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Abstract Natural frequency of vibration data are often

used to study the behavior of structures. They are also used

to calibrate finite element models and some studies have

proposed that the presence and location of damage can be

estimated using these data. Along this line, we earlier

proposed the concept of Eulerian-based virtual visual

sensors to estimate natural frequencies of structural vibra-

tions based on the change of pixel intensity captured in a

digital video. Benefits of this approach are that it allows for

distributed sensing and is contactless. However, as inten-

sity does not reflect any physical quantity, such as dis-

placement, and the range of values is difficult to control,

the signal-to-noise ratio (SNR) can be relatively low.

Furthermore, impulsive changes of intensity caused by

large deformations compared to the pixel size can result in

an impulse train in the frequency domain which leads to

ambiguity in determining peak frequencies. As a result, it is

often only possible to estimate the first fundamental mode

of vibration. In this paper, we present strategies using

targets mounted to the structure combined with signal

processing methods that significantly improve the SNR and

allow for detecting higher natural frequencies of vibration.

The concepts, their mathematical background, laboratory

tests to prove the accuracy and enhancement of SNR, as

well as an example of an in-service pedestrian bridge are

presented and discussed.

Keywords Natural frequencies � Structural vibrations �
Structural health monitoring � Video analysis � Eulerian-
based virtual visual sensors � Linear gradient pattern targets

1 Introduction and background

Health monitoring of structures and mechanical systems

has become a viable tool to assist owners to make informed

maintenance and repair decisions. Several approaches have

been developed to extract information from the measured

vibrational characteristics of structures, which fall in a

category well known as ‘‘vibration-based structural health

monitoring (SHM)’’ [1–14]. These methods essentially

utilize natural frequencies and mode shapes acquired from

different types of physical sensors such as accelerometers.

These predominantly used sensors suffer from disadvan-

tages such as time-consuming installation procedures, data

acquisition requirements, high number of required sensors,

and accessibility on the target structure. Alternatively,

optical devices such as laser Doppler vibrometers, which

can be applied remotely, have been used but are expensive

compared to the digital cameras that we use for our mea-

surements [15]. Digital video cameras in conjunction with

image processing techniques have also been used to this

aim and other SHM purposes as they offer an inexpensive

yet promising alternative. Digital image correlation (DIC)

techniques along with other matching algorithms have been

employed to monitor displacements with video cameras or

tracking certain targets through time [10, 16, 17], [18].

Zaurin and Catbas [19–21] applied image processing

techniques to use video cameras as loading sensors for

bridges and defined a so-called unit influence line (UIL)

index as a measure of health in bridges [19]. Elgemal et al.

[22] included computer vision in an integrated system to

create a ‘‘decision support system’’ for bridges and other

lifelines. It is good to note that recently several studies

have been conducted to address the issue of measuring

displacement of civil structures using videos cameras [23–

31].
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In an attempt to estimate the first fundamental natural

frequency of vibration of a structure, we earlier proposed a

methodology based on virtual visual sensors (VVS) for

video analysis using Eulerian-based coordinates [32]. Our

methodology is based on the original idea presented in [33]

and further applied in [34]. The essence of the original idea

is that single pixels can carry essential information about

minute changes of objects that are not visible to the naked

eye, but can be made visible by a technique called Eulerian

motion magnification [24]. In our work we have showed,

experimentally, that change of intensity in certain pixels of

a digital video can be related to the natural frequency of a

vibrating structure. It should be noted that this approach is

in its very nature different from what is used in feature

tracking or block matching algorithms such as DIC; we are

not calculating displacements in consequent frames but

rather simply monitor the change of intensity of a selected

pixel (or patch of pixels) with fixed (or Eulerian) coordi-

nate(s) which keeps computational efforts very low.

By employing the basic methodology introduced in our

initial work [32] we were unable to observe all natural

frequencies of a lab-scale three-story structure (see

Fig. 1a). This was partially because of the low signal-to-

quantization noise ratio (SQNR) due to the limited and

usually uncontrollable range of change in intensity. One

solution may be to employ gradient pattern targets, which

are mounted to the structure at location of interest, and

expand the range of intensity values and thus reduce the

quantization noise. As we discuss in Sect. 3.1, non-linear

intensity functions produce multiple harmonic frequencies

in the frequency domain. We thus decided to evaluate

grayscale linear gradient pattern targets (LGPT) with a

theoretical range of intensities from 0 (= black) to 255

(= white) (see Fig. 2a). The idea is to introduce a linearly

varying background avoiding non-linear or impulse-like

behavior. In Sect. 3.2 we discuss that another solution to

increase the SQNR, which is oversampling in time. The

idea of using a patch of pixels rather than a single pixel to

alleviate challenges related to occlusion due to large dis-

placements is discussed in Sect. 3.3. Section 3.4 presents

the basic idea of LPGTs and in Sect. 3.5 we discuss two

efficient ways to reduce their noise. In Sect. 4 we present

our laboratory experiments and discuss the results from a

number of different digital cameras used on two different

structural systems. The results from monitoring of an in-

service pedestrian bridge during an impact test are delib-

erated in Sect. 5. Finally, in Sect. 6 we present our con-

clusions and propose further work.

2 Motivation and objectives

The objectives of our study were to develop strategies for

Eulerian-based VVS that will (a) minimize non-linear

effects and (b) improve the signal-to-noise ratio (SNR) of

the recorded data to enable the detection higher natural

frequencies of vibration, which was not possible previ-

ously. We achieved this by introducing linear pattern gra-

dient targets (LGPTs) that are mounted to the structure and

by developing a number of signal processing steps. We

demonstrate that our strategies work with a set of labora-

tory experiments as well as a field test on a real bridge.

3 Description of theory and proposed methods

3.1 Theoretical considerations

As mentioned previously, non-linearity in the intensity

function in the spatial domain, I(x) will result in higher

Fig. 1 Experimental test setups

for: a Three-story structure and

b steel beam [35]
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harmonics in the frequency domain [32]. This can be

shown by the following theoretical relationship between

vibrations and measured intensity:

I xð Þ ¼ F I x; tð Þð Þ

¼ 2p
L

2

� �nXn
k¼0

�1ð Þk n

k

� �
d x� n� 2kð Þx0ð Þ ð1Þ

where L is the amplitude of vibration, n is the degree of

non-linearity, k the counter from 0 to n, x is the radial

frequency, x0 is the object’s radial frequency, and d the

Delta-Dirac function. For example, if the intensity function

in the spatial domain, I(x) is a third degree polynomial,

IðxÞ ¼ x3 as shown in in Fig. 3a, and the displacement

follows a sinusoidal function with a frequency of 1 Hz

(Fig. 3, second row), the observed intensity response in the

time domain, I(t) is not a sinusoidal function, as illustrated

in Fig. 3a, third row. In the absence of noise, the Fourier

transform of the intensity values have two peak frequencies

at 1 and 3 Hz, as shown in the Fig. 3a, fourth row, which

verifies Eq. (1). On the other hand, if I(x) is linear, the

resulting I(t) is sinusoidal, as shown Fig. 3b. A highly non-

linear case such as I(x) = x99 results in an impulsive

response of the intensity, I(t) in turn leading to multiple

peaks in frequency domain as shown in Fig. 3c. This

illustrates the effect of occlusion discussed earlier in this

paper and in [32].

3.2 Quantization error and signal-to-noise ratio

Analog-to-digital (A/D) conversion involves two main

steps: sampling in time and quantization. Errors due to

quantization and their effect on the signal is a known issue

addressed in the literature, e.g., in [36]. Assuming that the

quantizer uniformly covers the limit values and its error is

independent of the original signal, it can be deduced that

the error is equivalent to an additive white noise. The white

noise model can also be used with high-resolution quanti-

zation, which satisfies the independence condition. In

practical signal processing, in a process called ‘‘dithering’’,

some random noise within the range of quantization is

added to the analog signal prior to digitization to satisfy the

independence of the error from the signal [36].

In commercially available cameras, the quantization

resolution to reflect the amount of absorbed energy in CCD

sensors is usually 8 bit. However, as discussed previously

in our proposed methodology, this energy (or intensity

value) does not correspond to any physical quantity such as

Fig. 2 a Sample linear gradient pattern targets (LGPT), b intensity values captured by the camera and linear curve fit, c calculated noise, and

d the histogram of the noise [35]
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displacement or any of its derivatives. In other words,

higher amounts of displacement, velocity, or acceleration

do not necessarily cause higher change of intensity.

Assuming that the quantization error can be modeled as

white noise, increasing the sampling frequency will

decrease its amplitude in the frequency domain. It can also

be shown that by doubling the sampling frequency, the

power of quantization noise decreases by 3 dB. This means

that by doubling temporal sampling rate, the maximum

theoretical increase in the SNR is 3 dB. The frame rates of

commercially available cameras are in the range of 30, 60

and 120 Hz, which is reasonably sufficient for measuring

frequencies in large structural systems such as bridges but

may not be sufficient to detect all of the natural frequencies

due to the high quantization error. High-speed cameras

represent an effective yet expensive solution to this issue,

which we have also shown earlier [37]. A discussion of

high-speed cameras can be found in Sects. 4.2.4 and 4.3.

3.3 Patch processing

As discussed earlier and visualized in Fig. 3, choosing one

pixel in a digital video recorded at a comparatively low

frame rate and resolution can lead to ambiguous peaks in the

frequency domain, which makes the detection of higher

frequencies difficult or often impossible. To solve the

problem of occlusion, which produces periodic impulses in

time and frequency domain, one can choose a patch of

Fig. 3 The effect of non-linearity in the spatial domain. Rows one to

four (top to bottom) show intensity in the spatial domain, I(x),

displacement, d(x), observed intensity in the time domain, I(t), and the

Fourier transform of the former, respectively. Column a shows the

case of I xð Þ ¼ x3, b the linear case of I xð Þ ¼ x, and c the case of an

impulsive change of intensity modeled by xð Þ ¼ x99 [35]
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pixels and monitor their average value though time. In other

words, by choosing a patch of pixels, we virtually decrease

the ratio of displacement to the pixel size which makes the

change of intensity smoother. Patch processing can be

applied to videos where no targets are used or combined

with LGPTs as discussed in more detail in Sect. 3.5.

3.4 Linear gradient pattern targets

In this study we propose the idea of using LGPT mounted

to locations of interest on the structure. For this case, we do

need access to the structure in order to mount the targets,

which may require ladders or lifts, depending in the situ-

ation. Also, the target needs to be oriented in the expected

direction of motion to capture the vibration amplitudes

accurately. We employed LGPTs with different sizes in our

experiments as shown in Fig. 2a. The idea of these targets

is to create a well-defined, linearly varying background to

avoid non-linear behavior as discussed in Sect. 3.1. The

criteria for size is to optimize maximum amplitude of

vibration, A with the length of the target, L. A typical cross

section of an LGPT as it is captured and represented by the

camera is shown in Fig. 2b. The intensity value, although

designed to be linear, contains noise as is shown in Fig. 2c.

This noise was computed by subtracting the linear curve

from the captured intensity curve. A histogram of the noise

is shown in Fig. 2d.

3.5 Noise reduction strategies for LGPTs

A strategy to reduce the noise would be to average the

intensities of a patch of pixels on the LGPT as shown in

Fig. 4a. From Fig. 2d it can be seen that the average of the

noise is close to zero so it can be deduced that by averaging

the pixel values, we essentially reduce the noise. Another

strategy for noise reduction is to choose random pixels on

the gradient and fitting a linear function through them

(Fig. 4b). Tracking the constant part of this linear function

through time can lead to a much less noisy signal, in the

case of our lab experiments it improved the SNR by

3–6 dB. The requirement for these computationally inex-

pensive noise reduction techniques is that during the whole

vibration phase, the selected pixels should never leave the

LGPT range, otherwise artificial non-linear behavior is

introduced. A solution to this is to employ LGPTs that

consist of several patterns with different lengths as shown

in Fig. 2a. The most appropriate target can then be picked

after the digital video has been collected, which is one of

the advantages of our approach.

4 Laboratory experiments

4.1 Experimental test setup

Two laboratory experiments were performed: Free vibra-

tion of a lab-scale three-story structure as shown in Fig. 1a

and free vibration of a simply supported steel beam

(Fig. 1b). In the first test, an initial displacement was

manually imposed on the structure by hand. Following a

sudden release, the system’s free vibration was recorded

until it was damped out. The 3.6 m-long simple support

steel beam with a W15 9 87 cross section was struck with

an instrumented hammer to impose structural vibrations. In

both experiments, high-precision capacitive accelerometers

were attached to the structures to verify the frequencies

estimated from the VVS data.

4.2 Three-story structure tests

4.2.1 Cameras used

Three different cameras were used for the laboratory

experiments. For the three-story structure experiment, a

Fig. 4 Two noised reduction

strategies for LGPTs. a Patch on

an LGPT to average out the

noise, b linear regression

approach: measured intensities

are mapped onto linear curve fit

[35]
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GoPro Hero 3 camera and a Photron UX100 (Fig. 5a, c)

were used. The resolution of the GoPro camera was

1280 9 720 pixels and the frame rate was 120 fps. The

Photron camera was used with 500 fps and a full resolution

of 1280 9 1024 pixels to evaluate the ability of detecting

higher-order frequencies with high-speed cameras. Finally,

for the beam experiment, and to explore the limits of our

proposed methodology, a Photron FASTCAM SA-X2

(Fig. 5b) with 5000 fps and a full resolution of

1024 9 1024 pixels was employed. It is important to note

that there is a trade-off between resolution and frame rate

due to the bandwidth limit of the camera hardware. Also,

based on our own observations, the spatial noise power in

high-speed cameras is relatively high, i.e., higher than in

regular cameras. Three LGPTs with dimensions

8 9 60 mm were attached to the three different masses of

the three-story structure as shown in Fig. 1a. For our

analysis, we used VVS data collected from the first-story

mass, as it was best suited for the size of our LGPTs.

4.2.2 Reference data from accelerometers

Two high-fidelity capacitive accelerometers were attached

to the side at the height of masses two and three (see

Fig. 1a) and sampled at 1 kHz using a high-speed data

recorder. The natural frequencies computed from the

acceleration data from the second and third story was

essentially the same for all of the experiments, as shown

in Fig. 6a, b, respectively. The only difference in the

frequency domain was that the magnitude of the peaks

slightly varied. This, however, had no influence on the

value of the peak frequency. The fundamental frequencies

of vibration were found to be 4.70, 14.0 and 20.9 Hz for

both stories. It can be observed that the SNR for the

second story is higher, which is due to the fact that the

third and second natural frequencies of vibration have a

much stronger contribution than for the third (= top)

story.

4.2.3 Results from GoPro camera

Figure 7 shows the results from the GoPro camera without

the use of LGPTs. In Fig. 7a, it can be seen that the first

and second peak frequencies are detectable, but at the same

time there are several higher harmonics in the frequency

domain which made it difficult to choose the right natural

frequency. Using a patch of 50 9 50 pixels, however, it is

possible to detect all of the natural frequencies (Fig. 7b)

bearing in mind that other peak frequencies are just mul-

tiples of the first one. Although the magnitude of the third

mode is not very large, it is still detectable (Fig. 7b). The

duration of the signals are about 10 s, which produces a

resolution in the frequency domain of 0.10 Hz.

As proposed in Sect. 3.4, LGPT should significantly

improve the results in Fig. 7. By selecting a pixel on the

gradient target of the first floor, all three natural frequen-

cies could be recovered as is evident in Fig. 8a. Figure 8b

shows the same data processed using a patch of 5 9 5

pixels on the LGPT which reduced the noise by 2.7 dB.

Figure 8c shows the data when the linear regression

approach as presented in Sect. 3.5 is employed. As can be

observed, this processing step is capable of reducing the

noise even better than the patch if applied for the case

when LGPTs are used.

As can be observed from the inserts in Fig. 8 in the

frequency domain, because of the relatively low SNR in

Fig. 8a, accurate estimation of the third peak frequency is

difficult. Hence, the small difference in the third peak

frequency can be associated with the low SNR. As can be

seen in Fig. 8b, c, this problem is resolved using patch

processing and linear regression, respectively, which

notably improved the SNR of the signal. It should be noted

that the use of LGPTs improves the contrast and decreases

quantization intervals simultaneously. Comparing the time

history part of Figs. 7 and 8 shows that the range of change

in intensity values is much larger when LGPTs are used.

This, as previously mentioned, helps to reduce the effect of

Fig. 5 Cameras used for the laboratory experiments: a Photron FASTCAM UX100, b Photron FASTCAM SA-X2, and c GoPro Hero 3 [35]
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quantization noise, which is partially responsible for the

missing peak in the frequency domain (Fig. 7a).

4.2.4 Results from photron FASTCAM U100 camera

As discussed before, high-speed cameras can help improve

the SQNR. For high-speed cameras, picking a pixel at the

bottom of the three-story structure without any noise

reduction strategy can reveal all of the natural frequencies

(Fig. 9a). Selecting a patch of pixels on the other hand will

produce a much less noisy signal and avoid the presence of

artificial peaks in the frequency domain as shown in

Fig. 9b. As described before, the Photron FASTCAM

U100 was used for this experiment. The problems

Fig. 6 Sample data from the accelerometers: a second story and b third story. The left and right columns show data in the time and frequency

domain, respectively [35]

Fig. 7 Data extracted from videos taken by the GoPro camera without LGPTs: a one pixel in the middle of first floor and b a 50 9 50 patch of

pixels in the middle of the first floor [35]
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associated with this type of camera are their limited stor-

age, which leads to shorter recording time, limited band-

width, which results in a sacrifice of spatial resolution with

higher temporal resolution, and also higher spatial noise.

Also, the higher the frame rate, the better illuminated the

medium should be to have high-quality videos. The use of

LGPTs for high-speed cameras can be beneficial as well.

As can be seen from Fig. 9c, although the signal is noisy,

the peaks are more pronounced. Using a patch of pixels on

the LGPT (Fig. 9d) reduces the noise, increases SNR by

9 dB, and shows the peaks even clearer. Also, linear

regression can increase SNR by almost 12 dB (Fig. 9e).

This shows again that linear regression compared to patch

processing can result in a better SNR.

4.2.5 Comparison of results

Table 1 shows the SNR for all experiments on the three-

story structure. In the case of the high-speed camera, the

level of SNR of one pixel signal where no LGPTs are used

is artificially higher due to exponential decay of the signals

where LGPTs are used. Also, a comparison of cases using

low- and high-speed cameras with LGPTs evidently shows

an increase in the SNR from 3.4 to almost 6 dB, which is

close to the theoretical bound due to the improved SQNR.

It should be noted that the setup of this experiment with

high-speed camera was a little bit different from the pre-

vious tests and that the duration of the signal was 7 s,

which gives a resolution around 0.14 Hz. These factors

explain the slight difference in the third peak frequency in

Fig. 9, and the accelerometers’.

4.3 Steel beam tests

Finally, and to explore the limits of our proposed

methodology, we conducted a test on a steel beam as

shown in Fig. 1b. The stimulus was provided by a hammer

strike imposed at the mid-span location. In this test, as

shown in Fig. 10a, b, several peak frequencies were

deducible from the accelerometer data. These reference

data were collected using the same high-precision capaci-

tive accelerometer as used for the three-story structure.

Monitoring a patch of pixels at the boundary of the steel

beam where the gradient of the intensity is maximum (the

Fig. 8 Data extracted from videos taken by the GoPro camera with LGPTs: a one pixel on the gradient target, b a patch of 5 9 5 pixels on the

target, and c linear regression applied to ten randomly chosen points on the gradient [35]
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edge), it was possible to detect several peak frequencies in

congruence with the measured accelerometers’ peaks.

Figure 10a shows the peak frequencies detected by the

camera, while Fig. 10b shows the data from the

accelerometers for comparison. As can be seen, even

without the LGPT, by using a patch of pixels, several peak

frequencies could be detected. The interesting point about

this experiment is that it involves a continuous system

where the high-frequency displacements are extremely

small and completely unobservable by the naked eye.

However, it was possible to identify frequencies as high as

764 Hz using our proposed VVS methodology. The reso-

lution in the frequency domain is approximately 1 Hz.

5 Field test

To evaluate the real-world performance of our proposed

approach, we conducted a field test on the Streicker Bridge

(Fig. 11a): a prestressed concrete pedestrian bridge located

Fig. 9 Data extracted from videos taken by the FASTCAM UX100

camera with and without LGPTs: a one pixel at the very bottom, b a

patch of pixels at the mid-level of the first floor, c one pixel on the

LGPT, d a 5 9 5 pixel patch on the LGPT, and e linear regression

applied to ten random pixels on the LGPT [35]
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on Princeton University’s campus in Princeton, NJ. As can

be seen from Fig. 11a, the bridge has a unique design with

a main span and four horizontally curved legs. The main

span consists of a deck-stiffened arch. The bridge is

equipped with an SHM system consisting of embedded

fiber-optic sensors. The data were made available to us by

Prof. Branko Glisic and allowed for a direct comparison

with our measurements. The dynamic stimulus was pro-

vided in the form of a group of students jumping in unison

for a few seconds at the location of our LGPTs.

LGPTs were mounted on the inside of a curved leg to

measure the vertical vibrations while the cameras were on

the other side of the street, approximately 8 m away from

the targets. The camera used was a Canon T4i with 60

frames per second and 128 9 730 resolution. The test was

performed on April 23, 2014, with adequate lighting

conditions and some wind. We verified that the wind did

not affect the measurements by comparing several mea-

surements taken at different instances in time. Figure 12

shows the results in the frequency domain for both

measurements. As can be observed, the two main fre-

quencies of vibration of the leg, namely 3.0 Hz and

3.6 Hz, were detected by both sensing approaches. The

low-frequency content in the VVS data (Fig. 12a) can

possibly be explained by slightly periodically varying

lighting conditions due to trees rocking with the wind. In

this case, this is not a real issue since the motion did not

result in an additional peak that could be misinterpreted.

Although it was not possible in this case to calculate an

SNR, it can be observed that the two frequency plots are

of very comparable quality.

6 Conclusions and outlook

In this paper, we evaluate and discuss a number of strate-

gies to detect higher frequencies of vibration using our

earlier proposed Eulerian-based VVS [32]. It can clearly be

seen that, based on our experiments, the use of LGPT and

high-speed cameras can improve the SNR and help detect

multiple frequencies in multi-degree-of-freedom (MDOF)

structural and mechanical systems. From our study, we

conclude the following:

• The introduction of LGPTs increases the SNR and

enables detecting higher natural frequencies which is

particularly helpful when standard digital video cam-

eras are used.

• Analyzing a patch of pixels rather than a single pixel

can be employed when no LGPTs are used to smooth

the change of intensity, i.e., minimize impulse-type

response in the signal.

• By analyzing a patch of pixels or applying a linear

regression approach, the SNR of LGPTs can further be

improved.

Table 1 Comparison of SNR from three-story structure

Capacitive accelerometer (Reference) with 1 kHz

Second story 31.8

Without LGPT With LGPT

GoPro camera with 120 fps

One pixel 14.7 18.0

Patch of pixels 17.1 20.7

Linear regression – 26.0

FastCam UX-100 with 500 fps

One pixel 21.7 17.4

Patch of pixels 23.4 26.6

Linear regression – 29.4

Fig. 10 The steel beam test results: a results from the FASTCAM SA_Z camera and b results from one accelerometer [35]
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• While high-speed camera technology is still expensive

and mostly used by researchers, the use of commer-

cially available digital video cameras in conjunction

with LGPTs allows for accurate and reliable detection

of multiple natural frequencies.

• High-speed cameras benefit from lower noise ampli-

tude due to oversampling and are able to detect higher

frequencies even without LGPTs.

• Our methodology also works in the field where we

found the same peak frequencies compared to the

existing SHM system.

• A limitation of our approach is that it can only

accurately capture vibrations that are perpendicular to

the line of view of the camera and in the direction of the

LGPT.

Future work includes correlation between intensity and

actual displacement, evaluation of advanced signal

processing methods to further improve the SNR and

quantization noise, and account for noise caused by the

vibration of the camera due to wind and traffic, and envi-

ronmental factors such as atmospheric interferences and

variable lighting conditions. Finally, we are planning to

explore solutions to capture vibrations in two dimensions,

perpendicular to the line of view of the camera, by

employing two-color targets.
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