

These three joints have been chosen for damage simu-

lation since they cover all the types of joints present in the

truss.

4.2 Simulated scenarios

The TB-MI approach is evaluated on measurements from

the laboratory truss, which is setup to simulate various

scenarios that differ in the following parameters:

• Temperature distributions,

• Boundary conditions, and

• Damage (location and severity).

In this study, the following two kinds of temperature

loads are considered:

1. Load case A: this refers to accelerated temperature

cycles simulated by turning infra-red heaters on and off

to heat and cool the structure respectively. The purpose

is to simulate real-life temperature cycles in bridges as

realistically as possible in a very short duration to enable

testing and performance evaluation of data interpreta-

tion techniques. One simulated diurnal cycle lasts

90 min of which heaters are switched on for 45 min.

Thus 16 diurnal cycles are emulated per day. A thermal

image of the test-bed taken at night and shortly after

heaters are turned off is shown in Fig. 6. Temperatures at

the top chord of the truss are up to 10 �C higher than that

of the bottom chord. This vertical temperature gradient

is similar to those observed in other test-beds [21] and

full-scale structures [26].

2. Load case B: this corresponds to ambient temperature

cycles. The structures lab is open to the outside

environment. Hence the ambient temperature in the

vicinity of the test-bed is close to the outside air

temperature.

Note that Load A cannot be applied in isolation as

ambient effects are always present. Thus there are two

possible load combinations: (A ? B) and B.

Response and temperature measurements are recorded at

10 s intervals (0.1 Hz) for load case (A ? B) and at 1 min

intervals (1.7 9 10-2 Hz) for load case B. Themeasurement

frequency has been reduced for load case B since temporal

changes in temperature distributions due to ambient effects

are very gradual. Measurements are also appropriately

down-sampled for measurement interpretation.

The two possible boundary conditions at the right sup-

port are combined with the two temperature load cases to

form three different structural scenarios as listed in

Table 1. The three scenarios are required to close the loop

of simulated scenarios, i.e., a fixed constraint at the right

support, a roller constraint at the right support and back to

fixed constraint at the right support. This permits the

research to evaluate if the truss reverts to the original

configuration upon completion of the experimental tests.

Measurements for scenarios X and Y are collected for

approximately 12 days each while those for scenario Z are

collected for 96 days.

In addition to varying thermal loading and boundary

conditions, damage is simulated by removing bolts from

joints. This approach to simulating damage is more real-

istic than abruptly reducing the stiffness of a truss element

by cutting out material as performed in previous studies

Fig. 5 A sketch of the test-bed

showing its principal

dimensions, locations of

heaters, thermocouples (black

dots), strain gauges (S-i, where

i = 1, 2, …, 10) and the joints

(J-i where i = 1, 2, 3, 4) where

damage is simulated
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[19, 31]. In real-life bridges, damage is typically more

localized and less subtle than significant loss of material in

a load-bearing structural element. Furthermore, it also

offers the opportunity to evaluate the sensitivity of SSM to

damage by gradually exacerbating the damage severity,

which is similar to the incremental progression of damage

in real structures. Each act of either changing a joint con-

figuration or altering the boundary condition is termed as

an event that must ideally be recognized by the TB-MI

approach as an anomaly or change in structural perfor-

mance. The list of events is provided in Table 2 along with

relevant details such as the joint that is affected, the

number of removed bolts and the corresponding structural

scenario. For example, damage event #3 refers to load

scenario X when joints J-1 and J-2 are damaged and in

total eight bolts are removed. Measurements are collected

from the truss for the three structural scenarios listed in

Table 1. The level of damage is gradually increased for

each scenario by increasing the number of damaged joints

and the total number of removed bolts. Before switching

over to a different scenario, the structure is repaired by

replacing all the removed bolts. Five damage events are

considered in load scenarios X and Y; three damage events

are considered in load scenario Z. Events #5 and #12

correspond to the structure being repaired. However, the

structure is unlikely to revert back to its original state due

to the manner in which the bolts are tightened. In real-life

structures, bolts, designed to connect structural elements,

are often tightened with a torque wrench; hence a pre-

scribed force is applied to each bolt. Bolted connections in

the test-bed, however, are manually tightened without

measuring the actual torque provided. Thus the stiffness of

each connection will be different and also, the same con-

nection may not revert to its original stiffness when bolts

are put back.

4.3 Measurement time-histories

Measurements are collected from the strain gauges and

thermocouples for the scenarios listed in Table 1. Figure 7

shows plots of temperature and strain measurements from

strain gauge S-3 and a thermocouple (located in the

vicinity of S-3). Temperatures and strains measured dur-

ing a simulated diurnal cycle are also shown in zoomed-in

views in Fig. 7 (right). Their patterns resemble that of

measurements collected over 1 day from full-scale

Fig. 6 Temperature

distribution captured with

thermal imaging camera

Table 1 List of structural

scenarios as determined by load

and boundary conditions

Scenario Temperature load case Constraint at right support Duration

X A ? B Fixed 12 days (Sep 10–Sept 21, 2013)

Y A ? B Released 12 days (Sept 22–Oct 3, 2013)

Z B Rixed 96 days (Oct 4, 2013–Jan 7, 2014)

Table 2 List of events with details of the events and the corresponding loading and boundary condition scenarios

Scenario X Y Z

Event 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Affected joints J-1 J-1 J-1, J-2 J-1, J-2,

J-3

* – J-1 J-1, J-2 J-1, J-2,

J-3

J-1, J-2,

J-3

J-1, J-2,

J-3, J-4

* J-3 J-3 J-3

Number (#)

of removed bolts

3 5 8 11 0 0 5 8 11 13 18 0 2 4 6

* All connections are repaired, i.e., bolts are put back
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structures. The duration of each structural scenario is given

in Fig. 7 (top). The amplitude of strains increases when

longitudinal translations are allowed (scenario Y). Effects

of ambient temperature variations are not evident during

scenarios X and Y since the effects of the accelerated

diurnal cycles are superimposed on them. When the heaters

are turned off in scenario Z, ambient effects drive the

response as the high frequency patterns due to the heaters

disappear.

4.4 Prediction of thermal response

The RBTRP methodology is employed to generate

regression models for all three scenarios. Application of the

methodology to scenario X is first illustrated. Results for

scenarios Y and Z are provided subsequently. The refer-

ence period for scenario X is composed of the first 25,920

measurements (equivalent to 3 days of monitoring). Out-

liers and noise are removed with IQR and smoothing

techniques, respectively.

Two different approaches for the selection of training

and test periods are investigated.

1. Training method 1 (TM1): starting from the first

measurement in the reference period, one half of

measurements of the reference period is chosen as the

training set and the other half is selected to test the

accuracy of regression models. To be more precise, in

TM1, measurements taken during the first 2 days of

the reference period form the training set and the rest

form the test set.

2. Training method 2 (TM2): both the training and test

set, although mutually exclusive, are composed of

measurements spread over the entire reference period.

This study then systematically evaluates the effect of the

following three parameters of the RBTRP methodology,

which can affect the performance of the regression models

generated for response prediction.

1. Down-sampling of measurements

2. Thermal inertia parameter j

3. Number of principal components (PC) chosen after

transforming input temperatures into PC space.

After selection of the reference period, down-sampling

of the measurements is recommended to avoid over-train-

ing regression models. This study finds the optimal down-

sampling rate, which is the value for the sampling fre-

quency above which negligible improvements are observed

in response prediction accuracy. For this purpose, the

sampling frequency is increased iteratively by a factor of

two starting from 1 measurement every 10,240 s

(1 9 10-4 Hz) to 1 measurement every 20 s (0.05 Hz).

Down-sampled temperature measurements are transformed

to PC space. The minimum number of PCs required to

achieve a reasonably high prediction accuracy is evaluated,

and the chosen PCs are input to regression models within

the RBTRP methodology. The influence of the thermal

inertia parameter j on model predictions is also investigated

for all scenarios. For scenarios X and Y, the thermal inertia

parameter is not considered essential due to the small scale

of the structure and the minimal influence of ambient

conditions. However, for scenario Z, ambient temperature

variations drive deformations in the structure, and hence

thermal inertia is expected to be a factor. As stated before,

the chosen number of PCs corresponding to the current

measurement time-step and j time-steps prior to the current

one are given as input to the regression model to account

for thermal inertia effects.

4.4.1 Results for TM1: scenario X

The RBTRP methodology is first evaluated for scenario X

using TM1. As stated before, results are presented only for

SVR models since they have previously been observed to

produce robust and accurate models in the previous studies

[22].

Fig. 7 Time-histories of

temperatures at the bottom

chord (top) and strains (bottom)

measured with S-3 with a

zoomed-in views for a

simulated diurnal cycle (right)

around the time of damage

event #1
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In order to understand the influence of the thermal

inertia parameter j on the performance of regression

models, values for j are increased gradually starting from

j = 0. However, minimal improvement in prediction error

accuracy is observed for scenario X. The average RMSE

for scenario X is the lowest for j = 1; for this value, the

error reduces by 1.5 % when evaluated in terms of the

range of measured strains. j = 1 implies that measurements

from the current as well as the previous time step are

included as input to the regression model for thermal

response prediction.

The influence of down-sampling on prediction perfor-

mance is also evaluated by varying the sampling frequency

as indicated in the previous section. Results obtained are

given in Table 3. The average RMSE is observed to be

minimum when the sampling frequency is equal to

4 9 10-4 Hz (see Table 3).

The study then evaluates the influence of the number of

PCs on prediction accuracy. Prediction errors of the

regression models generated with increasing numbers of

PCs are plotted in Fig. 8. The figure shows clearly that

approximately 1
3
rd of the PCs (i.e., 10 out of 31 in this case)

are sufficient to produce accurate response predictions.

However, the actual optimal number varies according to

sensor location. For example, the optimal number of PCs to

accurately predict response at the locations of sensors S-3

and S-7 are 10 and 11, respectively (see Fig. 8). Note also

that the prediction error does not decrease monotonically

with increasing number of PCs, especially for sensor S-3.

Figure 9 shows prediction error signals corresponding to

sensors S-3, S-4 and S-7 generated using a SVR model

that is trained using TM1 with the thermal inertia param-

eter set to 1, and a measurement sampling frequency of

4 9 10-4 Hz. The number of PCs used varies between 10

and 14. The PE signal corresponding to a sensor are from

hereon referred to simply as PE sensor name. For example,

PE S-3 refers to a prediction error signal corresponding to

sensor S-3. Figure 9 shows that the amplitudes of PE S-3

and PE S-4 change abruptly when the right support is

released for event #6 (see Table 2). Similarly PE S-3 also

has a shift immediately after event #4 (see Table 2). These

abrupt changes can be indicators of anomalous structural

behaviour. Such shifts, however, are not discernible at the

time of other events in any of the PE signals.

PE S-3 and PE S-4 (see Fig. 9), which correspond to

sensors located on the bottom chord, drift slightly after the

end of the training period towards a new mean. This is

attributed to the prediction errors increasing due to ambient

temperatures reaching values that were never encountered

previously during the training period. However, PE S-7

(see Fig. 9), which corresponds to sensor on the top chord,

do not show such a drift after the training period. This is

probably due to the fact that the top chord is free to expand

and contract due to a lack of restraint in the longitudinal

direction (X axis), and also due to being exposed to higher

temperature variations than the bottom chord, given that

ambient effects on are comparatively low during this

scenario.

4.4.2 Results for TM2: scenario X

The performance of the RBTRP methodology is now

evaluated using training method TM2. As with the previous

case, results are presented only for SVR-based regression

models. The optimal measurement sampling frequency is

evaluated as 3.1 9 10-3 Hz (see Table 3). The optimal

value for thermal inertia parameter j is 1 and the

improvement in prediction accuracy is 1.5 %, similar to

that for TM1. Results obtained for only sampling frequency

of 3.1 9 10-3 Hz and j = 1 are illustrated for this scenario

although other values offer similar results with only a

marginal change in the prediction accuracy.

The prediction error decreases gradually as the number

of PCs is increased (see Fig. 10). A significant drop in the

prediction error can be observed for sensor locations

measuring large strains (sensors installed on the top chord)

when the number of PCs is increased from 1 to 3. The

prediction error reduces only marginally when the number

of PCs is more than 12 (see Fig. 10), hence, twelve PCs are

chosen as the optimal input to the regression models.

Compared to the results obtained using training method

TM1, the prediction errors decrease monotonically with

increasing number of PCs.

PE S-3, PE S-4 and PE S-7 computed using TM2 are

plotted in Fig. 11. The mean RMSE of predictions at all

sensor locations is lower than those observed using TM1

(see Table 3). The main reason for the comparatively

smaller RMSE is that the training set encompasses

Table 3 Average RMSE of the predictions of the regression models obtained using various down-sampling frequencies and training methods

Measurement sampling frequency (Hz)

1 9 10-4 2 9 10-4 4 9 10-4 7.8 9 10-4 1.6 9 10-3 3.1 9 10-4 6.3 9 10-3

TM1 Average RMSE (910-6 strains) 2.66 2.48 2.31 2.38 2.40 2.41 2.41

TM2 2.57 2.07 1.78 1.72 1.69 1.66 1.66
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Fig. 8 Prediction error and the number of PCs for sensor locations S-3 (left) and S-7 (rights), scenario X, TM1, sampling frequency 4 9 10-4

Hz

Fig. 9 PE S-3, PE S-4 and

PE S-7 generated using

training method TM1. Numbers

in boxes represent damage

events

Fig. 10 Prediction error and the number of PCs for sensor locations S-3 (left) and S-7 (right), scenario X, TM2, sampling frequency

4 9 10-4 Hz
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measurements which are spread over the whole reference

period. Since the full range of peak-to-peak temperatures is

included in the training period, the resulting statistical

models are more robust as they are predicting response

only for scenarios that they have been trained on. These

results illustrate the importance of selecting a training set

that encompasses the expected variability in the data sets. It

also shows that model predictions are unlikely to match

structural behaviour during conditions of extreme weather

events such as a record hot summer since the models have

not been trained on data taken during such environmental

conditions.

A gradual decrease in PE signals corresponding to

sensors installed on the bottom chord is no longer observed

around measurement #20,000, when the training period

used for TM1 ended (see PE signals S-3 and S-4 in Fig. 9

in relation to those in Fig. 11). PE signals corresponding to

those sensors installed on the top chord (S-6 to S-9)

remain fairly stationary until time of event #4. PE S–7,

which closely resembles the PE signals from the other

sensors, is plotted as an example in Fig. 11.

While the prediction error is low, PE S-3, PE S-4 and

those for other sensors on the bottom chord have low-am-

plitude periodic patterns after the reference period (and

before event #1) that appear to correspond to diurnal tem-

perature changes. This phenomenon is common to PE signals

obtained using both model training methods, however, more

noticeable in PE signals generated usingTM2due possibly to

the improved prediction of the effects of diurnal variations

simulated using the heaters. The predictions cannot fully

account for ambient temperature changes since the training

period, which lasts only three days, is too short for capturing

the full variability in ambient changes.

4.4.3 Results for scenario Y

Training method TM2 is chosen over TM1 to generate

regression models for scenarios Y and Z since it has shown

to produce better performance for scenario X. Regression

models for scenario Y are generated using the same

approach as for scenario X. The optimal measurement

down-sampling frequency is determined as 6.3 9 10-3 Hz.

The mean RMSE of predictions is close to 1 % of the strain

range for the reference period, indicating that the models

are predicting accurately the response. For illustration

purposes, PE S-3, PE S-5 and PE S-10 are plotted in

Fig. 12. As for scenario X, periodic distortions in the sig-

nals corresponding to diurnal temperature changes can be

discerned after the reference period. This phenomenon is

common for all PE signals. The only visually

detectable event from PE signals is event #11 as observed

from the plot of PE S-5. This is probably due to the sensor

S-5 being close to the joint (J-4) that is damaged in event

#11. All the other events cannot be detected simply from

visually examining the PE signals.

4.4.4 Results for scenario Z

In scenario Z, only ambient temperature is applied, i.e.,

temperature load case B. The length of the reference period

is 55 days during which there are almost 80,000 mea-

surement time steps. The length of the reference period has

been chosen to ensure that it covers peak-to-peak temper-

ature variations. The optimal values for thermal inertia

parameter j and measurement sampling frequency are

determined. A value for j between 10 and 15 is observed to

be optimal depending on the sensor location. The optimal

measurement sampling frequency is evaluated to be

5.2 9 10-3 Hz. This translates to approximately one

measurement per hour or 24 measurements per day. This

can be useful guidance when setting sampling rates for

measurement systems. A minimum sampling frequency of

one measurement per hour may be required to capture

thermal inertia effects. The number of PCs given as input

to regression models is between 14 and 21, depending upon

the sensor for which the model is constructed.

Fig. 11 PE S-3, PE S-4 and

PE S-7 generated using TM2
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Time-histories of temperatures measured with a ther-

mocouple installed on the bottom chord are plotted in

Fig. 13 (top) together with PE S-3 and PE S-4 [Fig. 13

(bottom)]. The regression models predict accurately the

structural response as evident from the low values of pre-

diction errors in the plots of PE S-3 and PE S-4. While

events #13 and #14 do not appear to affect PE S-3 and PE

S-4, after the occurrence of event #15, both signals show

significant deviations from previously observed stationar-

ity. However, during the same period, the ambient tem-

perature in the structures laboratory, where the truss is

being monitored, also deviates from previously observed

patterns due to abnormally cold weather. Therefore, reli-

ably stating whether the deviations in PE S-3 and PE S-4

are due to event #15 or due to abnormal temperature

changes is difficult (Fig. 7). Subsequent discussion on

anomaly detection will cover this aspect.

4.5 Anomaly detection from PE signals

In this section, PE signals from experimental scenarios are

examined for anomalies. Clusters of PE signals are

analysed with SSM. Scenario X serves as a demonstrator in

this study. Scenarios Y and Z are used to emphasize the

robustness of the TB-MI approach.

The first step after gathering PE signals is to prepare

them for anomaly detection via signal processing. This

involves both smoothing and outlier removal. Prior to

smoothing, the PE signals are examined visually. While the

signals as plotted in Figs. 11, 12 and 13 seem to be noisy,

upon closer examination (see Fig. 14), they are actually

seen to be fairly continuous. Figure 14 plots a zoomed in

view of the PE S-3 obtained for scenario X. The plot,

which includes 1000 data points, contains no visible out-

liers and little noise, and appears much smoother than the

zoomed out view of PE S-3 in Fig. 11. The author attri-

butes these high frequency patterns to temperature varia-

tions from both ambient conditions and the simulated

thermal cycles. Such patterns are observed in all PE sig-

nals. Thus no pre-processing of PE signals is required prior

to anomaly detection. A PE signal is computed from the

differences between predicted and measured response. As

long as the inputs to the regression model and the measured

response are both treated for outliers and noise, PE would

Fig. 12 PE S-3, PE S-5 and

PE S-10 generated using TM2

Fig. 13 Time-history of

temperature measured near

sensors S-3 and S-4 (top) and

PE S-3 and PE S-4 generated

using TM2
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also be free of outliers and noise, and hence not require

pre-processing.

4.5.1 Scenario X

Subtracted signals derived from combinations of those PE

signals corresponding to the sensors located away from

damage exhibit no or negligible deviations from their base-

line conditions. Therefore, in this paper, anomaly detection

is demonstrated using only a few subtracted signals that are

generated from PE signals of sensors which are located

closer to the damaged elements. Figure 15 displays four

subtracted signals which reflect the structural behaviour of

the truss. Each signal refers to a combination of two signals,

e.g., subtracted signal TS3S4 refers to a combination of PE

S-3 and PES-4 [see Eq. (2)]. Combinations,which include

PE S-3, indicate a sudden change at event #4 (see TS3S4 in

Fig. 15). Subtracted signals, which include PE S-4, depart

gradually from the confidence interval after each subsequent

event starting from event #1. Examples illustrating this

behaviour are given in Fig. 15. Subtracted signals corre-

sponding to a combination of sensors on elements of the truss

that are not spatially close to the location of damage also

diverge from their respective baseline conditions. This can

be seen in Fig. 15 for TS4S8, which combines PE S-4 and PE

S-8 corresponding to sensors S-4 and S-8. For event #3,

joint J-2 of the truss, which is not directly linked to the ele-

ments having sensors S-8 and S-9, is damaged. This event

is detectable from TS4S8 as it begins to depart outside the

confidence interval. At event #5 when structure is repaired

signals do not revert to their previous patterns. When

boundary conditions are changed (event #6), subtracted

signals shift abruptly. From the above, one can conclude that

SSM can detect changes in structural behaviour, and that the

sensor locations of the PE signals used to generate the SSM

signal may also help in revealing the location of damage.

4.5.2 Scenario Y

In scenario Y, the restraint at the right support (in Fig. 5)

limiting free translation in longitudinal direction is

removed by modifying the boundary condition to simulate

a roller support. Therefore, the range of strains in the

bottom chord increases (see Fig. 7).

All combinations of two PE signals are derived using

SSM. Subtracted signals that are most affected by the

events happening on the truss are discussed below. In

particular, subtracted signals computed from PE signals

corresponding to sensors on the bottom chord such as TS1S3

and TS2S3, and subtracted signals corresponding to sensor

S-5 such as TS5S7 and TS3S5 are shown in Fig. 16. The

computed signals show the following:

Fig. 14 A zoomed in view of

the PE S-3 obtained for

scenario X shortly after the

reference period

Fig. 15 Subtracted signals

TS3S4, TS4S5, TS4S8 and TS4S9

generated with SSM
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• A gradual drift after event #9, and

• An abrupt shift at the occurrence of event #11.

The sensors S-2 and S-3 are in close proximity to joint

J-3, which is directly affected by event #9. Therefore,

subtracted signals TS1S3 and TS2S3 (see Fig. 16), which are

generated by combining PE S–3 with PE S-1 and PE S-2

respectively, depart noticeably from the confidence interval

after event #9. At event #11, five bolts are removed from

joint J-4, which is close to sensor S-5. This event can be

detected as a shift in signal patterns when analysing sub-

tracted signals which include PE S-5 (see TS3S5 and TS5S7

in Fig. 16).

Compared to scenario X, where the boundary condi-

tions are set to prevent translation, in scenario Y, very

few of the events are detectable by SSM. This is attrib-

uted to the fact that mechanically induced response (i.e.,

strains that cause stress) is less prevalent due to allowing

free thermal movements at the roller support. This can be

explained by the two-dimensional nature of the structure

and its small scale with diagonal members lacking in

axial stiffness. In practice, bridges, even those with roller

supports, will experience thermal stresses due to tem-

perature distributions varying across all three dimensions

[25, 24]. Consequently, stiffness loss at a joint, as sim-

ulated in this study, is likely to affect correlations

between strains among different elements across the joint

in the structure.

4.5.3 Scenario Z

In scenario Z, the truss is exposed only to ambient tem-

perature variations. The first 55 days (79,200 measure-

ments) form the reference period. The first 20 days (28,800

measurements) from the reference period encompass the

training period and the rest are used to derive the confi-

dence interval. On the 75th, 77th and 79th day (events #13,

#14 and #15) of scenario Z, two bolts are removed from the

splice joint J3 in the bottom chord. Results from analysing

the PE signals using the four anomaly detection techniques

are described below.

Subtracted signals computed from PE signals corre-

sponding to sensors on the bottom chord are discussed as

these are the most likely to be affected by the events for

this scenario. Subtracted signals are stable during the ref-

erence period. They are also unable to indicate the occur-

rence of event #13. However, they do show a gradual shift

after event #14. Specifically, subtracted signals, which are

derived from PE signals corresponding to sensors S-2 and

S-3 that are located closer to the damaged joint deviate

from the confidence interval. TS2S3, TS2S4 and TS3S4 are

plotted in Fig. 17 to illustrate the above.

5 Summary and conclusions

This paper presents a temperature-based measurement

interpretation (TB-MI) approach for the online detection of

anomalous structural behaviour from distributed measure-

ments obtained through continuous monitoring of struc-

tures. The TB-MI approach consists of two phases. The

first phase is a learning phase where regression models are

trained to predict structural response from distributed

temperatures. Regression models are generated using the

regression-based thermal response prediction (RBTRP)

methodology [22]. The second phase relates to real-time

application wherein residuals computed from predicted and

measured response are analysed using SSM, a novel

anomaly detection technique introduced in this paper. The

performance of the TB-MI approach is studied on mea-

surements from a laboratory truss, from which the fol-

lowing conclusions are drawn:

1. The experimental setup consisting of the truss with its

sensors and the arrangement of infrared heating lamps

has enabled a realistic simulation of diurnal

Fig. 16 Subtracted signals

TS1S3, TS2S3, TS3S5 and TS5S7 for

scenario Y
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temperature variations and damage scenarios to inves-

tigate the TB-MI approach.

2. Down-sampling of temperature measurements, when

carried out up to a limit, only marginally affects the

prediction accuracy of the regression model while

notably reducing the time for model training. Results

from the study support using a minimum measurement

frequency of 24 measurements per day (5.2 9 10-3

Hz) to capture thermal effects in real-life structures.

3. As a rule of thumb, the PCs that cover nearly 99.9 %

of the variance in measurements are sufficient to

achieve good response predictions. For example, the

optimal number of PCs for the laboratory truss is

between 11 and 13 although the truss is equipped with

31 thermocouples.

4. Anomaly events can be detected when PE signals are

examined with SSM. SSM can offer support for

determining the location of the event, and thereby

help in diagnosing the cause of the change in structural

performance.

5. Having a roller support at one end of the truss releases

longitudinal movements and thereby eliminates ther-

mal stresses in the test-bed. This boundary condition,

which prevents detection of anomaly events, may not

however be realistic as real-life structures have thermal

stresses even in the presence of boundary conditions

that allow free longitudinal translation.

While the proposed TB-MI approach has shown

promising results, further research into anomaly detection

is required to scale it up to practical applications. This will

include comparing the performance of SSM to other

anomaly detection techniques, and investigating applica-

tion of the TB-MI approach to measurements from full-

scale structures. Further work will also focus on defining

flexible thresholds that account for long-term shifts in

response due to expected and normal changes in material

behaviour such as from creep.

Acknowledgments The authors would like to express their grati-

tude to Bill Harvey Associates and Pembrokshire County Council for

providing access to the measurements of the Cleddau Bridge, and to

Elena Barton (National Physical Laboratory) for providing the data

from the National Physical Laboratory Footbridge project.

References

1. Doebling SW, Farrar CR, Prime MB (1998) A summary review

of vibration-based damage identification methods. Shock Vib Dig

30(2):91–105

2. Hejll A (2007) Civil structural health monitoring: stratigies,

Methods and Applications. Doctoral Thesis, Luleå University of
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