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Abstract In this study, a new, model-free damage

detection method is proposed and validated on a simple

numerical experiment. The proposed algorithm used

vibration data (deck accelerations) and bridge weigh-in-

motion data (load magnitude and position) to train a two-

stage machine learning setup to classify the data into

healthy or damaged. The proposed method is composed in

its first stage of an artificial neural network and on the

second stage of a gaussian process. The proposed method is

applicable to railway bridges, since it takes advantage of

the fact that vehicles of known axle configuration cross the

bridge regularly, that normally only one train is on the

bridge at a time and that the lateral positioning of the loads

does not change. The novelty of the proposed algorithm is

that it makes use of the data on the load’s position, mag-

nitude and speed that can be obtained from a Bridge

Weigh-in-Motion system to improve the accuracy of the

damage detection algorithm.

Keywords Damage detection � Bridge WIM � Structural
health monitoring � Railway bridge � Machine learning

1 Introduction

Damage detection in civil infrastructure is a very active

field of research. There are many algorithms and tech-

niques being developed, but they can generally be classi-

fied in two categories: model-based and model-free. In the

model-based damage detection paradigm, an accurate finite

element (FE) model of the structure is required. Unknown

parameters are inferred from signals measured on the

structure. In this way, eventual reduction in stiffness can be

detected. One of the main advantages of this approach is

that the damage detected has a direct physical interpreta-

tion. The largest obstacle with this approach is the need of

an extremely accurate and detailed FE model. For struc-

tures of some complexity, this can be very difficult to

achieve. Also the optimization procedure to find the

updated variables is often ill-posed. On the other hand,

model-free damage detection does away with the need of a

FE model, at the price of not always having a direct

physical interpretation of the damage. Most modern tech-

niques for model-free damage detection involve artificial

intelligence. In this type of approaches, a classification

algorithm is trained on data acquired on the structure so

that it is able to separate, based on data alone, the signals

coming from a healthy structure from those in which

damage is present. Depending on the nature of the training,

this can be said to be supervised (when data from all

possible states are used) or unsupervised (when only data

from a base state are used). Obviously damage can take

many forms in a civil structure, and one does not have

access to a structure to which one can freely introduce

different levels of damage to obtain the relevant data. Thus,

supervised learning is seldom used. In unsupervised train-

ing only data from the assumed healthy structure are

available and the algorithm used should ideally detect

significant deviation from the observed ’’normal’’ behavior.

Thus, damage detection becomes an instance of novelty

detection. Novelty detection implies that, in any model-free

damage detection algorithm, damage will be always

defined against a baseline status that is assumed to be

undamaged.
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The following paragraphs present recent developments

within the area of damage detection using novelty

detection.

In [1], data on the displacement and rotation along a

beam frame subjected to an unknown moving load are

gathered. The data are arranged in a matrix in which each

column corresponds to a load passage and each raw cor-

responds to a fix position in the bridge. Principal compo-

nent and Robust regression analysis are used to reduce the

dimensionality of this matrix. Then, data gathered during

an initial period assumed to be absent of damage are used

to characterize the natural variation of the reduced

parameters, so that subsequent variation beyond this

’’natural’’ range can be flagged as damage. The method

successfully detects stiffness reductions of 20 %. Among

the weaknesses of this method is that it assumed known

load speed, quasistatic behavior and a single load, which

are seldom the case in real bridges.

In [2], the time-derivative of the acceleration, here

called the ‘‘jerk’’ is used to localize damage in a structure.

The method is tested both numerically and in a laboratory

experiment and compared to other methods. The method

computes the curvature of the ‘‘jerk’’ energy (defined

analogously to the kinetic energy) and compares it to that

of a reference healthy measurement. The method is capable

of successfully localizing the damage (20 % stiffness

reduction), even in noisy multiple damage scenarios. The

only load scenario considered was an impulse loading,

which limits the applicability of the method.

In [3], an operational modal analysis (OMA) based in a

quantity called the ‘‘cepstrum’’ is used to obtain the modal

characteristics of a structure. These are compressed using

principal components and classified into damaged or

healthy by an artificial neural network (ANN). The cep-

strum is used because it allows, under certain conditions, to

relax the normal white-noise constrain in OMA. The

damage is introduced in the laboratory experiment as an

extra mass. The excitation is assumed to be single input,

which constitutes a limitation of the suggested method.

In [4], a two-stage damage detection algorithm is pro-

posed. In the first stage, it uses Monte Carlo Markov Chain

method to cluster the response of a structure, even under

environmental variability. In the second stage the Maha-

lanobis distance is used to detect outliers that are then

flagged as damage. The method is tested in data from the

Z-24 bridge in Switzerland on which healthy and damaged

data were available. The data used for clustering consisted

on the three lowest eigenfrequencies and the air tempera-

ture on site. Using the clustered data to calculate the

Mahalanobis distance false positives are minimized.

In [5], Principal component analysis is used to reduce

the dimensionality of a matrix containing time signals from

different sensors on a structure. The reduced data are then

used for outlier detection using different regression tools

that are compared against each other. Data gathered from

numerically simulated truss bridge and concrete frame are

used to validate the methods. Finally, the suggested

methods are used in an existing concrete bridge in which

data from the construction period are used in lieu of

damaged data.

In [6], a method for location and estimation of damage

using macro strains is proposed. The method uses data

from distributed fiber optic sensors that measure strains

along the whole structure. It used these data to estimate the

distribution along a beam of the bending moments in the

frequency domain calling it the modal bending moment. In

several numerical experiments it is demonstrated that in the

case of damage the modal bending moment spikes around

the damaged elements, the magnitude of the spikes indi-

cating the extent of the damage. The method is also tested

in a multi-damage scenario in a laboratory experiment with

a reinforced concrete beam. The damage is introduced

progressively by reducing the cross-section’s width. The

tested method detects and locates the damage successfully

and is able to quantify it to some degree.

In [7], a reference free damage detection algorithm is

proposed. The method is based on the increase of the

information content of a signal measured close to a damage

location. For this, the relative entropy of the signals in the

wavelet domain is computed. The method was tested in a

truss structure in a laboratory setup. To introduce damage

bolts in the truss connections were loosened. The proposed

method could successfully detect this type of damage when

it occurred close to a sensor.

In [8], data are compressed using principal component

analysis and interquantile intervals and several definitions

of similarity are tested to detect outliers and cluster the

monitoring data. The proposed method is tested on a

numerical model of an existing cable stayed bridge,

updated with data measured on the structure. Damage was

applied to the model by introducing a change in a cable,

simulating dead-weight redistribution. The simulations

included the natural temperature variability of the struc-

ture. The proposed method was able to detect stiffness

reduction in the cable equivalent to 1 %.

As can be seen for the brief review above, novelty

detection is a varied and rich field of research. Many of the

proposed method are limited to a certain type of damage, to

a specific loading scenario or to relatively simple struc-

tures, which limits their usability in real bridges. The load

acting on a bridge at a given moment is rarely known, so

assumptions in the load should be done carefully.

Lately several bridge weigh-in-motion (BWIM) meth-

ods have been suggested [9–13] and some applications

have been used in the context of damage detection [14].

BWIM is normally implemented for their own sake, since
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there is a clear value in knowing the magnitude and fre-

quency of loads crossing a structure. In this study, we

suggest that BWIM can be of use also in damage detection.

Particularly for railway bridges, where the vehicle config-

urations are limited and known, and where there is minutes

of separation between consecutive trains, BWIM can be

especially accurate [15–17].

The method proposed in this study presupposes a bridge

instrumented with a dynamic monitoring system that

includes BWIM capabilities. It uses an ANN to predict the

value of the deck accelerations given values of previous

deck accelerations and information on the load’s magni-

tude and position provided by the BWIM system. The

ANN is trained with representative data recorded in the

healthy structure, so that the prediction errors, the differ-

ence between the predicted and measured accelerations, are

as little as possible. Once this has been achieved, any

subsequent increase in the prediction errors can be attrib-

uted to changes in the way the structure behaves, i.e.,

damage.

Of course, the prediction errors have some variability,

even under healthy conditions so a stochastic characteri-

zation is necessary to separate the outliers that will be

flagged as damage. This is achieved by fitting a gaussian

process to the prediction errors under healthy conditions.

By choosing data that come from only one vehicle of

fixed axle configuration (but allowing for the natural

variability of the axle loads and the vehicle speed) the

variability of the data is reduced, resulting in a more suc-

cessful damage detection. The chosen vehicle should be

one that crosses the monitored bridge frequently to make

the period necessary to accumulate sufficient training data

shorter and to allow to evaluate the health of the bridge

often.

The proposed method was tested in a simple numerical

experiment as a first step towards a full validation.

2 Method

The proposed method is an implementation of a novelty

detection algorithm and it is composed in its first stage of

an ANN (to create predicted accelerations) and on the

second stage of a gaussian process that classifies, based on

the difference between predicted and measured accelera-

tions, signals into damaged and undamaged. ANN are

universal approximators [18] composed of simple com-

puting units called neurons that are arranged in ordered

layers. They are extensively used in the past for damage

detection [19–21]. In its most typical layout each neuron

takes as input the output of all the neurons in the previous

layer and performs a relatively simple calculation to return

a single real-value output. Thus, a single neuron can be

modeled by:

f ðb;w1::N ; s1::NÞ ¼ S bþ
XN

i¼1

wisi

 !
ð1Þ

where s1::N is the output of each of the N neurons in the

previous layer, w1::N is a real-valued weight factor associ-

ated with each of the neurons on the previous layer, b is a

real number called the neuron bias and Sð�Þ is some func-

tion, typically a sigmoid. It is plain to see that the pre-

dictive power of a single neuron is but small. But when

enough neurons are interconnected in the right architecture

they can be used to fit any data with arbitrary accuracy

[22]. Typically an ANN is configured in 3 layers. The first

one is called the input layer and does not receive input

from any other layer, but directly from the independent

variable of the data that is being fitted. This value is then

output unchanged to the next layer. The second is called

the hidden layer and takes as input the output of the input

layer. Using this input and a predefined set of weights and

bias it performs the computation described in Eq. 1 and

passes the result as input to the next layer. The third layer,

the output layer, takes its input from the hidden layer and

performs an analogous operation. The output of the output

layer is then treated as the output of the whole ANN, and

constitutes the dependent variable. Because there is a

weighing factor for each connection between neurons and

each neuron is connected to all neuron in the previous and

next layer an ANN architecture with 3 layers, namely an

input layer with P neurons, a hidden layer with Q neurons

and an output layer with R neurons, will have a total of

PQþ QR weight factors w. Also, each neuron (except the

input neurons) has its own bias b, for a total of Qþ R

biases. All in all the described architecture has a total of

QðPþ Rþ 1Þ þ R parameters to be determined that can be

gathered in a vector of parameters h. To train an ANN is to

find the optimal parameters h ¼ h� so that ANN approxi-

mates the unknown function underlying the empirically

obtain data pairs ðxi; yiÞ, so that when evaluated at the

independent variable xi the ANN returns an approximation

the matching dependent variable yi. This is achieved by

minimizing the difference:

h� ¼ argmin
h

jANNðh; xiÞ � yiÞf jg ð2Þ

For all data points ðxi; yiÞ and for some norm j � j, usually
the Euclidian norm, where ANNð�Þ is composed of layers of

neurons as described above. The most common algorithm

to perform this optimization in Backpropagation, in this

study the Levenberg–Marquardt backpropagation [23] was

used. In the proposed method, an ANN is trained to be able

to predict the deck acceleration during the passage of a
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vehicle of known axle configuration, based on the k previ-

ous values of the deck acceleration, measured at s sensors

and information on the m axle loads magnitudes and

position (because the vehicle is assumed to always have the

same configuration, only the position of the leading axle is

given). Let ast be the acceleration measured at time t at

sensor s. Let Pi be the magnitude of the load of the i-th axle

of the vehicle. And let lt be the position on the bridge of the

leading axle of the vehicle at time t. Thus, the independent

variable x is formed by the vector containing:

xst ¼ ða1::jt�1::t�k;P1::m; ltÞ ð3Þ

for all times t and sensors s. The dependent variable

y becomes:

yst ¼ ast ð4Þ

for all times t and sensors s. In this study, 4 sensors were

used, and the 5 previous values of the acceleration were

considered (meaning that k and s in Eq. 3 were set to 5 and

4, respectively). The vehicle was chosen to have 4 axles.

These acceleration values (4 9 5) together with the mag-

nitude of the 4 axle loads and the position of the leading

axle make a input vector x with 25 components. In this

way, the ANN is trained to estimate or ‘‘predict’’ the deck

acceleration values for each sensor based on information

on the live load and the previous values of the deck

accelerations. For each passage of the chosen vehicle a

prediction error can be calculated as:

pes ¼
X

t

ðANNðh�; xst Þ � yst Þ
2

ð5Þ

For all sensors s, where pes is the prediction error for

sensor s, xst and yst are as defined in Eqs. 3 and 4, h� is the
optimized parameters of the ANN function. If the ANN is

properly structured and trained with data from the

undamaged structure the prediction errors pes should be

fairly low, and will remain low as long as the structure

continues to behave in its ‘‘undamaged’’ condition. If

damage is introduced to the structure, the behavior of the

structure will change. Because the ANN is trained to pre-

dict the behavior of the undamaged structure, the values of

pes will increase, making it a suitable damage index. Now,

the prediction errors pes will not be exactly the same for

different vehicle passages, even if the condition of the

structure remains unchanged, since the vehicle will cross at

different speeds and with different axle loads (only the axle

configuration is assumed to be unchanging, not the mag-

nitude of the loads). Thus, the prediction errors pes, even

under the assumption of no damage, form a distribution

that needs to be characterized stochastically. Values of pes
that deviate from this distribution can be used as indicative

of damage. It was found that the accuracy of the ANN at

predicting the acceleration varied significantly with the

speed of the crossing vehicle. Therefore, a gaussian process

with the vehicle speed as independent variable was used to

characterize the prediction errors pes for the healthy

structure. A gaussian process [24] is a process whose

realization is a normally distributed random variable for

every point in its domain. Thus, for each vehicle speed

v the prediction errors are normally distributed (but with

different mean and standard deviation for each speed),

pes �NðlsðvÞ; rsðvÞ2Þ ð6Þ

for each sensor s, where the dependence of the mean ls and
the standard deviation rs on the speed v have been made

explicit.

The proposed method requires, therefore, an initiation

period in which data are gathered on the structure under

the assumption of no damage. These data are used to

train the ANN and the gaussian process. In this study,

the ANN was trained with data corresponding to either

150 or 300 vehicle passages. The gaussian process was

trained with data corresponding to 100 vehicle passages.

The proposed method uses passages of a single type of

train to reduce the uncertainties. To ensure that enough

data can be gathered a common train type should be

chosen. For a heavy trafficked bridge, and for a common

vehicle type, the necessary training data on 400 vehicle

passages can be obtained in less than a week. Making it

a realistic training period. To combine the four pes (one

for each of the four sensor used in this study) into a

single damage index DI the signed sum of the distance

of the pes to the mean measured in standard deviations

has been used, thus:

DI ¼
X

s

pes � lsðvÞ
rsðvÞ

ð7Þ

where pes is the prediction error for the sensor s, liðvÞ is

estimated mean of the prediction errors for healthy condi-

tion at vehicle speed v and riðvÞ is the estimated standard

deviation of the prediction errors for healthy condition at

vehicle speed v. In this way, a prediction error below the

mean (corresponding to unusually good predictions) con-

tributes negatively to the damage index, making it less

likely that the system classifies it as damage. The whole

method is schematically represented in Fig. 1.

The sensibility of the method to a number of parameters

was also tested. This was done by comparing the results to

a base-case and changing one parameter at a time. The

base-case scenario had 5 % BWIM error introduced,

vehicle speed varying from 20 to 23 m/s and 300 train

passages as training dataset.
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3 Case study

The numerical model used in this experiment consists of a

simply supported Euler–Bernoulli beam discretized using

30 FE. Damage is represented as a 30 % stiffness reduction

in element number 18. The geometric and material prop-

erties are detailed in Table 1.

The vehicle simulated is a 4-axle vehicle with inter-axle

distances 2, 3 and 2 meters. Each of the axle’s load is

obtained from an independent uniform random distribution

in the range 100–120 kN. The speed of the vehicle is

obtained from a uniform random distribution in the range

20–23 m/s. The numerical simulation is performed with

Newmark’s beta method with b ¼ 1=4 and c ¼ 1=2 with a

time increment Dt ¼ 1=300 s and Rayleigh damping with a

modal damping of 6 % for the first and second mode. The

vehicle always cross from node 1 to node 31 (see Fig. 2).

The vertical deck acceleration is recorded at nodes 6, 10,

15 and 23 (meaning 1.7, 3, 4.7 and 7.3 meters from the

abutment, respectively). The acceleration data were

corrupted with artificial white noise of 0 mean and standard

deviation 0.1 mg, a value admittedly low, but by no means

unrealistic for a high-quality accelerometer. The BWIM

system was assumed to provide load magnitudes accurate

to 5 % and exact load positions.

4 Results

Figure 3 shows the resulting prediction error for 300 sim-

ulated passages for all four sensors, plotted against train

speed. The ones marked with a cross come from healthy

condition and are used to fit the gaussian process that will

function as a ‘‘baseline’’ for each sensor. Against this

baseline subsequent measurements will be compared to

discriminate whether they correspond to healthy or dam-

aged condition. The thick line marks the mean of the fitted

gaussian process and the gray area marks the two-standard-

deviations limit.

The prediction errors marked with circles correspond to

healthy conditions. As could be expected they lie generally

within the two-standard-deviations limit.

The prediction errors marked with asterisks correspond

to the damaged condition (30 % reduction in the stiffness

of the 18th element). The difference is clearly observable

for the naked eye. The sensors 2 and 3, which are located

closer to the center of the span, show a clearer separation

between the damaged and healthy conditions.

For these data, the damage indexes DI can be calculated

from Eq. 7, and the receiver operating characteristic (ROC)

of the proposed method can be obtained. In a ROC, the

percentage of true positive (correctly labeled damaged

cases) is plotted against the percentage of false positives

(healthy cases incorrectly labeled as damaged cases) as the

critical DI that will work as a discriminating threshold is

varied (see Fig. 4). A very low threshold will always warn

for damage (resulting to 100 % true positives and 100 %

false positives) while a very high threshold will never

Strains

Accelerations

Measurement System
BWIM

ANN

Predicted acc

Load magnitude

Load position

Comparison
Stochastic 
Characterization

Damage 
Index

Fig. 1 Schematic of the proposed method. The dashed line denotes

relations that are only active during the initial training period

Table 1 Properties of the bridge FE model

Value Unit

Length 10 m

Elasticity modulus 210 GPa

Moment of inertia 2e-4 m4

Mass per meter 4300 kg/m

Number of elements 30 –

Fundamental frequency 10.3 Hz

Damaged element 18 –

Damage severity 30 %

6 10 15 2318

F ~ U(100,120) kN

v ~ U(20,23) m/s

Fig. 2 Sketch of the bridge used for the numerical experiment. The

boxes represent the location of the accelerometers. The cross indicates

the location of the damage. The axle loads are independently drawn

from a uniform distribution, as is the speed
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indicate damage (resulting in 0 % true positives and 0 %

false positives). The ideal ROC has an ‘‘inverted L’’ shape.

The ROC for the base-case described above is shown in

Fig. 5. Besides the base-case, a sensitivity analysis was

performed by varying some of the parameters used:

namely, the estimation error of the loads’ magnitude, the

range of speed of the crossing vehicles and the amount of

data available for training. The ROCs for these cases are

shown in Figs. 6, 7 and 8.
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Fig. 3 Prediction errors (pe) for all four sensors from 300 train

passages, plotted against speed. The 100 passages marked with ?

were used to stochastically characterize the pe by fitting a gaussian

process. The mean of the gaussian process is shown as a thick line.

The gray zone shows the � 2 standard deviations zone. The 100

passages marked with � correspond healthy conditions, not used for

training. The 100 passages marked with asterick correspond to

damaged conditions
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Fig. 4 Schematic of how a ROC is constructed. The damage index DI

is calculated for a number of damaged and healthy scenarios. Setting

a threshold for the classification generates a point in the ROC. By

sliding the threshold up and down the whole ROC is generated
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Fig. 5 Receiver operator curve based on the results shown in Fig. 3

(base-case)
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The ideal threshold should be set based on the proba-

bility of damage occurring, the associated costs of false

positives (extra inspections, unnecessary repairs) and of

false negatives (accumulation of undetected damage,

eventual collapse), and should minimize the expected cost.

The expected cost will be a linear combination of the costs

of the four possible scenarios (true positive, false positive,

true negative and false negative) weighed by their respec-

tive probabilities. These probabilities can be obtained from

Bayes Theorem. For example, the probability of a true

positive (i.e., the probability of damage present in the

structure given that damage was detected) can be defined as

follows: Let d denote damaged structure state, h denotes

healthy structure state and det denotes detection

pðdjdetÞ ¼ pðdÞpðdetjdÞ
pðdetjdÞpðdÞ þ pðdetjhÞpðhÞ ð8Þ

where the probabilities of detection given damage pðdetjdÞ
and detection given a healthy condition pðdetjhÞ are

obtained from the ROC (see Figs. 5 and 6) and depend on

the threshold set. The probability of damage pðdÞ should be
known or at least estimated. The probability of no damage

pðhÞ is 1� pðdÞ. The probabilities of the other three sce-

narios can be calculated in analogous way.

This case, with 5 % BWIM error, vehicle speed varying

from 20 to 23 m/s and 300 train passages as training

dataset was considered as a base against which to compare

other combinations of parameters to study the sensibility of

the proposed method.

The case in which a wider range of vehicle speeds is

considered was also studied. Figure 9 presents the predic-

tion errors for 300 train passages under both healthy and

damaged conditions, but for vehicle speeds in the wider

interval 18–23 m/s. As expected the increased variability in

the excitation leads to a wider spread in the results and a

poorer performance in the detection (see Fig. 6), but still

acceptable as a damage detection tool.

If the inaccuracy of the load estimation of the BWIM

system is increased to 10 % the result is still very good (see

Fig. 7). In fact it is comparable to the result with 5 % error.

This indicates that the system is fairly insensitive to BWIM

inaccuracies. It can be mentioned that the only quantity in

which error is introduced is the magnitude of the load.

Information about the load position is still considered to be

known exactly. Figure 10 presents the prediction errors for

300 train passages under both healthy and damaged con-

ditions, for the case with increased BWIM error.
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Fig. 6 Receiver operator curve based on the results shown in Fig. 9

(speed varied between 18 and 23 m/s)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

tr
ue

 p
os

iti
ve

s 
[%

]

false positives [%]

ROC

Fig. 7 Receiver operator curve based on the results shown in Fig. 10

(10 % BWIM error)
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Fig. 8 Receiver operator curve based on the results shown in Fig. 11

(reduced training set)
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Figure 11 presents the prediction errors for 300 train

passages under both healthy and damaged conditions, when

the ANN is trained with only 150 train passages. The

prediction capabilities are clearly diminished, but still

acceptable as a damage detection tool (see Fig. 8).

As an example, one can see from Figs. 5, 6, 7 and 8 that for

a threshold that correctly labels 90 % of the damaged cases

one must accept a 6 % probability of false positives in the

base-case, 8 % probability of false positives in the case with

increased BWIM error, 17 % probability of false positives in

the case with increased speed range and 24 % probability of

false positives in the case with reduced training set.

The proposed damage detection system works as a

novelty detection, warning for changes in the behavior of

the bridge under known loads interpreting them as damage.

The baseline used to determine the novelty consists in a

number of train passages recorded under healthy condition.

It would be useful if the SHM system could tell if the

damage is progressing or if it has stabilized. Figure 12

shows the damage index DI for a number of train passages

(the same random four-axle vehicle used before) with

variable damage severity (represented as a stiffness

reduction in the x-axis). As can be seen the rate of change

in DI increases with the severity of the damage, so the

system can be expected to discriminate between stable

damage and progressive damage.
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Fig. 9 Prediction errors (pe) for all four sensors from 300 train

passages, plotted against speed. See Fig. 3 for legend. In this case, the

speed was varied between 18 and 23 m/s
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Fig. 10 Prediction errors (pe) for all four sensors from 300 train

passages, plotted against speed. See Fig. 3 for legend. In this case, an

error of 10 % was introduced in the BWIM data inputted to the ANN
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5 Discussion and conclusions

In this study a new method for damage detection in railway

bridges is presented and tested on numerically simulated

data. The proposed method uses the information about the

load provided by a BWIM system and the previously

recorded deck accelerations as input to an ANN that pre-

dicts future values of the deck accelerations. Changes in

prediction capabilities in the ANN are then linked to

structural changes and damage.

The results from the presented experiment are very

promising and give reason to explore this field further. The

numerical data are admittedly generated from the simplest

possible bridge, but since the ANN training is done on

measured data, and thus is ‘‘model-free’’, the method is

believed to work for more complex structures. Both the

acceleration noise and BWIM error introduced are realistic

enough.

The proposed method was found to be relatively

insensitive to BWIM error, performing well with 5 and

10 % error introduced.

A case scenario with a four-axle vehicle was considered.

This corresponds to the crossing of a single locomotive.

While single locomotives do cross bridges with some

regularity, the ideal would be to use the most common

types of commuting trains. The number of axles in these is

far higher.

It can be observed that the sensors located closest to the

center of the bridge (sensors 2 and 3 located at nodes 10

and 15, respectively) are much more efficient in detecting

damage. The spread of the prediction error is smaller for

healthy condition and the difference between the means of

healthy and damaged conditions is larger. This, even

though sensor 4 (located in node 23) is closer to the

damage than sensor 2. Therefore, it appears that further

development is needed to be able to locate the damage.

As can be seen from Fig. 12, the proposed damage index

is sensitive not only to the presence of damage, but even to

its extent. Thus, it can give a relative quantification of the

damage. Relative because, from the time development of

the damage index, it can be inferred whether the damage

present is stable or exacerbating. The proposed method a

model-free and thus, works as a novelty detecting algo-

rithm. It detects changes in the dynamic behavior of the
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Fig. 11 Prediction errors (pe) for all four sensors from 300 train

passages, plotted against speed. See Fig. 3 for legend. In this case, the

ANN was trained with only 150 train passages
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Fig. 12 Damage indices DI for a number of train passages for

varying damage severities
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structure and interpret those changes as damage. As any

other model-free method, it cannot relate the amount of

change to a change in a physical quantity (such as a

reduction in stiffness) and thus cannot provide an absolute

damage quantification. To obtain an absolute damage

quantification one will need train the algorithm with

supervised learning, which is normally impossible for civil

structures.

For damage location a similar argument holds. For the

ANN to provide a direct estimation of the damage location

it would need to be trained with data about the damage

location for several damage scenarios. Because in Civil

engineering one is as a rule limited to unsupervised

learning this becomes an impossibility. An indirect damage

location can be obtained by observing what sensors are

more affected by the damage (i.e., which sensors register a

larger change in pe). As a general rule, sensors closer to the

location of the damage will detect the largest changes in

the structures behavior. This general principle needs,

nonetheless, to be balanced by the fact that, due to the

quality and quantity of available data, the ANN will be

inherently better at predicting some of the outputs com-

pared to others. A measure of how good the ANN is at

predicting each of the outputs can be easily obtained by the

ANN’s fitness, i.e., the difference between the predicted

and the target value for each of the output over a repre-

sentative dataset.

It needs to be mentioned that the proposed method

evaluates the health of the bridge every time the selected

train type crosses it. Thus, the system can be made arbi-

trarily reliable over longer periods of time, even in the

presence of false positives and false negatives. To illustrate

this (using the base-case scenario), let us say we chose the

threshold to give us a 90 % probability of detection in case

of damage (true positive) and thus a 6 % probability of

false detection (false positives) if damage is not present.

Further let us say that we have estimated the a priori

probability of damage to be one in a million or 1e-6. Let us

say, we then evaluate 4 train passages and obtain that all 4

of them result in a ’’damaged’’ classification. Then, the

posterior probability of damage in the structure is only

4.8 % due to the overwhelmingly low a priori probability

of damage occurring. If we continue to evaluate 5 more

train passages and obtain a total of 8 ‘‘damaged’’ classifi-

cations and 1 ‘‘healthy’’ classification (the expected out-

come if there was damage present in the structure), then the

posterior probability of damage present in the structure

rises to 99.6 %.

There are several important limitations for this work that

should be considered in the future. One limitation of the

proposed method is that it is assumed that damage intro-

duced does not affect the performance of the BWIM sys-

tem. It is possible to imagine scenarios in which this is not

the case. However, the sensors used for the BWIM system

are very local, so damage is unlikely to affect them. Fur-

ther, at least two sensors in different cross-sections are

needed for a BWIM system (to be able to infer the speed of

the vehicle). Thus, sensor malfunctions can be discovered

if the load estimations coming from the different BWIM

sensors start to differ significantly ([12] has studied the

case in which the very variation in the load estimation

capabilities of the BWIM system is used as a damage

sensitive feature).

A more complex structure should also be studied, now

that the suggested method has proven to work in the simply

supported beam case. A more realistic structure would have

a richer behavior, with torsional, bending, lateral and lon-

gitudinal modes (and combinations thereof). This would, in

turn, call for a more careful selection of the sensor

locations.

Further, a bridge’s behavior can change dramatically

from winter to summer. In ballasted railway bridges sea-

sonal variation in eigenfrequencies of over 30 % has been

observed [25]. For bridges located in regions with large

yearly temperature variations, the temperature and other

possible ambient loads (wind, solar radiation) should be

inputted to the ANN so that normal changes due to envi-

ronmental conditions are not mistakenly labeled as

damage.

Finally, the prediction error was observed to depend

heavily on the speed of the train. It is believed that this

could be mitigated if the speed of the loads (and not only

their position, as in this study) is provided as input to the

ANN.
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