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Abstract We use Bayesian logic in reproducing how a

rational agent, called Ernest in the paper, analyses moni-

toring data and infers structural condition. The case study

is Adige Bridge, a 260 m-long statically indeterminate

structure with a deck supported by 12 stay cables. Bridge

structural redundancy, possible relaxation losses and an as-

built condition differing from design suggest that long-term

load redistribution between cables can be expected.

Therefore, the bridge owner installed a monitoring system,

including fiberoptic sensors that allow measurement of

deformation with an accuracy of a few microstrains. After

1 year of system operation, which included maintenance of

the interrogation unit, the data analysis showed an apparent

contraction of the cable lengths. This result is in contrast

with the expected behavior. We analyze how a rational

agent analyzes the observed response, and, in particular, we

discuss to what extent he is prone to accept the sensor

response as a result of the real mechanical behavior of the

bridge versus a mere malfunction of the interrogation unit.

In this analysis, we consider four psychological profiles,

which vary based on their personal trust in the reliability of

the instrumentation and on their knowledge of the struc-

tural behavior of the bridge. Using Bayesian logic as a tool

to combine prior belief with sensor data, we explore how

the extent of prior knowledge can alter the final engineer-

ing perception of the current state of the bridge and we

demonstrate how the engineer’s posterior judgment is

predictable with a mathematical model. Formal reproduc-

tion of the human decision-making process can have strong

impact in the field of structural health monitoring, as it may

enable: (1) quantification of probabilities that engineers

attribute to various events based on their subjective expe-

rience (which is currently an important challenge); (2)

better understanding and improvement of the decision-

making process itself; (3) embedding of decision making

into structural health-monitoring methods for the full

benefit of the latter.
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by
C. Cappello, D. Zonta, B. Glisic, M. Pozzi & R. Zandonini

MARCH 7, 2012, LATE AFTERNOON...
... EERNEST IS SITTING AT HIS DESK 
ANALYZING THE ELONGATION DATASET
RECORDED IN THE PAST YEAR FROM THE 
CABLE- STAYS OF AADIGE BRIDGE. . .

HE IS ALMOST DONE WITH HIS JOB, 
WHEN HE STARTS THINKING THERE IS 
SOMETHING ODD WITH HIS DATA...

ADIGE BRIDGE IS A TWO-
SPAN CABLE-STAYED BRIDGE 
WITH A STEEL-CONCRETE 
COMPOSITE DECK 260 M LONG, 
SUPPORTED BY 12 STAY 
CABLES....

on 
of 

... SINCE 2011, EACH CABLE IS 
MONITORED WITH 2 M LONG FBG-
BASED FIBER-OPTIC SENSORS, TO 
RECORD ITS ELONGATION AND 
TEMPERATURE. 
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OR 

(2) 'CRAZY PHOTODIODE'
THE NEW PHOTODIODE 
PRODUCED A SPURIOUS 

SHIFT IN THE 
MEASUREMENT 

(1) 'CABLES 
SHORTENED'

INDEED THE CABLES 
SHORTENED IN THAT 

PERIOD

EERNEST'S HAMLETIC 
DILEMMA !!!

IF I PLOT STRAIN AGAINST 
TEMPERATURE, THE DATA 

CLUSTER IN TWO SEPARATE 
CLOUDS... 

...IT LOOKS LIKE THE DATA 
SHIFTED SOME 100 με AFTER 

THE SYSTEM STARTED 
WORKING AGAIN... 

. . . VERY STRANGE!

WAIT!
 THERE IS A GAP BETWEEN 

MAY 25 AND JULY 21!

I REMEMBER IN THAT 
PERIOD THE 

INTERROGATION UNIT 
STOPPED WORKING...

... THERE WAS A FAULT IN 
THE PHOTODIODE, IT 

WAS REPLACED BEFORE 
THE SYSTEM STARTED 

WORKING AGAIN.
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IF I LOOK AT THE 
CABLE ELONGATION 

RECORDS IN THE LAST 
YEAR, IT LOOKS LIKE 

THE CABLES HAVE 
SHORTENED... 

...INTERESTING!!!
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THE END

SEEN FROM THIS PERSPECTIVE, 
REPLACEMENT OF THE PPHOTODIODE IS 

THE MOST CREDIBLE
EXPLANATION!!!

...OK... SAY THAT THE 
ABUTMENTS SETTLE... THE 
CABLES WILL ELONGATE 

ANYWAY! ONLY ONE 
PHYSICAL EXPLANATION 

REMAINS...

NO MORE DOUBTS: CABLES DID NOT
SHORTEN!!! THE OFFSET HAS TO BE A 

SPURIOUS EFFECT OF THE PHOTODIODE 
REPLACEMENT!!!

EARLY MORNING OF JJUNE
21 ...
ERNEST HAS JUST 

RECEIVED AN EMAIL FROM 
THE DEPARTMENT OF 
TRANSPORTATION...
... IT INCLUDES BRIDGE DECK 
LEVELLING DATA ...
...THEY SUGGEST THAT THE 
CABLES COULD HAVE ONLY
ELONGATED IN THE LAST
TWO YEARS!!!

From Michele
<michele@provincia.tn.it>

Date June 21,2012

To Ernest
<ernest@unitn.it>

Object Levelling 
data

Dear Ernest, you can find attached the deflection data of 
Adige Bridge deck taken with a dumpy level in April 2010 
and December 2011. Do not hesitate to contact me if you 
need further explanation. —Michele

...THE TOWER FOUNDATION 
IS SINKING, WHILE THE 
ABUTMENTS ARE NOT...

POSSIBLE. . .
. . . BUT NOT THAT

LIKELY!!

1 Introduction

1.1 Episode 1: ‘The Geek’

In the late afternoon of March 7, 2012, Ernest is sitting at

his desk analyzing the elongation dataset recorded in the

past year from the stay cables of Adige Bridge. He is

almost done with his job, when he starts thinking there may

be something odd in his data.

Adige Bridge was built in 2008 10 km north of the city

of Trento, Italy, and is owned by the transportation agency

of the Autonomous Province of Trento [1–3]. Ernest has in

front of him a scheme of the bridge, the same reported to

the benefit of our Reader in Fig. 1. It is a two-span cable-

stayed bridge with a steel–concrete composite deck 260 m

long. The composite deck is made from four ‘‘I’’ section

steel girders and a 25 cm cast-on-site concrete slab; the

deck is supported by 12 stay cables, 6 per side, with

diameters of 116 mm and 128 mm. Both ends of the deck
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are fully restrained by abutments, which are supported by a

micropile underpinning foundation system. The cables are

strung to the central bridge tower, consisting of four steel

pylons. The pylons are 45 m high and their foundation

consists of six piles, which have a diameter of 150 cm and

a length of 34 m.

In 2011, the owner instrumented Adige Bridge with a

monitoring system to record possible changes in tensions

and elongation of the 12 cables. The system includes 2 m-

long FBG-based fiberoptic sensors (FOS) [4], located on

each cable to record its elongation and temperature. The

values are relative to the instant of setup. The whole FOS

network is configured to record one set of strain values and

one set of temperature values at the same instant, every

15 min.

Ernest observes the temperature and elongation records

(Fig. 2), collected for cable 1TN from March 8, 2011,

when acquisition started, to now, March 7, 2012. Some-

thing does not make sense. There is a gap between May 25

and July 21, but this is not the problem: Ernest knows that

in late May the interrogation unit stopped working; he

clearly remembers there was a fault in the photodiode (a

component of the interrogation unit) that was eventually

replaced with a new one before the system started working

again, on July 21. Ernest plots strain against temperature

and gets the graph of Fig. 3: the data are clustered in two

separate clouds, one for samples acquired before the

interruption ‘o’, another for those taken after ‘?’. It looks

like the data shifted some 100 le after the system started

working again. A similar change in the offset can be

(a)

(b)

Ø128
Ø 128

Ø 11
6

40 m 30 m 30 m 30 m 30 m 30 m 30 m 40 m

Ø128Ø 128

Ø 116

260 m
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Fig. 1 Adige Bridge:

longitudinal section, cross

section and plan view with cable

labels
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Fig. 2 Data recorded by the

FOS monitoring system at cable

1TN, from March 2011 to

March 2012
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observed for the measurements collected from the sensors

installed on the other cables. Something has happened

during that time interval, and Ernest has two possible

explanations: (1) indeed, the cables shortened in that period

or (2) for reasons that he does not understand, the new

photodiode produced a spurious shift in the measurements.

What has really happened? Ernest is confused: he really

does not know.

1.2 Episode 2: ‘The Company Man’

‘‘We have examined the data you sent us last week.’’ It is

the early afternoon of April 16, and Ernest is on the phone

with an SHM system manufacturer, who keeps speaking.

‘‘We don’t see any reason to think that replacing the

photodiode could have produced a change in offset.’’

‘‘So you mean that the response observed is purely

mechanical?’’

‘‘Yeah, we believe so!’’

Therefore, the cables, thinks Ernest, really contracted.

1.3 Episode 3: ‘The Modeler’

In the late evening of May 2, Ernest is still working at his

desk, trying to make sense of the data observed. A change

in strain was expected by design, but this would have to be

elongation, rather than contraction. So why did the cables

contract? Steel relaxation? Obviously not; cable relaxation

always results in elongation. Creep of concrete slab, per-

haps? Ernest runs a finite element model (FEM) of the

bridge with two different creep scenarios, before realizing

that, regardless of the scenario, the deck always yields due

to concrete creep and therefore the cables always elongate.

Using nominal design values the elongation should be

about 20 le�year-1. No way to explain cable contraction

with creep. To Ernest, only one physical explanation

remains: the tower foundation is sinking, while the abut-

ments are not: possible, but not that likely. Seeing things

from this perspective, Ernest starts thinking again that the

replacement of the photodiode is the most credible expla-

nation. However, he needs further evidence before drawing

a conclusion.

1.4 Episode 4: ‘The Engineer’

It is in the early morning of June 21 that this story comes to

a turning point: Ernest has just received an email from the

technical office of APT’s Department of Transportation,

showing the graph of Fig. 4. This graph plots the deflection

of the bridge deck taken with a dumpy level at two dif-

ferent times, April 2010 and December 2011. Comparison

of the plots shows no settlement of the tower foundation

has occurred, while it looks like the abutments have sunk

and the deck has deflected downward over time suggesting

that the cables could have only elongated in the last

2 years. At this point, Ernest has no more doubts: indeed

the cable did not shorten, and the offset observed in the
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Fig. 3 Correlation between strain and temperature before and after

the interruption for cable 1TN
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data has to be a spurious effect of the photodiode

replacement.

1.5 Epilogue

In short, this is the story of an engineer repeatedly

changing his mind about the state of a structure: not an

extraordinary story, yet true. To some extent, Ernest is the

personification of a good engineer having trouble drawing

inference from ambiguous information and using personal

experience, third party expert judgment, and a lot of

common sense to find a solution.

A question arising from this story is the following: is

Ernest a rational individual?

At first sight, we could claim that he is not, because,

faced with the problem of interpreting a set of objective

data, he keeps changing his judgment. From March 7 to

August 31, 2012, Ernest’s perceived probability of having a

cable contraction has swung from ‘possible’, to ‘very

likely’, to ‘improbable’, to ‘very unlikely’. We can even

plot Ernest’s personal perception, in rough qualitative

terms, in a graph similar to that depicted by Fig. 5.

However, at any stage of the story, Ernest has always

drawn a judgment consistent with the background knowl-

edge available to him at that time. The different judgments

he expresses simply reflect how his background informa-

tion changes. Although Ernest is undoubtedly always the

same individual, throughout the course of the story he

wears different hats. First, he behaves as a solitary geek,

who fiddles with data regardless of their physical meaning.

Then, his thinking conforms to that of a company, which

sees the problem through the looking glasses of its tech-

nical experience and expertise in fiberoptic devices. Next,

he is a modeler who tries to make sense of the data through

finite element analysis. Finally, he wears the hard hat of the

structural engineer, who combines present and past infor-

mation to summarize an answer. In summary, Ernest’s

personal profile changes as he acquires new information or

new awareness about the problem, and his outcome

changes along with this background. Since rationality is not

about the trueness of the background, but about using logic

in inference, we can say that Ernest’s behavior is rational.

Based on a set of uncertain facts, we cannot establish

with certainty the state of the bridge. Yet we can still use

logic, and mathematics, to predict what the judgment of a

rational engineer will be. The tool for making inference

based on uncertain information is well established and is

commonly referred to as Bayesian logic. The name goes

back to Bayes’ well-known essay [5]. Reference works on

the subject are those by Jaynes [6] and Skilling [7], while

many modern specialized textbooks provide the reader

with a critical review and applications of this theory to data

analysis (see for instance [8–10]). Principles of Bayesian

trend fitting are reported by Bishop [11], while Bayesian

model updating is presented by Mackay [12] and applied to

structural identification by Beck and Yuen [13]. A general

overview of application to dynamic models is given by

Yuen and Kuok [14]. There are also many applications to

structural health monitoring. Among the many, we wish to

mention the seminal work by Beck’s group [15–17], which

defined a consistent framework for probabilistic data pro-

cessing, but see also [18–22]. Finally, an example of

integration of Bayesian updating in maintenance planning

is provided by Memarzadeh et al. [22].

What we wish to show in this paper is that it is possible

to predict an engineer’s judgment with Bayesian inference.

We will reproduce with a quantitative model how Ernest

perceives, and believes plausible, the cable contraction. In

doing this, we first state, in Sect. 2, the general tools of

Bayesian inference, and we illustrate how this applies to

Ernest’s case. Section 3 explains how the engineer’s

background information can be translated into mathemat-

ical terms. Next, in Sect. 4, we simulate, through a Baye-

sian model, Ernest’s perception of cable shortening, and we

compare the results with his actual heuristic conclusions, as

told in the story above. A comprehensive discussion and

remarks are offered at the end of the paper. Formal

reproduction of the human decision-making process can

Jun 21

Date (year 2012)
May 2Apr 16Mar 7

‘possible’

‘very likely’

‘improbable’

‘very unlikely’

‘for sure!’

‘no way!’

Fig. 5 Qualitative

representation of Ernest’s

perception of cable contraction
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have strong impact in the field of structural health moni-

toring as it may enable: (1) quantification of probabilities

that engineers attributes to various events based on their

subjective experience (which is currently an important

challenge); (2) better understanding and improvement of

the decision-making process itself; (3) embedding of

decision making into structural health-monitoring methods,

for the full benefit of the latter.

The stay cable 1TN (Fig. 1b) is taken as a representative

to show the numerical results throughout the manuscript,

once verified that the analyses carried out for the other

cables lead to similar outcomes and conclusions.

2 Problem formulation

Before flooding the reader with mathematics, let us recap

Ernest’s way of thinking. He has acquired strain and tem-

perature records from the monitoring system of Adige

Bridge (those shown in Fig. 2) and he wants to make sense

of them. He has two ways to look at them.

Scenario S1: the strain measurements reflect the actual

mechanical elongation/contraction of the cable as an effect

of temperature changes, settlement, steel relaxation, con-

crete shrinkage and creep.

Scenario S2: the data reflect the mechanical behavior as

above, but replacing the photodiode in the interrogation

unit has produced a change in offset.

These two scenarios are mutually exclusive and

exhaustive, meaning that, in the mind of Ernest, either the

first scenario is true or the second is true. The simultaneous

trueness of the two and further possibilities are excluded. In

principle, either of the two could be the right answer and,

based on the information available, there is objectively no

overwhelming evidence supporting either one or the other.

So Ernest’s fundamental question is: which of the two is

the most likely?

To answer, the time has arrived to introduce a little

math: denote with e the set of strain measurements and with

T the set of temperature measurements. Ernest wishes to

estimate the probability of a scenario, S1 or S2, after the

monitoring observations have been acquired, in formulas:

P(Si|e,T), with i being either 1 or 2. We denote this quantity

the posterior probability (posterior to the data acquisition).

In contrast, for each scenario Si, the prior probability P(Si)

represents what Ernest believes before acquiring any data.

We have stressed that Ernest is a rational individual, who

judges based on logic. When dealing with uncertainties, the

logical inference process is encoded in the well-known

Bayes rule, which states that the posterior probability is

related to the prior through

P Sije;Tð Þ ¼ p e;TjSið Þ � P Sið Þ
p e;Tð Þ ; ð1Þ

where p(…) generally indicates a probability density

function, p(e,T|Si) is a quantity known as likelihood, and

p(e,T) is the evidence, a normalization term which makes

sure that the sum of the two posterior probabilities is one:

p e;Tð Þ ¼ p e;TjS1ð Þ � P S1ð Þ þ p e;TjS2ð Þ � P S2ð Þ: ð2Þ

Useful readings about Bayesian logic are, for instance,

Sivia’s [9] and Bolstad’s [23] textbooks. In rough terms,

Bayes’ theorem says that the posterior probability of a

scenario (what Ernest believes after observing the data) is

inferred by updating the prior probability (what Ernest

believed before observing the data) through the likelihood,

a quantity that expresses how well the data observed match

Ernest’s expectations, when he assumes that the scenario is

true.

The prior probability is something depending on Ern-

est’s subjective knowledge and changes depending on his

individual’s background and even his character or mood. In

the case of Ernest, this changes with the hat he is wearing

(the profile) and this will be discussed for the present case

in Sect. 4. The likelihood depends, of course, on the data,

but also on the interpretation model assumed by Ernest,

and this is what we discuss now, in the next section.

3 Interpretation models

We need a model to make sense of the data observed for

each cable, and this model changes with the scenario.

Measurements at any time tj are related to true values by

including additive random noise:

ej ¼ �ei tj
� �

þ nj reð Þ;
Tj ¼ �T tj

� �
þ nj rTð Þ;

ð3Þ

where ej and Tj indicate the strain and temperature mea-

surements, respectively, �T and �e the corresponding true

physical values, and nj(r) the realization of an independent

white noise process, i.e., a zero-mean normal random

variable with standard deviation r. So re and rT are the

standard deviations for strain and temperature, respec-

tively. The accuracy of fiberoptic sensors used in the Adige

Bridge monitoring system is discussed in [1] and [2]; strain

gauge standard uncertainty is estimated at re = 5 le, while
the uncertainty of temperature is rT = 0.5 �C. Additional
information about physical principles of FBGs and their

performance can be found in Glisic and Inaudi [4] and

Measures [24]. In (3), we add the subscript j to n to stress

that noise is different for each measurement (for each
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sensor and time). Furthermore, the subscript i indicates that

assumptions on the true strain values depend on scenario

i. No prior assumption is made on the true temperature

process, which can be interpreted as a white noise with

wide variance.

To model the time dependence of the true strain, let us

start with scenario 1, ‘no offset’. In this case, the strain

observed is expected to change due to temperature and

possibly due to settlement, steel relaxation, concrete

shrinkage and creep. In formulas, the true values satisfy the

following:

�e1 tj
� �

¼ e0;1 þ a1 � �T tj
� �

þ m1 � tj; ð4Þ

where e0,1 is an offset representing the ideal strain at time

t = 0 and temperature T = 0; a1 is the apparent thermal

expansion coefficient; m1 is the slope of a linear trend of

elongation which takes into account all long-term effects

(i.e., concrete creep and shrinkage, steel relaxation and

possible settlement). Herein we assume that the long-term

effects can be modeled with a linear trend, because the

measurements that Ernest considers are acquired during a

relatively short time interval. In practice, the mechanical

model that connects temperatures and strains is controlled

by three unknown parameters, which we can cluster and

indicate with the vector

h1 ¼ e0;1; a1;m1

� �
: ð5Þ

The subscript 1, which accompanies these parameters, is

to remember that they are specific to scenario 1 and are not

necessarily the same as Ernest would estimate assuming

scenario 2.

In (3) we have stated a relationship between the true

physical values of strain and temperature, �e tj
� �

and �T tj
� �

.

Equations (3) and (4) can be merged into a single

equation:

ej ¼ e0;1 þ a1 � Tj þ m1 � tj þ nj r1ð Þ; ð6Þ

where nj(r1) indicates a zero-mean Gaussian error with

standard deviation r1 = 300 le, which includes the sensor

noise re, rT, and the uncertainty of the model defined in

(4). Let us label z1,j the residual between observation ej and
the nominal value of the model:

z1;j ¼ ej � e0;1 þ a1 � Tj þ m1 � tj
� �

: ð7Þ

From (6), we immediately observe that the probability

distribution of residual z1,j is exactly that of nj, which is to

say:

p z1;j
� �

¼ N 0; r1; z1;j
� �

; ð8Þ

where, in general, the notation N l; r; xð Þ indicates a nor-

mal distribution with mean l and standard deviation r,
calculated in x.

The second way to interpret the recorded data is that of

scenario 2. In scenario 2, before the photodiode replace-

ment, which occurs at time ts, the strain still depends on

temperature and time as in scenario 1, but there is a change

in the offset of De0,2 after the photodiode is replaced. Seen
from this standpoint, strains �e2 and temperatures �T satisfy

the equation model.

�e2 tj
� �

¼ e0;2 þ a2 � �T tj
� �

þ m2 � tj; tj\ts;
e0;2 þ De0;2
� �

þ a2 � �T tj
� �

þ m2 � tj; tj � ts:

�

ð9Þ

In this case, the unknown parameters h2 are those pre-

sented for scenario 1 plus the shift De0,2 introduced by the

maintenance of the monitoring system:

h2 ¼ e0;2; a2;m2;De0;2
� �

: ð10Þ

Following the same approach already used for scenario 1,

we obtain:

ej ¼
e0;2 þ a2 � Tj þ m2 � tj þ nj r2ð Þ; tj\ts;
e0;2 þ De0;2
� �

þ a2 � Tj þ m2 � tj þ nj r2ð Þ; tj � ts;

�

ð11Þ

where, similarly to nj(r1), nj(r2) indicates a zero-mean

Gaussian error with standard deviation r2 = 300 le, which
includes the sensor noise re, rT, and the uncertainty of the

model defined in (9). In this case, we define the residual z2,j
of the model as:

z2;j ¼
ej � e0;2 þ a2 � Tj þ m2 � tj

� �
tj\ts;

ej � e0;2 þ De0;2
� �

þ a2 � Tj þ m2 � tj
� �

tj � ts:

�

ð12Þ

and once again we recognize that

p z2;j
� �

¼ N 0; r2; z2;j
� �

: ð13Þ

Having defined the interpretation models, we can calculate

their corresponding likelihood. First, observe that when we

choose a model, i = 1 or 2, the likelihood function is

proportional, in the domain of the parameters, to the

probability of the residuals:

p ej; TjjSi; hi
� �

/ p zi;j
� �

¼ N 0; r1; z1;j
� �

: ð14Þ

Assuming uncorrelated noise, the probability p(e, T|Si, hi)
is simply given by

p e; TjSi; hið Þ /
YN

j¼1

N 0; r2; z2;j
� �

; ð15Þ

where N is the number of measurements recorded, and the

constant of proportionality p(T) is immaterial for the

inference process. Now, the likelihood of scenario i,

p(e,T|Si), can be calculated by marginalization of
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parameters hi using the prior distribution of the parameters

p(hi|Si) as a weighting function:

p e;TjSið Þ ¼
Z

Dhi

p e;TjSi; hið Þ � p hijSið Þ � dhi; ð16Þ

where Dhi is the domain of the parameters for scenario i.

Bayes’ theorem is also used to calculate the posterior dis-

tribution of the parameters hi as

p hije;T; Sið Þ ¼ p e;Tjhi; Sið Þ � p hijSið Þ
p e;TjSið Þ : ð17Þ

Equations (3) to (17) enable us to calculate the posterior

probability of each scenario, as well as the posterior dis-

tribution of the parameters, for each of Ernest’s profiles.

Before proceeding with the calculation, we need to set the

priors, and this is the topic of the next section.

4 Prior knowledge and profiles

We saw in the introduction how Ernest changes his mind as

to the possibility of cable contraction based on the infor-

mation acquired. We can say that Ernest acts differently at

the different stages of this story, characterized by the dif-

ferent profiles: ‘Geek’, ‘Company Man’, ‘Modeler’ and

‘Engineer’. Each profile is in turn driven by different

background knowledge. Here, we will use formal Bayesian

logic to reproduce Ernest’s perception. We will represent

Ernest’s background knowledge with prior information as

explained in the following.

4.1 Profile A: the ‘Geek’

At the beginning of this story, Ernest simply analyzes the

data statistically (he just calculates correlation) without

attempting to provide mechanical interpretation. Because

for this profile, his judgment does not involve any

mechanical knowledge, and he has no particular reason to

believe or not believe that the cables have really shortened.

This suggests that we should reproduce Ernest’s knowledge

by assigning for each cable equal prior credibility to each

scenario, or P(S1) = P(S2) = 0.50. For the same reason,

we can assign a distribution uniform in R to the parameters

m, a and e0, as shown in Table 1. Conversely, for the shift

De0,2 we choose a normal distribution with mean zero and

standard deviation 1000 le.

4.2 Profile B: the ‘Company Man’

Following the phone call with the SHM company, Ernest

updates his judgment by acknowledging the sensor provi-

der’s belief. The SHM company’s answer is justly based on

their experience, for a change in offset due to photodiode

replacement has never been reported, nor is there any

physical explanation that could directly justify such a

behavior. Since after the call Ernest considers actual

shortening as the most likely explanation for the dataset,

we can formalize this belief by assigning prior probabilities

of, say, 90 % to scenario 1, and 10 % to scenario 2. It

seems likewise reasonable that the discussion with the

SHM company did not change Ernest’s prior expectations

about the parameters. Therefore, we will use for this profile

the same prior distributions as for profile A.

Table 1 Prior information for

the four Ernest’s profiles
Profile A Geek B Company man C Modeler D Engineer

Prob (S1) 0.50 0.90 0.90 0.90

Prob (S2) 0.50 0.10 0.10 0.10

a1, a2
Distribution function Uniform Uniform Normal Normal

Mean value (le �C-1) – – 12.00 12.00

Standard deviation (le �C-1) – – 3.00 3.00

m1, m2

Distribution function Uniform Uniform See 4.3 See 4.4

Mean value (le year-1) – – 18.50 14.50

Standard deviation (le year-1) – – 5.10 4.40

De0,2
Distribution function Normal Normal Normal Normal

Mean value (le) 0.00 0.00 0.00 0.00

Standard deviation (le) 1000.00 1000.00 1000.00 1000.00
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4.3 Profile C: the ‘Modeler’

Ernest’s knowledge is updated once more as he analyzes

the structure using the FEM. Now, Ernest reconsiders SHM

company’s judgment based on the outcomes of the analy-

sis, as a mechanical shortening of the cables is a very

unlikely possibility. We can reproduce Ernest’s reasoning

as follows: Ernest still believes that the prior probability of

a mechanical contraction is 90 %; however, his analysis

suggests that parameter m cannot take just any value. The

strain trend slope m is seen as the sum of three independent

components: m/ due to creep, mr due to steel relaxation

and ms due to pile settlement. Ernest studies these com-

ponents with the aid of the FEM. He sets material propri-

eties based on the design information, when available, or

the literature. The concrete resistance, fc, and elastic

modulus, Ec, are those obtained from concrete sampling as

reported in the design documentation; the creep coefficient,

u, is then calculated based on the Eurocode 2 creep model.

Using these values in the FEM he estimates that for cable

1TN the elongation owing to creep is in the order of 12 le
year-1. Ernest is aware that this number is very uncertain:

using his own words, the correct value could well be, say, 7

or 17 le�year-1, but in any case not lower than zero. More

quantitatively, we can model his perception as a lognormal

distribution with a mean value equal to the nominal value

of 12 le�year-1 and coefficient of variation of 40 %.

Similarly, he uses the Eurocode 2 model to estimate the

steel relaxation coefficient, q, and then, with the initial

cable load found in the design documentation, he calculates

with the FEM an elongation trend of cable 1TN of about

mr = 6.5 le�year-1. He again recognizes that this value is

very uncertain, with an error of, say, 5 le�year-1, but never

less than zero. Similarly, we can model this expectation

with a lognormal distribution with a mean value of 6.5

le�year-1 and standard deviation of 5 le�year-1.

Then there is the settlement. In general, Ernest accepts

there could be a differential settlement between abutments

and the central pier, and based on his experience he also

knows that this difference could be just a few millimeters,

say up to 5 mm in the last year. However, he has no clue

about the sign of the differential settlement, which is to say

he has no preference between the scenario where the pier

sinks with respect to the abutments and the opposite case.

We can model this prior expectation of settlement as a

normal distribution with zero mean and 5 mm standard

deviation. Using the FEM, Ernest calculates that when the

pier sinks 5 mm with respect to the abutments, cable 1TN

contracts 4 mm, and similarly he estimates a 4 mm elon-

gation in the opposite case. Thus, we can finally define the

prior of the elongation due to settlement for cable 1TN as a

normal with zero mean and 4 mm standard deviation

(Table 2).

In conclusion, parameter m, the elongation trend slope,

is seen as the sum of the three components above:

m ¼ m/ þ mr þ ms: ð18Þ

The resulting prior distribution of m, pC(m), consistent

with profile C, is not normal or lognormal, and has a mean

value of ?18.5 le�year-1 (elongation) and standard devi-

ation of 5.1 le�year-1 (Fig. 6).

After Ernest analyzes the structure, he also expects a

specific value of a. Therefore, we assign a normal distri-

bution with mean 12 le� �C-1 and the standard deviation 3

le� �C-1 to a, where the value of 12 le� �C-1 is the

average thermal expansion coefficient of steel.

4.4 Profile D: the ‘Engineer’

The survey data obtained by Ernest on June 21 provides

him with an independent way to estimate the cable

extension trend m. In detail, if we consider an individual

cable on April 8, 2010—the time of the first leveling—its

length L can be estimated as

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ B2

p
; ð19Þ

where B is the distance between the pier and the cable

bottom anchorage and H is the difference in level between

the top and bottom anchorages, as illustrated in Fig. 7a. At

the time of the last leveling, December 20, 2011, the bot-

tom anchorage is found to be deflected by a quantity we

denote d, the cable is elongated by a quantity DL, and
similarly the drop H changes by a quantity DH. The geo-

metrical relationship between these new quantities is

(Fig. 7b):

Lþ DL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ DH þ dð Þ2þB2

q
: ð20Þ

Quantity DH depends on the thermal expansion of the

tower and therefore:

Table 2 Components of linear

drift m predicted with FEM for

cable 1TN and Ernest’s profile

C, ‘Modeler’

Creep m/ Relaxation mr Settlement ms

Probability distribution function Lognormal Lognormal Normal

Mean value (le year-1) 12.00 6.50 0.00

Standard deviation (le year-1) 4.80 5.00 4.00

Coefficient of variation 0.40 0.77 –
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DH ¼ H � a � DT: ð21Þ

Similarly, DL can be expressed by

DL ¼ L m � Dt þ a � DTð Þ; ð22Þ

where m is our unknown cable elongation trend and Dt is
the time interval between the two surveys, i.e., 621 days.

Combining equations from (19) to (22), the relationship

between m and d is finally expressed through:

m ¼ 1

Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 1þ a � DTð Þ þ d½ �2þB2

H2 þ B2

s

� 1þ a � DTð Þ

8
<

:

9
=

;
:

ð23Þ

Using this expression, knowing DT = 18 �C and

assuming a = 12 le �C-1, Ernest estimates a trend of

elongation of 1.8 le year-1 for cable 1TN. Again, he

recognizes that this estimate is uncertain. He noticed a

scatter in d of rd = 5.3 mm year-1. We use this value and,

following a standard linear error propagation analysis [25],

we can estimate a standard deviation of m of 9 le year-1.

Therefore, we can model the likelihood p(d|m) of the trend
slope m, based on the deflection observation d, with a

normal distribution with a mean value of 1.8 le year-1 and

standard deviation of 9 le year-1 (Table 3 and Fig. 8).

As we said, the distribution p(d|m) reflects in statistical

terms the information on m obtained through an indepen-

dent measurement method, unknown to profile C. The new

prior distribution of m according to profile D, pD(m), can be

formally calculated by updating the prior of m of profile C,

pC(m), with this new information, p(d|m), through Bayes’

rule:

pD mð Þ ¼ p djmð Þ � pC mð Þ
Rþ1

�1
p djmð Þ � pC mð Þdm

: ð24Þ

The parameters of the prior distribution for cable 1TN

corresponding to profile D are reported, along with the

other profiles, in Table 1.

5 Results and discussion

Having defined the prior information, (3) to (17) allow us

to calculate the posterior probability of each scenario, as

well as the posterior distribution of the parameters, for each

of Ernest’s profiles. We applied the Bayesian approach,

(a) (b)

L

B

Htower

cable

L+
L

B

H
+

H
δ

Δ

Δ

Fig. 7 Schematic geometry of cables and tower as interpreted by

Ernest’s profile D, ‘Engineer’
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using all the measurements, recorded from March 2011 to

the date by which Ernest is expected to give his judgment.

This allows us to observe how Ernest’s perception of the

bridge state changes over time.

When, as in this case, the prior distributions of the

parameters or the likelihood function are not Gaussian, the

analytical solutions of (16) and (17) may not exist, and we

may have to rely on numerical methods to carry out

Bayesian inference. Herein, we used the Metropolis–

Hastings algorithm [26, 27] to calculate the expected value

and the uncertainty of the parameters a posteriori. The

Metropolis–Hastings algorithm does not, in fact, provide an

estimation of the posterior distribution, but a set of samples

that can be considered random samples from the posterior.

Then, we can make inference from those samples to obtain

the mean and the variance of the parameters.

In addition, we used a Monte Carlo algorithm with

importance sampling [28] to solve the integral of (16). To

reduce the number of samples required to calculate the

probability of each scenario, we defined the sampling

distribution of each parameter as a Gaussian probability

density function with mean and standard deviation equal to

those of the corresponding posterior distribution, obtained

using the Metropolis–Hasting algorithm.

Figure 9 shows, day by day, the result of the Bayesian

updating for cable 1TN. The four dashed lines represent

Ernest’s perception under each of the four profiles, while

the solid line reproduces the actual history of Ernest’s

perception. Ernest changes his hat three times during

2012, on April 16, May 2 and June 21, corresponding in

the graph to jump from one profile line to another. The

principal numerical results are also summarized in

Table 4.

We observe that, for any of the four lines, the proba-

bility of scenario 1 always decreases with time, meaning

that the fresh monitoring data arriving from the bridge tend

to support the credibility of scenario 2. Therefore, in

principle, if we provided enough monitoring data to Ernest,
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Fig. 8 Distributions of linear

drift m for cable 1TN according

to Ernest’s profile C, ‘Modeler’,

and profile D, ‘Engineer’
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Fig. 9 Posterior probabilities of

scenario 1

Table 3 Components of linear

drift m for cable 1TN and

Ernest’s profile D, ‘Engineer’

Creep m/ Relaxation mr Settlement ms Surveys mts

Probability distribution function Lognormal Lognormal Normal Normal

Mean value (le year-1) 12.00 6.50 0.00 1.80

Standard deviation (le year-1) 4.80 5.00 4.00 9.00

Coefficient of variation 0.40 0.77 – 5.00
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at some point he would always arrive at the conclusion that

the bridge cables are not shortening.

The perceived probability of cable contraction (scenario

1) is about 71 % when Ernest acts as a ‘Geek’ (profile A).

It grows to 84 % for the ‘Company Man’ (profile B) under

the authoritarian influence of the company’s opinion, but

then falls again to 22 % after the ‘Modeler’ (profile C)

carries out a structural analysis which demonstrates that the

data are not compatible with cable shortening. The prob-

ability of scenario 1 finally reduces to only 4 % after Ernest

‘The Engineer’ (profile D) observes that old data from deck

leveling are consistent with cable elongation. Overall, it is

interesting to compare the numerical results of Fig. 9,

calculated with a formal Bayesian approach, with Fig. 5,

which illustrates in qualitative terms Ernest’s perception as

told in the introductory story: although the origin of the two

is obviously different in nature, they overlap surprisingly

well.

In addition, formal Bayesian inference allows calcula-

tion of the expected values of the parameters involved in

the data interpretation. Evidently, they change with the

profile and with the interpretation model accepted, S1 or S2.

Take for example parameter m, the linear elongation drift.

At the beginning of the story the ‘Geek’ does not have a

clear idea on what the correct interpretation model could be

(the probabilities are 71 and 29 %, respectively), so the

best he can say is: I don’t know whether the cable is really

shortening or not, but, if it does, I estimate

E[m1] = -175.58 le�year-1. However, if the issue is in the

photodiode, I guess its elongation trend E[m2] is only

?2.87 le�year-1.

The ‘Company man’ is almost convinced of the

mechanical explanation, and says it looks like the cable is

really contracting, with E[m1] = -115.15 le�year-1. Then

the ‘Modeler’ estimates -89.80 and ?24.36 le�year-1, for

scenario 1 and 2, respectively. Eventually, ‘The Engineer’

estimates an elongation trend of E[m2] = ? 39.64

le�year-1. Similarly, Ernest adapts his best estimate of the

apparent measurement shift De0,2 with the role he plays.

Thus, E[De0,2] is -40.26 le for the ‘Geek’, -115.83 for

the ‘Company Man’, -114.74 le for the ‘Modeler’ and

finally -120.90 le for the ‘Engineer’.

The reader might have noted that, in this analysis, we

gave up on attempting to model the physical state of the

structure: we just modeled the engineer’s perception of the

state. This is simply because there is no other logical

solution to the problem of describing the physical state of

the bridge when the information is uncertain in nature. To

better understand this concept, we have to focus on the

nature of Bayes’ theorem (1), the keystone of logical

Table 4 Bayesian inference

results for Ernest’s four profiles
Profile A Geek B Company man C Modeler D Engineer

Prob (S1) 0.71 0.84 0.22 0.04

Prob (S2) 0.29 0.16 0.78 0.96

a1
Mean value (le �C-1) 13.11 15.12 14.86 15.48

Standard deviation (le �C-1) 1.65 1.60 1.39

m1

Mean value (le year-1) –175.58 –115.15 –89.80 –50.99

Standard deviation (le year-1) 36.01 29.98 29.02 21.86

e0,1
Mean value (le) 1,309,991.12 1,309,954.43 1,309,944.59 1,309,920.70

Standard deviation (le) 31.67 29.24 27.46 21.85

a2
Mean value (le �C-1) 14.23 16.76 15.87 15.58

Standard deviation (le �C-1) 1.93 1.69 1.42 1.14

m2

Mean value (le year-1) 2.87 18.38 24.36 39.64

Standard deviation (le year-1) 84.46 64.51 49.27 31.40

e0,2
Mean value (le) 1,309,986.61 1,309,942.09 1,309,948.24 1,309,949.03

Standard deviation (le) 34.22 30.09 25.90 23.29

De0,2
Mean value (le) –40.26 –115.83 –114.74 –120.90

Standard deviation (le) 55.36 48.03 38.90 31.58
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inference. Put simply, Bayes’ theorem says that the pos-

terior probability is a combination of the prior probability

and the likelihood. The prior probability represents the

background knowledge, something inherently subjective

by definition. The likelihood is the way we make sense of

the observations through the interpretation model: while

observations are undoubtedly objective, the interpretation

model, i.e., the way these observations are connected to the

structural state, is again subjective to the individual who

judges. In summary, when information on the state is

offered by a set of uncertain clues, and physical state

cannot be demonstrated by overwhelming evidence, the

best we can do is to provide an estimation through an

interpretation process. Any interpretation process, although

perfectly rational, is epistemic in nature, and thus inher-

ently subjective, so the objective description of this process

is necessarily bonded to the individual who makes infer-

ence. The reader who wishes to look more in depth at the

fundamentals of subjective probability can refer to [29] or

[30].

6 Conclusions

Above, we used Bayesian logic to reproduce an engineer’s

interpretation of elongation data recorded by a monitoring

system installed on the stay cables of a bridge. The sensors

have recorded an apparent shortening of the cables, and the

engineer’s dilemma is whether this shortening is (1) purely

physical behavior or (2) just a spurious effect of the

interrogation unit. We showed that Ernest, our scrupulous

engineer, tends to believe one or the other option based on

information that he acquires over time. This information is

of multiple natures: sensor data first of all, but also per-

sonal experience, background knowledge and even verbal

suggestion from other experts. We showed how Bayesian

logic is suitable for reproducing the engineer’s perception:

we modeled the information from the monitoring system

using a likelihood function and the knowledge that char-

acterizes each psychological profile using different priors.

The application of Bayesian framework enabled us to

integrate uncertain information of different kinds: uncer-

tain performance of the sensing technology, technical

judgment expressed by an SHM manufacturer, outcomes of

structural analysis and survey data. Using formal Bayesian

inference, we estimated that the final posterior perception

is 4 % for option (1) and 96 % for option (2), fully con-

sistent with the engineer’s final conclusion. The integration

of multiple sources of information is always done in

practice, often heuristically and without quantitative anal-

ysis. Herein, we showed how Bayesian logic allows rig-

orous formalization of this process and possibly detection

of judgment inconsistency.
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