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bridge considering the global deformation due to air temperature
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Abstract Although the structural health monitoring

(SHM) based on the displacement measurement has been

adopted in some cases of long-span bridges and recognized

several advantages, there are some issues required to be

considered, such as in acquiring the long-term static dis-

placements with high and stable accuracies and in con-

verting large amount of data into usable information. The

global positioning system (GPS) is expected to solve those

issues. This study aims to analyze the GPS time-series data

acquired in a cable-stayed bridge in Vietnam, and to verify

the usable feature for the structural condition assessment.

Here, we suggest the use of the global deformations that

are due to the periodic air temperature changes. Firstly, we

observed the quality of acquired GPS data, and the missing

data was interpolated by applying the least-squares esti-

mation. The correlation coefficient analysis was then con-

ducted using both the GPS and the air temperature data to

understand the global deformation due to temperature

changes. It was clarified that the global towers-girder

coupled deformation was dominated by the 1-day periodic

temperature change. The autoregressive integrated moving

average (ARIMA) model was then applied to the GPS

time-series data, and it was shown that there were high

regressions in some AR-MA coefficients plots. It was thus

concluded that those plots could be used as the base dis-

tributions for the statistical structural condition assessment.

Keywords Global positioning system � Long-span
bridges � Time-series analysis � Global deformation �
Temperature effects � ARIMA model

1 Introduction

Structural health monitoring (SHM) has been considered

for the process of implementing structural condition

assessment for civil infrastructures as well as for the large-

scaled structures, such as long-span bridges. In those

flexible bridges, some structural changes have been con-

sidered to relate closely to deformations [1]. A bridge

usually has two kinds of individual deformations: long-

term and short-term deformations. The long-term defor-

mations are irrecoverable or periodic; they are caused by

the foundation settlement, the creep, the temperature ef-

fects, and so on. The short-term deformations are caused by

dynamic inputs, such as those induced by wind, tidal cur-

rent, earthquake, and traffic [1–3]. The monitoring of those

deformations is thus expected to be appropriate to capture

the structural changes.

The SHM system have been applied to the continuous

monitoring of civil structures; however, they still have

some issues required to be considered, such as how to

acquire the long-term static displacements of large-scale

structures with stable and high accuracies, and how to

convert large amount of data into usable information. In

most cases of SHM, the major devices to capture dynamic/

static structural responses are the accelerometer and the

strain sensor; on the other hand, there are some sensors for

measuring the structural displacements, such as the laser

interferometer and some electronic distance instruments.

Although those sensors have the advantage of high accu-

racies; they also have some disadvantages; e.g., it is
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difficult to capture the measurement points when the dis-

placement becomes too large, it is difficult to acquire data

in real time, and the data acquisition is limited by climate

conditions; i.e., the clear line of sight is one of basic re-

quirements [4].

The Global Positioning System (GPS) technology has

been successfully used to measure displacements of oscil-

lating flexible civil engineering structures, such as sus-

pension bridges and high-rise buildings. There are some

advantages of the GPS technology to monitor the dis-

placements of the large-scaled civil structures; e.g., it

overcomes the limitation of climate, it can also measure the

structural displacements in the three-dimensional direc-

tions at centimeter level accuracy [1, 4]. Actually, there are

some cases of the SHM using GPS technology for the

monitoring of long-span bridges; e.g., the Tianjin Yonghe

cable stayed bridge in Hong Kong [2], the Akashi Kaikyo

Bridge in Japan [5]. In the case of the Akashi Kaikyo

Bridge which is a suspension bridge with the center span of

1991 m, the GPS system has been installed to measure the

displacements in three directions at three locations; the

center span, the top of one of towers and the anchorage. In

the indicated study in [5], possibility to evaluate the con-

figuration of a suspension bridge was shown based on the

statistical methods that were applied to the acquired long-

term GPS data. Here, the deformations due to an earth-

quake and the typhoon were identified.

On the other hand, some papers studied the continuous

structural monitoring data, in most of which, the dynamic

characteristics were used to verify the structural changes

[6–8]. Those studies pointed out that the long-term

monitoring data were greatly affected by the environ-

mental and operational effects. Sohn et al. [6] mentioned

that those effects consisted of temperature, humidity, and

the changes in operational loads and boundary conditions.

The variability of monitoring data due to the environ-

mental effects could then mask more subtle structural

changes caused by damages. In their study, a linear

adaptive filter model was examined to discriminate the

changes of modal parameters due to temperature changes

from those caused by structural damage or other environ-

mental effects. The results indicated that a linear adaptive

filter to could reproduce the natural variability of the fre-

quencies with respect to time of a day. Cornwell et al. [7]

studied the variability in modal parameters due to the en-

vironmental effects and the operational conditions. In their

study, the correlation analysis was conducted using the

resonant frequencies and the temperature data measured in

two data acquisitions, and the high correlation coefficients

among them indicated the high influences of the tem-

perature changes on the changes of structural properties.

Farrar et al. [8] studied quantifying the variability in

identified modal parameters caused by some sources, such

as variability in testing procedures, in test conditions, and

the environmental variability. Most of those studies then

concluded that the consideration of the variability in

monitoring data due to the environmental and operational

effects was a requirement for effective SHM.

There were then actually some studies that used the

time-series analysis to assess the structural conditions from

the monitoring data that consisted of the environmental and

operational effects. Omenzetter et al. [9] used a seasonal

autoregressive integrated moving average model with ex-

ogenous inputs (SARIMAX) and transfer function to model

the relationship between strain data and temperature data.

In this study, unusual structural condition changes or

damages could be detected by applying the outlier detec-

tion and the intervention analysis technique to the esti-

mated model. In the other study from the same authors

[10], the approach to apply a vector seasonal autoregressive

integrated moving average (ARIMA) time-series model

was also presented. This study showed that the coefficients

of the ARIMA model that were estimated by the adaptive

Kalman filter could also be used for detecting the unusual

events occurred on the structure. Additionally, the study by

Sohn et al. [11] statistically examined the changes in the

autoregressive (AR) model coefficients that estimated from

dynamic data. It was shown that the distributions of AR

coefficients estimated from data sets, which were from

undamaged and damaged systems, could be appropriately

classified to exact conditions.

This study aims to analyze the long-term displacement

data acquired from a GPS monitoring system in a cable-

stayed bridge. We investigated the global deformation

patterns mainly due to the temperature effects, and verified

whether they can be used as the structural response features

for the statistical structural condition assessment. The tar-

get bridge here is the Can Tho bridge, which is a cable-

stayed bridges in Vietnam. The quality of obtained GPS

data is discussed and the missing data are handled by ap-

plying the least-square approximation to interpolate miss-

ing values. Then the correlation coefficient analysis is

conducted using the GPS data and the air temperature data

to investigate the global deformation modes due to the

temperature effects. We then also verify the applicability of

one of the time-series models; the ARIMA model for using

the global deformations for the statistical structural con-

dition assessment.

2 Time-series GPS data acquired in a target cable-
stayed bridge

In general, the GPS system consists of the base stations, the

rover stations, and the communication system. The selec-

tions of the reference stations and the remote stations are
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very important to get good-quality data. In the case of long-

span bridges monitoring, the distance between the base

station and each of the rover stations is often set up to

satisfy the effects of atmospheric and orbital errors are

expected to be very small. However, the missing data are

often occurred during the data acquisition due to some

reasons, such as the problems in the communication system

or in the data logger. Here, the target bridge in this study

and the installed GPS system are firstly presented, and the

handling of missing data in acquired data is also verified.

2.1 Target bridge and installed GPS system

The target bridge is the longest cable-stayed bridge in the

South East Asia opened in 2010. Figure 1 shows the lo-

cation and a picture of the target bridge. It is the bridge

over the Hau river in the south of Vietnam, with the total

length of 2750 m, the center span of 550 m, and the height

of towers are 171 m. The bridge has a concrete box-girder

with the width of 26 m; however, to increase the loading

capacity, a part of the center span (middle 210 m length) is

made by a steel box-girder. The girders constrained at the

towers link to towers by using the elastic rubber bearings.

There are two locations of elastic rubber bearings at the

towers that are lateral bearings and vertical bearings. Thus,

the girders are free to slide longitudinal at the limitation of

bearings. The thermal expansion joints are located at the

two ends of the main bridge. The SHM system has been

installed since 2010, which includes not only the GPS

system but also many sensors, such as temperature sensors,

anemometers, and accelerometers.

The GPS system installed in the bridge consists of nine

sensors as the rover stations and two base stations as shown

in Fig. 2. The rover stations were placed on the top of two

towers, the center span of the girder (the upstream and

downstream sides), the quarter of the center span (the up-

stream and downstream sides), and on the top of piers. One

of two base stations was placed on the footing of the North

tower, while the other one was placed near the monitoring

management office that was located 1-km far away from

the southern side of the bridge. The adopted GPS equip-

ments were the products of Leica co., ltd, GMX 902 GG

model. The accuracies of the GPS system based on real

time kinematic technique are (±10 mm ±1 ppm) (part per

million) for the horizontal plane and (±20 mm ±1 ppm)

for the vertical direction. The data acquisition system was

constructed, in which the GPS signal at each rover station

was acquired in 20 Hz, and their 10-min-averaged values

were calculated. The averaged three-dimensional coordi-

nates from the base station on the footing of the North

tower were then acquired in each 10 min; therefore, the

data became time-series data with 10-min interval. Fig-

ure 3a–c shows a part of raw GPS data at the center span

acquired from February 15th to 22nd in 2013. Here, the x-

direction in (a) is the longitudinal direction of the bridge,

(b) is the y-direction that is in the lateral direction, and the

z-direction in (c) is the vertical direction.

2.2 Handling of missing parts in GPS data

Actually, many small missing parts, most of which were

less than five missing points, were observed in the raw GPS

data. For handling those missing parts, a simple interpo-

lation procedure was adopted for the time-series analysis.

There were actually some previous studies that verified the

handling methods of missing data [12, 13]; when a few data

points are missing, it may be possible to interpolate the

missing values by the polynomial function estimation on

the basis of the least-square method [13]. Here, considering

a polynomial function with m-th order:

y ¼ a0 þ a1t þ a2t
2 þ � � � þ amt

m: ð1Þ

Equation (1) can be rewritten by a matrix form as:

y ¼ M:a ð2Þ

where: the components of y is GPS displacement data yi
(i = 1 - n) around the missing part at time t; M is a matrix

of size n 9 (m ? 1) that consists of ti and a is a vector of

coefficients aj (j = 0 - m). Hence, the coefficients of the

polynomial can be estimated by:

Fig. 1 The target bridge. a The

location of bridge. b The Can

Tho cable stayed bridge
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a ¼ MTM
� ��1

MTy: ð3Þ

Here, the order of the polynomial m must be determined;

the accuracies of the interpolated points basically increase

when the higher-order polynomials are used against the

number of missing points.

The performance of interpolation was then verified for

interpolating the missing points in acquired GPS data. A

part of acquired time-series without any missing points,

which was the data at the top of one of the towers in the

vertical z-direction, was taken for the verification, and

some missing points; the cases of one to five missing

points, were given. The least-squares interpolation was

then applied to examine the accuracy in each case. Notice

that, when the number of missing data points was one or

two, the difference between the interpolated and original

values became less than 3 mm, which was much smaller

than the accuracy of the GPS system. Figure 4 overlays the

plot of the interpolated time-series and the original one in

the cases of three, four, and five missing points. The resi-

duals at the missing points are summarized in Table 1. It

can be seen that the accuracies of interpolated values get

lower as the number of missing points increase. In the case

of five missing data points, some of the absolute residuals

between the interpolated and original time-series are more

than 10 mm, which is the 50 % of the measurement

Fig. 2 GPS sensors on the Can Tho bridge

Fig. 3 Acquired time-series data by the installed GPS and temperature sensor (blue line: observed 1-week data, red line: the mean value of

1-week data). a x-direction, b y-direction, c z-direction, d temperature data
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accuracy of installed GPS system in the vertical direction.

From the results of the same verification using several

time-histories, it was decided that the three missing points

or less were appropriately interpolated by this least-squares

based method in the target GPS data. In addition, it was

recognized that the polynomial with the order m = 3 using

three previous and two posterior data points n = 5 was

generally able to obtain accuracies at the interpolated data

points, at least better than the measurement accuracy of the

GPS system. We thus applied the automatic interpolation

process to many missing parts, which were with three

missing points or less, in whole acquired GPS data as the

pre-processing procedure for the next time-series analysis.

3 Observations of time-series GPS
and temperature data and global deformation
modes

The GPS time-series data used in the time-series analysis

for verification here were the pre-processed data acquired

from February 15th to May 15th, 2013. In Fig. 3, not only

the GPS time-series data in (a)–(c), but also the air tem-

perature data in the same period of observation acquired by

using a thermometer placed on the center span is also

shown in (d); the mean value of each 1-week data is also

indicated by a red line in each figure. In the case here: the

displacement data from the center span, the range of dis-

placement around the mean in the z-direction in (c), which

is approximately ±0.17 m, are much larger than those in

the x- and y-directions in (a) and (b), which are both around

±0.04 m. Compared to the time-series of the air tem-

perature in (d), the same periodic behavior, which is almost

144 data points; i.e., 24 h, can be observed especially in the

z-direction. It could be seen that the daily air temperature

changes influenced the global bridge deflection. Therefore,

it was considered that the analysis of the correlations be-

tween the GPS data and the air temperature could realize

the understanding of the global deformations of the target

bridge under the temperature changes.

The correlation coefficient analysis was then conducted.

The correlation coefficient between two variables X and Y

is their covariance normalized by their standard deviations,

as a following function:

rX;Y ¼ cov X;Yð Þ
rXrY

¼ E X � lXð Þ Y � lYð Þ½ �
rXrY

ð4Þ

where lX and lY are the mean values; rX and rY are the

standard deviations of X and Y, respectively, and E[.] is the

expected value operator. Four GPS locations were selected

to be analyzed: the top of the north tower: #A, the top of

the south tower: #D, the middle of the center span girder:

#B, and the quarter of the center span girder: #C, as indi-

cated in Fig. 2; these locations are the typical positions to

Fig. 4 Application of least-

square approximation to

missing data

Table 1 Difference between the measured values and the estimated

value (unit: mm)

Sample # 3 missing 4 missing 5 missing

4 ?1.6 -1.4 -4.5

5 -3.4 -7.8 -13.4

6 -4.5 -9.7 -17.5

7 – -11.0 -19.8

8 – – -11.3
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verify the behaviors of cable-stayed bridges. We then

calculated the correlation coefficients between the air

temperature and each of the GPS time-series data with all

directions at location #A–D, and those between two of the

GPS data as summarized in Table 2.

Firstly, when studying the correlation coefficients be-

tween the temperature and each of the GPS data at the two

tower points (#A and #D), the positive and negative

correlations are recognized only in the x-direction, re-

spectively. This indicates that the towers deform on the

inward side when the air temperature increases; therefore,

the correlation coefficients in the y- and z-directions show

the negative and positive values respectively in both two

towers. The influences of the air temperature on the de-

formations of two towers are considered to be the same

because those absolute values show almost the same in all

directions; from 0.4 to 0.6. On the other hand, when

studying the correlation coefficients between the tem-

perature and the GPS data from the girder points (#B and

#C), it was firstly recognized that the values in the z-di-

rection were much closer to -1; i.e., the negative corre-

lation, both in #B and #C. This clearly indicates that the

girder shows the global deflections as the air temperature

increases. Moreover, the other correlation coefficients in

the x- and y-directions show low correlations except the

Table 2 Correlation coefficients between the GPS data and the air temperature data

Data Temp. North tower #A Center span #B Quarter span #C South tower #D

x y z x y z x y z x y z

North tower #A

x 0.46 1 0.07 -0.02 0.54 0.52 -0.67 0.32 0.22 -0.56 -0.51 -0.05 0.10

y -0.42 1 -0.36 -0.08 0.65 0.29 -0.42 0.71 0.30 -0.01 0.89 -0.33

z 0.41 1 0.05 -0.05 -0.18 0.35 -0.09 -0.13 -0.16 -0.26 0.81

Center span #B

x 0.14 1 -0.02 -0.15 0.49 -0.09 -0.14 0.24 -0.13 0.08

y 0.06 1 -0.28 -0.17 0.80 -0.21 -0.50 0.67 -0.10

z -0.91 1 -0.57 -0.03 0.93 0.77 0.36 -0.31

Quarter span #C

x 0.69 Sym. 1 -0.29 -0.58 -0.15 -0.49 0.48

y -0.11 1 -0.00 -0.27 0.75 -0.17

z -0.87 1 0.68 0.36 -0.25

South tower #D

x -0.61 1 0.01 -0.22

y -0.49 1 -0.37

z 0.56 1

(a) 

(b)

0.006 0.01 0.0417 0.0833 1 3
Cycle (/hour)

A
m

pl
itu

de

x-direction
y-direction
z-direction

0.006 0.01 0.0417 0.0833 1 3
Cycle (/hour)

A
m
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itu

de

Fig. 5 Comparison of the spectra of the GPS data and the

temperature data. a GPS data at the center span. b Air-temperature

data

#A

#B #C

#D

o x

y
z

midnight
6 am
noon

Fig. 6 In-plane global deformation modes due to the day-cycle

periodic temperature change
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one in the x-direction at the quarter point of the girder (#C).

This can be explained that the target cable-stayed bridge

was almost symmetric; therefore, the displacement in the x-

direction; i.e., the longitudinal direction, did not occur

especially at the center span (#B). The high negative cor-

relation at the quarter span (#C) in the x-direction was then

observed because the location there was the non-symmetric

position of the girder. Lastly, the correlation coefficients in

the y-direction at both #B and #C are very small; therefore,

it can be said that the in-plane deformation (the x–z coor-

dinate) of the cable-stayed bridge is dominated in the

global deformation of the girder.

In addition, the frequency (/h) spectra of the GPS data

and the air temperature data were derived to compare the

dominated frequencies of those time-series. Figure 5a, b

are obtained spectra; (a) is from the 1-week GPS data at the

center span, which is exactly the time-series presented in

Fig. 3a–c, and Fig. 5b is from the temperature data in

Fig. 3d. Here, the dominated frequency (/h) components in

the target time-series can be examined within the range

from 0.00595/h (=1 week, 7 days) to 3/h (20 min). It can

be seen that the same two frequencies show high ampli-

tudes; the highest one is 0.0417/h (= 24 h) and the other is

0.0833/h (= 12 h) in two spectra: the GPS data in the z-

direction and the air temperature data. Notice that the GPS

data in the z-direction at the center span show the highest

absolute correlation coefficient. This indicates that the GPS

data show high correlation with the air temperature, are

mostly dominated by the 1-day periodic behavior, which is

the 24 h-cycle; the highest and lowest temperatures are

thus observed at the noon and at the midnight, respectively.

On the basis of those results, the global deformation

modes due to the periodic temperature changes could be

identified as shown in Fig. 6. Here, the x- and z- dis-

placements at the midnight and the noon calculated by

differencing the x- and z-coordinates from those at 6 am in

a certain day were plotted in the four considering points:

#A–D. Notice that the same symbols show the displace-

ments at the same time of observation. It can be understood

that the global deformation mode due to the increase of air

temperature is configured by the inward deformations of

the two towers and the downward vertical deflection of the

girder, and the reverse occurs when the temperature de-

creases. In seeing the correlation coefficients between two

of GPS data presented in Table 2, high absolute correla-

tions can be observed not only between the z-directions at

the two points of the girder, but also between two of all

directions at the two towers, and between the z-direction at

the girder and the x-direction at each of the towers.

From those results, the deformation due the air tem-

perature changes was recognized. It was then concluded

that the displacements of the two towers and the girder in

the deformation due to the 1-day periodic temperature

change are highly correlated; therefore, the statistical pat-

tern recognition of those global deformation was expected

to be applicable for assessing the condition of the structure

globally using the GPS data.

4 Application of the time-series analysis to GPS
data for structural condition assessments

On the basis of the considerations in the previous chapter,

we then verified the applicability of the time-series analysis

to the feature extraction for the structural condition

assessment that statistically investigated the pattern of the

global deformations. Here, the autoregressive integrated

moving average (ARIMA) model was adopted because the

global deformation was understood to be dominated by the

1-day periodic behavior. From the results in the previous

chapter, we then picked up some data to be analyzed; they

were the data in all of three directions at the top of two

towers, the data in the z-direction at the center span of the

girder, and the data in the x- and z-directions at the quarter

span, all of which showed the high correlation coefficients

with the air temperature data.

4.1 Description of ARIMA model

The ARIMA model is a statistical models to describe non-

stationary time-series [14]. The model is generally de-

scribed as ARIMA(p, d, q), where p, d and q are the orders

of the model, and it is defined as:

1� /1B� /2B
2 � � � � � /pB

p
� �

1� Bð Þdyt
¼ cþ 1� w1B� w2B

2 � � � � � wqB
q

� �
et; ð5Þ

where yt is the t-th component of the target time-series

vector y, and et is the white noise error term. ei (i = 1 - p)

and ej (j = 1 - q) are coefficients of the autoregressive

term and the moving average term, respectively, and B is

the lag-operator, which is defined as:

Bkyt ¼ yt�k; ð6Þ

therefore, (1 - B)d in Eq. (5) indicates the d-th order dif-

ference of the original time-series. By taking the differ-

ence, the trend in the time-series can be removed, and the

non-stationary process can be transferred to the stationary

process.

Figure 7a is a part of the one of the GPS time-series

data, which is the 1-week extracted data (from Feb 15th to

22nd, 2013) in the z-direction acquired at the center span of

the girder, and (b) is its autocorrelation function (ACF).

The apparent 144 points; equal to 1-day, which have the

periodic behaviors with a slow damping is clearly ob-

served; it can thus be said that the data is non-stationary

and influenced by the 1-day periodic temperature change.
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By taking the first order difference (d = 1) as shown in

Fig. 7c, the ACF then dropped quickly to within the 95 %

confidential interval indicated by blue lines, as shown in

Fig. 7d. To check whether the differenced time-series was

stationary or not, the Augmented Dickey Fuller (ADF) test

[14] was also conducted. The null hypothesis here was:

‘‘the first order differentiated data was non-stationary.’’

The statistical possibility p value was then calculated at

0.001 that was smaller than the 5 % significant level, and

the absolute test statistic value was 41.51 that was much

larger than the absolute critical value 3.41. Therefore, the

null hypothesis here was rejected; it indicated that the

original time-series was transferred to stationary by taking

the first order difference.

When the time-series became stationary by taking the

difference, the orders of AR process p and MA process q in

ARIMA(p, d, q) were determined by the partial autocor-

relation function (PACF) and the ACF [14]. Those for the

differentiated time-series are shown in Fig. 7d, e. It can be

seen that the values are almost contained within the 95 %

confidential interval at lag = 2 in ACF and lag = 3 in

PACF; therefore, q = 1 and p = 2 can be accepted for the

MA and AR orders, respectively. However, the values of

PACF are not completely decayed inside the confidential

interval after the identified lag.

To determine those orders p and q clearly, the Bayesian

information criterion (BIC) method was additionally ex-

amined. The BIC is one of criteria for the model selection

among a finite set of models. It is based on the likelihood

function and closely related to the Akaike information

criterion (AIC) [14, 15]. The formula of BIC is:

BIC ¼ �2 ln L̂þ k ln Nð Þ; ð7Þ

where L̂ is the maximized value of the likelihood function

of the model, N is the length of data, k is the number of free

parameters. The verifications were then conducted by cal-

culating the BICs to the ARIMA models for several GPS

time-series data using the MATLAB function ‘‘aicbic’’.

Here, the ln L̂ is the optimized log-likelihood function

Fig. 7 ACF and PACF of GPS time-series data and its differentiated time-series. a GPS time-serious data, b ACF of GPS time-serious data,

c taking differentiated, d ACF of differentiated series, e PACF of differentiated series

Table 3 BIC results for the definition of ARIMA model order

MA(q)

1 2 3 4

AR(p)

1 -7847 -7846 -7839 -7824

2 -7844 -7832 -7824 -7832

3 -7838 -7824 -7826 -7828

4 -7833 -7826 -7829 -7823
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obtained in the estimation of each ARIMA model. One of

the results, which is obtained from a 1-week GPS data

acquired at the center span, is shown in Table 3. The row

the table corresponds to the AR order p from 1 to 4, and the

column is the MA degree q also from 1 to 4. Notice that the

order d of ARIMA(p, d, q) is all d = 1 on the basis of the

results discussed for Fig. 7. It can be seen that the smallest

BIC value is calculated in (p, q) = (1,1); the orders p, d,

and q were thus determined to ARIMA(1, 1, 1) that is the

appropriate model to apply for GPS data in this study.

4.2 Discussions for estimated AR-MA coefficients

distributions

The coefficients of the ARIMA model estimated for the

GPS data that consist of 1-day periodic behaviors were

considered to be applicable as the feature to indicate the

global deformation modes of the target Can Tho bridge. We

verified this by applying the ARIMA model estimation to

the data from February 15th to May 15th, 2013. Notice that

the data to be analyzed were the data in all of three direc-

tions at the top of two towers (#A and #D), the data in the z-

direction at the center span of the girder (#B), and the data

in the x- and z-directions at the quarter span (#C), as men-

tioned in the previous chapter. The GPS data were taken to

divide into day by day, and ARIMA(1,1,1) model was es-

timated to each of 1-day time-series. Figure 8 shows one of

the results that is from one of 1-day GPS time-series in the

z-direction at the center span. The time-series from the es-

timated ARIMA model and the original one are overlaid in

Fig. 8a and b is the standardized distribution of the residual

errors with the standardized normal distribution. Here, the

Ljung-Box Q-test (LBQ-test) [14] was also conducted to

check whether the residual error distribution showed the

white noise process with the normal distribution. The null

hypothesis here was; ‘‘the residual was the white noise.’’ In

the results, the statistical possibility p values at lags (5, 10,

15) were (0.0624, 0.1668, 0.3410) that were all larger than

the 5 % significant level, and the test statistic values were

calculated at (7.3199, 11.6650, 14.4788), which were

smaller than the critical values at 5 % significant level

(7.8147, 15.5073, 22.3620). It means that the null hy-

pothesis was not rejected. The residuals were thus identified

as the white noise process. We also checked those perfor-

mances in the estimations for other 1-day time-series and

confirmed that the estimations were conducted with almost

the same and appropriate accuracies.

Figure 9 shows the plots of the estimated AR and MA

coefficients from every 1-day time-series data for all con-

sidered time-series GPS data. In all figures, the plots are

categorized by different markers depending on the data for

each month. Before the discussions here, it should be no-

ticed that any significant structural condition changes had

not been reported during this period in the Can Tho bridge.

Because the regressions are recognized in all plots, the R-

square values for the linear regressions are also indicated.

Relatively high R-square values are then shown in the plots

from the GPS data in the z-direction at both the center and

quarter spans (#B and #C), those in the x-direction at the top

of two towers (#A and #D), and those in all directions at the

top of South tower (#D). In those data, the correlation co-

efficients with the temperature also showed high values, as

mentioned in Table 2. Therefore, those regressions are

considered to indicate the pattern of the global deformation

due to the 1-day periodic temperature change statistically.

Any outlier detection procedure should be adopted for the

statistical structural condition diagnosis. However, it can be

said that those regressions in the AR-MA coefficients from

the ARIMA model can be used as the base distributions

there. It was then concluded that the global deformations

due to the 1-day periodic temperature change could be used

for the global structural condition assessment.

Fig. 8 Estimation of ARIMA model. a Overlay of estimated and measured time-series. b Distribution of residual error

J Civil Struct Health Monit (2015) 5:415–425 423

123



5 Conclusions

This paper studies the analysis of GPS time-series data

acquired in a long-span cable-stayed bridge, and considers

the applicability of time-series analysis that is the aim of

identifying global deformation patterns for the structural

condition assessment. The results can be summarized as

below:

• The correlation coefficients analysis was conducted

using the pre-processed GPS data with the interpolation

of missing data. The data in the significant directions at

the two towers and the girder showed high correlation

with the air temperature data.

• It was also shown that the GPS data has high

correlation with the temperature dominated by 1-day

periodic behaviors. In addition, most of the GPS data

that relate to the global deformation were also highly

correlated each other. The global deformation mode

due to the 1-day periodic temperature change could

then be clarified, and the significant displacements of

the two towers and the girder were also shown.

Fig. 9 AR-MA coefficients distributions. a x-direction at #A

(R2 = 0.578) b y-direction at #A. (R2 = 0.479). c z-direction at #A.

(R2 = 0.221). d z-direction at #B. (R2 = 0.486). e x-direction at #C

(R2 = 0.281). f z-direction at #C (R2 = 0.557). g x-direction at #D

(R2 = 0.505). h y-direction at #D (R2 = 0.641). i z-direction at #D

(R2 = 0.519)
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• To extract the features that can indicate the pattern of

the global deformation, the applicability of estimating

ARIMA model was verified. The GPS time-series data

was recognized as the non-stationary data, and it could

be transferred to the stationary process by taking the

first difference.

• When apply the ARIMA(1, 1, 1), that its orders were

determined by ACF, PACF, and BIC, for the three-

months GPS data, the plots of estimate AR-MA

coefficients showed the regressions especially in the

data showed high correlation coefficients with the

temperature data; i.e., the time-series that were

dominated by the global deformation mode.

From the last results, those AR-MA coefficients were

expected to be used as the features to assess the structural

conditions. When those plots are treated as the baseline

distributions, the changes in the global deformation are

considered to be detected by adopting any multivariate

outlier detection algorithm. This is actually our next work

to realize a statistical structural condition diagnosis pro-

cedure. However, in this study, the global deformation due

to the 1-day periodic temperature change was clarified, and

it was also shown that those global deformations could be

used for the global structural condition assessment by ap-

plying the ARIMA model.
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