
ORIGINAL PAPER

Evaluation of feature- and pixel-based methods for deflection
measurements in temporary structure monitoring

Youyi Feng1 • Fei Dai1 • Hong-Hu Zhu2

Received: 18 November 2014 / Revised: 29 March 2015 / Accepted: 7 May 2015 / Published online: 17 May 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract Recent forensic studies have revealed quite a

few construction site catastrophes are associated with

failure of temporary structures (e.g., collapse of form-

works, scaffoldings, etc.). This is particularly crucial for

those located in dense urban areas where the failure of a

temporary structure not only impacts the site itself but may

also damage adjacent structures and cause injuries and

casualties of passers-by. In this paper, the work of

evaluating the optimum feature detection and matching

algorithm is reported, which is the key in realizing a real-

time visual sensing-based surveillance method in order to

monitor the integrity and safety of on-site temporary

structures. A series of experiments are designed and con-

ducted to test three algorithms: population-based intelligent

digital image correlation (DIC), David Lowe’s Scale-in-

variant feature transform, and Hessian matrix-based

speeded-up robust features. In these experiments, synthetic

images through 2D geometrical translation, rotation, de-

formation, and illumination changes are generated to pro-

vide the sample data and ground truths. As the experiment

output, the accuracy and efficiency of these algorithms are

measured and compared with each other. Analyses in-

cluding feasibility of interest point localization with

specific regions and the error estimation with respect to

real-world distances are conducted. The results show that

the DIC algorithm holds the most promise to be

implemented in structural monitoring, but several chal-

lenges still remain, which call for efforts to further im-

provement of the technique.

Keywords Comparative study � Image-based methods �
Construction � Safety monitoring � Remote sensing

1 Introduction

Temporary structures, such as formwork support, false-

work, and scaffolding, are widely used in on-site produc-

tion of construction projects. However, the safety of these

temporary structures is not usually paid enough attention,

which poses a great threat to on-site structures and workers.

In fact, most of tragic failures during construction are

usually the result of improperly designed, constructed, and/

or maintained temporary structures. These failures will

undoubtedly induce tremendous loss, delay, injuries, and

causalities as the consequence.

A real-time surveillance method enabled by visual

sensing may alleviate this situation. This method utilizes

high-definition cameras to monitor the integrity and safety

of a site temporary structure while it is undergoing ex-

citements during site ongoing operations. This method has

the advantage of being cost-effective and easy-to-deploy.

In essence, this study intends to develop a cost-effective

yet applicable solution to measure deflections of temporary

structures. The failure of structures can be associated with

large deflection or deformation on the surface of the

structures. Promptly obtaining the deflection or deforma-

tion may help assess whether a structure is under threat. For

example, if the observed deflection is approaching or ex-

ceeding certain threshold that the structure can withstand, it

may indicate the structure is under high risk of collapse.
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2 Background

2.1 Temporary structure failures

It is crucial to guarantee the safety and integrity of tem-

porary structures during the process of construction.

Otherwise, failure of temporary structures may occur and

lead to severe consequences to the project. Table 1 pro-

vides six examples with the injuries and fatalities due to

temporary structure failures in recent years.

Recent forensic studies have revealed quite a few con-

struction site catastrophes are associated with failure of

temporary structures (e.g., collapse of formworks, scaf-

foldings, etc.) [1]. It is particularly crucial for those that are

located in dense urban areas where the failure of a tem-

porary structure not only impacts the site itself but may

also damage adjacent structures and cause injuries and

casualties of passers-by. In addition, some geological dis-

asters, such as the collapse during the progress of deep

excavation and tunneling, will also result in tragic

calamities [2]. As an inevitable consequence, the collapse

of the temporary structures will result in enormous loss,

injuries, and casualties.

To reduce the painful casualties induced by temporary

structure collapses, the current methods to ensure the safety

of temporary structures include regular manually inspec-

tion [3], measuring instrument-based surveying, such as

sensor networks, total station, laser scanner [4–6], and vi-

sual sensing techniques, such as digital image correlation

(DIC), interest feature detecting, extraction, and tracking

[7].

2.2 Review of current methods and limitations

2.2.1 Regular manual inspection

Normally, site engineers periodically check the compli-

ance of structures manually with specifications and rules

regulated by governments or agencies. The engineers will

conduct a visual inspection to check the apparent defi-

ciencies and damage to determine if the temporary

structure meets the specific safety criteria. However, there

exists a major defect with this practice due to its inca-

pability of continuous monitoring of on-site structures.

Engineers usually perform the inspection work before and

after normal construction hours. This means that the

safety of temporary structures is not secured when they

are in service [8], leading to the safety of construction

workers still under potential threat during construction

operations.

2.2.2 Measuring instrument-based surveying

In recent years, the most commonly used instruments for

structure monitoring are wire/wireless sensors [9, 10]. The

operators install the wire/wireless sensors onto the struc-

tures to be monitored, whereby they can collect the infor-

mation regarding the target position changes. This method

can achieve sufficient accuracy performance [11]. How-

ever, despite the fact that the development of wireless

sensing technique may reduce the extra cost of the wire

transmission needed to some extent, the convenience of

switching operation between different monitoring targets is

still an issue. Besides, when facing relative large-scale

applications, the number of sensors needed for installation

and uninstallation will be another issue which calls for

extra efforts of the users. In addition, since the sensor

networks method can only detect the deflections and strains

of those positions where the sensors were put onto, the full-

field deflections and stains of the integral target still cannot

be achieved.

Other existing methods may overcome the mentioned

deficiency of sensor networks, one of which is laser scan-

ning. Laser scanning generates 3D point cloud of the

monitored target. Based on the point cloud before and after

deformation, the spatial deflection information of the target

will be obtained [12]. The main drawback of this method is

that the expense of laser scanner used for surveying is

normally over thousands of dollars, which causes this

method actually not practical for research with relatively

low cost to monitor the temporary structures on a con-

struction site.

Another measuring instrument is total station, which

can also be applied to monitor the safety of the

Table 1 Examples of temporary structure failures

Time Location Injuries/fatalities Accident depiction

3/09/02 Chicago, IL, US 8 injuries, 4 killed John Hancock Center, suspended scaffold collapse

2/22/07 Beijing, China 16 injuries, 3 killed Formwork collapse during concrete pouring

11/19/08 Oklahoma City, OK, US 10 injuries Two of the temporary stages collapsed

5/20/09 Middletown, DE, US 2 injured, 1 killed One side of the trench collapsed suddenly

1/12/10 Hefei, Anhui, China 7 injuries, 8 killed Formwork support collapse

5/8/11 Toronto, Ontario, Canada 7 injuries, 1 killed The main stage of Big Valley Jamboree collapsed
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temporary structures. In this method, the special markers

are placed on the target, and then the total station will be

operated to record the spatial coordinates of the markers

to acquire the target’s position changes information [13].

However, using total station faces the same problem as

applying sensor networks. That is, it cannot achieve full-

field measurement of deflections and stains.

2.3 Visual sensing techniques

2.3.1 Overview

Considering the above-mentioned unfavorable factors of

the conventional methods, visual sensing techniques are

employed to addressing issues that exist in temporary

structure monitoring. Visual sensing techniques, namely,

applying visual sensors (such as digital video cameras,

industrial cameras, etc.) to capture and record the spatial

position information of a target (normally, the output

format will be digital image or video), and then based on

relevant visual principles and algorithms to recover the

real-world spatial information of the target. After ob-

taining the necessary spatial position information, the

deflection and strain of the target can be computed as the

output [14]. Specifically, the camera station is fixed

when monitoring a target. So any position changes of the

target will lead to the position changes of features in

consecutive frames. The deflection of the target therefore

can be calculated by tracking the position of the features

in images over time before and after deflection. After

matching the correspondences of the same features in the

images before and after deflection, the distance in pixel

each feature deviated composes the in-plane deflection.

This method has several advantages when compared to

the conventional methods. Firstly, it can generate the

full-field deflection and strain of the target. Secondly, it

is convenient to operate this technique periodically and

apply to different scenarios [15]. As a result, this visual

sensing-based method can be a good option for use in

temporary structure monitoring.

The basic principle of this method lies in detecting and

tracking of interest features in the sequencing image frames

to capture the target point coordinates’ changing values.

Then, based on the consistent coordinates of the points in

each frame, the monitored target’s deflection will be

computed. In specific, the accuracy of the monitoring

method is entirely associated with the interest points’ lo-

cation continuously varying in the frames. Hence, the key

task to achieve a high-accuracy monitoring method is to

obtain the most appropriate feature detecting and tracking

algorithm to acquire the feature points’ coordinates as ac-

curately as possible [16].

Currently, a series of algorithms have been developed to

detect and track feature points along image streams. These

algorithms can be categorized into two types [17].

The first type is associated with feature-based pixel-

level matching. In this type, Scale-Invariant Feature

Transform (SIFT) proposed by David Lowe is known as

the most typical algorithm [18]. The features are scale-

invariant to image scaling, rotation, and affine transfor-

mation. This favorable property makes this algorithm one

of the most useful algorithms for feature point detection

and tracking. Speeded-up robust features (SURF) is an-

other feature-based matching algorithm proposed by Bay

et al. [19]. It inherits the scale-invariant feature, and its

running efficiency has been proved to be much higher than

SIFT [20].The reason that we select these two algorithms in

our study is because previous research has revealed that the

SIFT and SURF detectors and descriptors outperform other

detectors and descriptors such as histogram of oriented

gradients (HOG) and gradient localization oriented his-

togram (GLOH) [21]. Also, it has been reported that SIFT

and SURF are good candidates for taking geometric mea-

surements in civil infrastructure surveying-related appli-

cations [22].

The second type is related to pixel-based sub-pixel-level

matching. Digital image correlation belongs to this type,

which has been applied in applications such as mechanical

deformation detection. Research has proved this algorithm

has great potential to detect deflection and strains in me-

chanical field [23]. However, the performance of this al-

gorithm in civil engineering has still not been revealed.

There are distinct differences for this technique to be used

in civil engineering and mechanical settings. For example,

speckle patterns are usually applied for DIC in ex-

perimental testing of mechanical applications [24], whereas

the speckle patterns are actually not feasible to be utilized

in some civil engineering applications. As a result, to fur-

ther identify the potential of the DIC algorithm for use in

measuring deflections of civil structures, further studies are

needed to compare the DIC algorithm with the feature-

based matching algorithms of SIFT and SURF.

The following sections will present the principles of the

three algorithms of SIFT, SURF, and DIC. This will be

followed by the statement of the research problems and

objective. Then, detailed experimental design, implemen-

tation, results, and analysis will be delineated.

2.3.2 Scale-invariant feature transform (SIFT)

To achieve feature point detection and matching, there are

four main procedures involved in the SIFT algorithm.

• Extreme point (local maxima or minima) detection of

the difference of Gaussians (DoG), applying Gaussian
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differential function to extract scale-invariant interest

points;

• Key point localization At the location of interest points,

each potential key point is checked. Those points that

have low contrast values or are poorly localized along

edges are removed.

• Orientation for key points The orientations of the key

points are calculated and dominant orientations are

identified and assigned. If a key point has multiple

dominant orientations, an additional key point is

created at the same location and scale for each

additional dominant orientation.

• Key point description A SIFT description is computed

for each key point to make the key point distinctive.

The feature points detected and described by the SIFT

detector and descriptor have the following properties [25].

First, the detected features are invariant to scale and rota-

tion, since the key points are selected as local maxima or

minima across scales and related to their dominant orien-

tations. Also, the detected features are robust to changes in

illumination. In addition, the features are highly distinctive

and easy to extract. The favorable properties make this

algorithm one of the most useful algorithms for feature

point detection and matching in a number of related areas

[26].

2.3.3 Speeded-up robust features (SURF)

The SURF algorithm, which was first presented by Bay

et al. [19], adopted the concept of the Hessian matrix and

approximated the determinant of the Hessian matrix with

two box filters. Based on the image response values to the

filters, the key points can be localized with a non-max-

imum suppression schema by interpolating the maxima of

the determinant of the Hessian matrix across scales.

After the key point localization, based on the distribu-

tions of the intensity content within the local regions of the

points, the descriptions of the key points can be generated.

Typically, in SURF algorithm, the point description is

designed as a vector with 64 elements. To build up such a

SURF description, firstly the dominant orientation of each

key point is identified based on the wavelet transform [27].

Once the dominant orientation is determined, a square

window will put at the point. Then rotating the window is

performed so that it is oriented along the point’s dominant

orientation. Afterwards the window is divided into 16 small

square windows. Then, the horizontal and vertical response

values on account of Haar-wavelet transform in each small

window will be summed up. The sums of the response

values in two directions for all 16 small windows putting

together generate the description vectors used to charac-

terize the key points.

SURF algorithm has several distinctive properties. First-

ly, the algorithm relies on integral images to reduce the

computational time, which makes its running efficiency

higher than SIFT [28]. In addition, it is robust against image

scale and rotation. However, the performance of SURF al-

gorithm is not as good as that of SIFT algorithm on the

invariance to image illumination and viewpoint changes. So

far, the effectiveness of SURF algorithm has been validated

in several related tasks, such as object detection, recognition

and tracking [29], and 3D reconstruction [30].

2.3.4 Digital image correlation (DIC)

Digital image correlation is known as a non-contact full-

field 2D/3D measurement method, which computes the

changes (displacement, deformation, and strain) in images.

It employs image registration and tracking techniques to

measure the planar or spatial deflection and deformation

within a series of continuous image frames [31].

The DIC algorithm implemented and tested in our re-

search applies the zero-mean normalized cross-correlation

(ZNCC) criteria, which is insensitive to scale and image

illumination changes [32]. The ZNCC criteria are described

as bellow.

Cðp0Þ

¼ 1 �
PM

x¼�M

PM
y¼�M f ðx; yÞ � fm½ � gðx0; y0Þ � gm½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
x¼�M

PM
y¼�M f ðx; yÞ � fm½ �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
x¼�M

PM
y¼�M gðx0; y0Þ � gm½ �2

q ;

where the f(x, y) and g(x0, y0) are the corresponding gray

values of the deformed reference subsets, x, y are the co-

ordinates anchored at the center of the reference subset

coordinate system, and

fm ¼ 1

ð2M þ 1Þ2 PM
x¼�M

PM
y¼�M f ðx; yÞ

gm ¼ 1

ð2M þ 1Þ2 PM
x¼�M

PM
y¼�M gðx0; y0Þ

:

Then, the values of fm and gm are calculated as the av-

erage gray values of points in the two subsets, and p0 is

described as the deformation vector, which reveals the

relationships between coordinates (x, y) and (x0, y0). In

addition, the point with the coordinates (x, y) in the refer-

ence subset after deformation can be represented by the

first-order shape function:

x0 ¼ xþ uþ ou

ox
xþ ou

oy
y;

y0 ¼ yþ vþ ov

ox
xþ ov

oy
y;

where u and v are the displacement components of refer-

ence subset center on x and y directions. The expressions
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ou=ox, ou=oy, ov=ox and ov=oy are the displacement gradient

components and p0 ¼ ½u; v; ou=ox; ou=oy; ov=ox� is calcu-

lated as the corresponding parameter vector.

The first-order shape function proposed above can deal

with translation, rotation, shear, strains, and their combi-

nations of the subsets, and it can recover all necessary

deflection and deformation information for measurement in

our research.

2.4 Problem statement and objective

Our overarching research goal is to establish a visual

sensing-based monitoring method that can be real-time and

continuously monitor the full-field displacements and

strains of load-bearing members of site structures. The

method is enabled by video/industrial cameras to facilitate

the monitoring in the entire construction process to avoid

accidents to the maximum extent. This will also compen-

sate for the deficiency of design and construction of tem-

porary structures. It entails utilizing digital cameras to

capture a series of target image frames and applying image

processing algorithms to compute the target’s deformation

so as to alert the site engineers when the deformation is in

large scale and may cause an accident.

However, the accuracy of such image-based monitoring

method is associated with identification of the interest

points’ location in images. Therefore, the key task to

achieve a high-accuracy monitoring method is to get the

optimal feature matching algorithm that is capable of de-

tecting position changes of feature points over images as

accurately as possible.

The feature-based and pixel-based methods as men-

tioned in previous section are commonly used in detecting

and matching variance that occurs on structure members.

However, which one is the most appropriate for imple-

mentation of temporary structural monitoring is unknown

in terms of accuracy and efficiency. To this end, this paper

makes an attempt to compare the accuracy and efficiency

of these algorithms.

3 Experiment

3.1 Experiment design

To test the performance of the three algorithms, ex-

periments are designed and carried out. 2D images are

selected and used to generate synthetic 2D image datasets

for experiment. The synthetic images are used to provide

the ground truths, which are generated by the implemented

MATLAB geometric transformation and deformation

functions based on the original images. In this paper, the

in-plane deflection distances of the corresponding interest

feature points from one synthetic image pair are the criteria

to reflect the accuracy performance of these algorithms.

The experiments are designed to test their performance in

dealing with feature point detection and matching under

different scenarios. The performance criteria include fea-

ture detection accuracy, algorithm operation efficiency, and

feasibility. The geometric transformations include transla-

tion, rotation, illumination, and sinusoidal function defor-

mation. Three algorithms are tested. The experimental

results are the deflections (distances between the interest

feature points in the original image and that of the trans-

formed synthetic image). The deflection values are then

compared with their corresponding ground truths to ana-

lyze the detection performance.

3.2 Dataset

The dataset applied in the experiments includes three dif-

ferent scenarios which are shown in Fig. 1. The scene of

image (a) is a part of a bridge in the field; the scene of

image (b) is a constructed mock-up bridge in the labora-

tory; the scene of image (c) is a building structure at a

construction site.

3.2.1 In-plane translation

This experimental group is designed to test the perfor-

mance of the algorithms to deal with the in-plane transla-

tion (displacement) of the three scenarios. The deflection

direction of the synthetic images is vertical, and the values

of deflection are 3, 5, and 8 pixels, respectively, as shown

in Fig. 2.

3.2.2 In-plane rotation

The dataset in this group is designed to test the perfor-

mance of the algorithms in dealing with the in-plane ro-

tation of the scenarios. The rotate direction of the synthetic

images is clockwise, and the rotation angles are 0.5, 1, and

1.5�, respectively, as shown in Fig. 3.

3.2.3 Illumination changes

The experiment is designed to assess the algorithm per-

formance in dealing with illumination changes when the

pictures are captured under different lighting conditions.

This is essential since the algorithms are expected to have

the ability to monitor the scenes under different illumina-

tions during daytime. This group of experiment is con-

ducted by utilizing the synthetic images with 5 pixels
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deflection, which are processed in the Xnview software to

reduce and increase the lightness of different images. The

less illumination group is generated by reducing 50 lux

from the original image group. In contrast, the more illu-

mination experimental group is increased 50 lux based on

the original image group, as shown in Fig. 4.

Fig. 1 Dataset of original

images: a a bridge, b a mock-up

bridge, and c a building under

construction

Fig. 2 a 3 pixels deflection

scenarios; b 5 pixels deflection

scenarios; c 8 pixels deflection

scenarios
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3.2.4 In-plane deformation

The experimental groups presented above are all about

linear transformations of the scenarios. However, as well

known, in the real-world, the observed targets cannot al-

ways be considered to perform as linear transformation.

Therefore, this group is designed specifically to address the

non-linear transformation scenarios, also known as defor-

mation, which is a widespread issue in construction tem-

porary structures.

In this experimental group, the deformed images are

generated by the specified deformation functions:

u ¼ x

v ¼ yþ ½l� sinð2 � p� xÞ=ðh� 1Þ�

�

ð1Þ

u0 ¼ xþ ½l� sinð2 � p� yÞ=ðw� 1Þ�
v0 ¼ y

�

ð2Þ

The functions above are used to perform sinusoidal

deformation to the target scenarios. Equation (1) is used to

add vertical sinusoidal wave to the target scenarios.

Similarly, Eq. (2) adds horizontal sinusoidal wave to the

target scenarios.

In the functions, the u, v, u0, and v0 are the coordi-

nates of the deformed image points, and x and y are the

coordinates of the original image points. The deforma-

tion scale factor l is set to 5.0 in the experiments. p is

the circumference ratio, and h and w are the height and

width of the images.

Fig. 3 a 0.5� rotation scenario;

b 1� rotation scenario; c 1.5�
rotation scenario
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4 Experimental results

4.1 Algorithm accuracy comparison

This section presents the statistical comparison results that

are generated by processing the images of different sce-

narios with the three algorithms. The data in Table 2 are

overall measurement error percentages of the different

scenarios.

4.1.1 Translation

Figure 5 shows the measurement errors of the three algo-

rithms for different scenarios and different translation

values. From Fig. 5, we can see that the SURF algorithm

has the largest measurement error percentages among these

three algorithms. SIFT algorithm performs much better

than SURF, but worse than DIC. As a result, regarding

translated scenarios, DIC has the best measurement per-

formance among the three algorithms.

4.1.2 Rotation

The measuring error percentages of the three algorithms for

rotation scenarios are presented in Fig. 6. From the plots in

Fig. 6, the SIFT and SURF algorithms have comparable

measuring performance, whereas DIC algorithm achieved

much better accuracy than SIFT and SURF when pro-

cessing the rotation scenarios. However, Fig. 6 also shows

that the measuring error percentages of the three algorithms

for rotation group are all greater than 15 %, which indi-

cates that all three algorithms have some difficulties in

dealing with rotation scenarios when compared with the

translation group.

4.1.3 Changing illumination

Figure 7 presents the measurement results of the three al-

gorithms when changing the light condition of the sce-

narios. Figure 7 shows that SURF algorithm is much more

sensitive to light condition compared with SIFT and DIC

algorithms. Its average error percentage is around 5 %,

which is much larger than that of SIFT and DIC algorithms.

Besides, from Fig. 7, the accuracy performance of SURF

and SIFT algorithms varies a lot when processing different

scenarios with the same light condition. In contrast, DIC

achieved much better results.

4.1.4 Deformation

The results of the three different algorithms for deforma-

tion scenarios are presented in Fig. 8, from which, it can be

observed that DIC achieved the best performance among

the three algorithms; its error percentages lie between the

intervals of 10 % and 15 %. SURF algorithm performed

better than SIFT algorithm. However, all the three algo-

rithms still need further improvement to gain better mea-

suring accuracy for deformation scenarios.

Fig. 4 a 50 Lex less

illumination images; b 50 Lex

more illumination images
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4.2 Algorithm efficiency comparison

After the accuracy comparison, the algorithms’ running

times were compared to evaluate their efficiency perfor-

mance. The running times for the algorithms in processing

different testing groups are recorded in Table 3.

Figure 9 shows the running times of the three algorithms

for different scenarios. From Fig. 9, for translation and il-

lumination groups, SURF and SIFT algorithms have the

best efficiency performance. The running time of SURF is

within 1 s, and for SIFT, it is around 1 s. Both SURF and

SIFT can be considered as near real time for processing.

However, for DIC algorithm, the running time is much

Table 2 Accuracy comparison result

Translation (%) 3 pixels 5 pixels 8 pixels

Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

DIC 0.0311 0.0003 0.5587 0.0045 0.0001 0.0124 0.0443 0.0883 0.0464

SIFT 0.1252 0.2914 1.4079 0.5825 0.1743 0.8446 0.4822 0.0890 0.5279

SURF 12.5417 8.0829 8.8976 5.6888 4.3751 5.0000 3.5072 1.2331 2.5856

Rotation (%) 0.5� 1� 1.5�

Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

DIC 17.6293 15.9105 16.7992 17.5450 15.1788 16.3858 16.7685 14.8734 15.3340

SIFT 25.3056 24.3408 25.8251 25.3970 23.9278 24.3075 24.5719 23.1111 23.2874

SURF 24.8862 25.0558 25.5584 24.0299 22.6295 24.1035 23.8335 22.0336 22.6595

Illumination (%) Less illumination Normal illumination More illumination

Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

DIC 0.0043 0.0813 0.0023 0.0045 0.0001 0.0124 0.0045 0.0001 0.0140

SIFT 0.5825 0.1803 0.8446 0.5825 0.1744 0.8446 0.5825 0.1803 0.8446

SURF 6.1731 4.3751 5.6578 5.6888 4.3751 5.0000 5.7403 4.3751 5.2190

Deformation (%) Scene 1 Scene 2 Scene 3

DIC 17.5012 18.839 18.5891

SIFT 19.9427 26.1856 27.329

SURF 19.5472 25.6559 26.3965
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larger than that of SURF and SIFT. In particular, for the

rotation scenarios, the running time of DIC is more than

10 s for each scenario.

4.3 Error estimation in real-world scene

To shed light on the performance of the algorithms on

metric measurements, we further calculate the pixel errors

into real-world values given the camera capture distance

and its focal length. Based on imaging principle of digital

camera, the measuring pixel-based error can be converted

into real-world Euclidean metric error by given different

image resolutions. Firstly, the average pixel-based errors

for each algorithm with different types of transformations

were computed as shown in Table 4.

Then, the pixel error can be calculated into real world

with given capturing distance 5 m for the camera. The

camera we used in our experiment is Canon 5D mark III

which is equipped with a 36 9 24 mm full frame CMOS.

The lens used for the camera in the experiment has a

30 mm fixed focus. Based on different image resolutions,

the real-world errors calculated are shown in Table 5. The

unit of the errors presented in the table is in millimeter,

which is calculated by specifying the camera capture dis-

tance and given different image resolutions.

The experimental results using different image resolu-

tions for the three algorithms are presented in Fig. 10.

From Fig. 10, when comparing the real-world accuracy

between different algorithms, we can see that DIC achieved

the best accuracy performance among the three algorithms.

SURF presented the worst accuracy performance. Espe-

cially, when the image resolution becomes 720 9 480

pixels, the real-world error of SURF dealing with transla-

tion scenarios is over 2 mm that is much higher than the

errors of DIC and SIFT. In particular, all of the three al-

gorithms seem to have difficulties in processing the rota-

tion and deformation groups when the image has a

relatively small resolution.

5 Discussion

5.1 Algorithm accuracy performance

According to Table 2, we can observe that DIC can achieve

the best accuracy performance among all of the testing

groups including translation, rotation, illumination chan-

ges, and deformation. SIFT led to more accurate mea-

surements than SURF in scenarios of translation and

illumination changes. In terms of the rotation and defor-

mation, the performance of SIFT is close to the perfor-

mance of SURF. This indicates that they can achieve the

similar accuracy when dealing with different rotation and

deformation scenarios.

5.2 Running efficiency

Table 3 presents the running time of the algorithms in

processing different image scenes. All the images pro-

cessed in the efficiency experiments have the resolution of

500 9 500 pixels. As we see in Table 3, each algorithm’s

running time for different scenes (translation, rotation, and

illumination change) has little difference. This indicates

that the scene difference has relatively small influence on

the operation efficiency of the three algorithms.

However, the running time of different algorithms in

processing the same scenarios is quite different. As shown

in Table 3, SURF achieved the best time efficiency among

three algorithms. SIFT is the second. The DIC is the worst.

The running time of SURF algorithm is around 0.2 s and

the running time of SIFT algorithm is around 1 s. These

can be considered to be real time or near real time for

image data processing. However, the running time of DIC

varies with different scenarios, around 5 s in illumination

change and translation groups, and 12 s in rotation groups.
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Table 3 Efficiency comparison result

Translation (s) 3 pixels 5 pixels 8 pixels

Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

DIC 5.979 4.894 4.148 5.733 5.285 4.584 12.356 12.253 12.435

SIFT 1.046 1.05 1.023 1.045 1.342 1.277 1.025 1.062 1.543

SURF 0.982 0.981 0.961 0.983 0.958 0.957 0.982 0.975 0.960

Rotation (s) 0.5� 1� 1.5�

Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

DIC 11.446 11.666 9.982 11.687 11.788 11.927 12.396 12.408 12.396

SIFT 0.99 0.98 0.991 1.035 1.083 1.053 1.042 1.098 1.022

SURF 0.941 0.959 0.944 0.982 0.955 0.997 0.995 0.997 0.994

Illumination (s) Less illumination Normal illumination More illumination

Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

DIC 5.733 5.285 4.584 4.974 5.261 5.986 5.898 4.962 5.365

SIFT 1.045 1.342 1.277 1.126 1.235 1.338 1.261 1.325 1.167

SURF 0.983 0.952 0.958 0.978 0.951 0.952 0.979 0.956 0.951
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Fig. 9 Efficiency comparisons

of the three algorithms for

a translation scenarios,

b rotation scenarios, and

c illumination change scenarios

Table 4 Measurement average pixel-based error of different algorithms

Average error (pixel) Translation Rotation Illumination Deformation

3 pixels 5 pixels 8 pixels 0.5� 1� 1.5� Less More Sinusoidal

DIC 0.0059 0.0003 0.0048 0.2871 0.3652 0.5841 0.0015 0.0003 0.5752

SIFT 0.01825 0.0267 0.0293 0.4260 0.5447 0.8763 0.0268 0.0268 0.7692

SURF 0.29522 0.2511 0.1954 0.4014 0.5560 0.8074 0.2701 0.2556 0.7498
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5.3 Metric measurement error estimation

In Table 5, the image pixel errors were computed into real-

world metric measurements. As to translation group, when

the camera capture distance is 5 m from the scene, the

pixel errors recalculated into real world are approximately

0.004 mm for DIC with the image resolution of

5760 9 3840 pixels. As the image resolution reduces, the

error increases to 0.03 mm with the 720 9 480 pixel

resolution. Similar results were obtained in the rotation,

illumination, and deformation groups. As a result,

regarding the same algorithm, the real-world accuracy has

positive correlation relationship with the image resolution.

In addition, the performance of each algorithm in pro-

cessing different transformation scenarios (i.e., translation,

rotation, illumination and deformation) can be compared.

For the translation groups, DIC obtained the best in accu-

racy. The real-world errors of DIC are all within 0.1 mm.

SIFT can result in acceptable accuracy that is within 1 mm

for all image resolutions. SURF has the worst performance

in dealing with the same translation group. Similar obser-

vations happened to the illumination groups. As to the

Table 5 Real word errors with

5 meters capture distance
Real-world error estimation (mm) Translation Rotation Illumination Deformation

Resolution: 5760 9 3840

DIC 0.0038 0.4293 0.0009 0.5992

SIFT 0.0258 0.6413 0.0279 0.8013

SURF 0.2575 0.6128 0.2738 0.7810

Resolution: 2880 9 1920

DIC 0.0076 0.8586 0.0019 1.1983

SIFT 0.0516 1.2826 0.0558 1.6025

SURF 0.5150 1.2256 0.5476 1.5620

Resolution: 1920 9 1280

DIC 0.0114 1.2879 0.0028 1.7975

SIFT 0.0773 1.9240 0.0837 2.4038

SURF 0.7726 1.8383 0.8214 2.3430

Resolution: 720 9 480

DIC 0.0304 3.4344 0.0074 4.7934

SIFT 0.2062 5.1306 0.2233 6.4102

SURF 2.0601 4.9022 2.1903 6.2481
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Fig. 10 Real-world scenario

testing results of the three

algorithms using image

resolutions of a 5760 9 3840

pixels, b 2880 9 1920 pixels,

c 1920 9 1280 pixels, and

d 720 9 480 pixels

626 J Civil Struct Health Monit (2015) 5:615–628

123



rotation and deformation groups, the accuracy performance

of all three algorithms is not as high as translation and

illumination groups. However, among these three algo-

rithms, DIC still results in better accuracy than SIFT and

SURF. In particular, all of the three algorithms seem to

have issues in processing the rotation and deformation

groups when the image has a relatively small resolution.

For example, in the deformation group, when the image

resolution is 720 9 480 pixels, the accuracy performance

of all three algorithms is over 4 mm. This being observed,

the algorithms call for further improvement to address this

problem.

6 Conclusions

This paper explored the optimal detection and tracking

algorithm for establishing a temporary structure monitoring

method. A series of experiments were conducted to test

three algorithms: DIC, SIFT and SURF. In the ex-

periments, synthetic images, including 2D geometrical

translation, rotation, deformation, and illumination chan-

ges, were generated to provide the sample data and ground

truths. As the experimental output, the accuracy and effi-

ciency of these algorithms were measured and compared

with one another. The result showed that the DIC algo-

rithms could achieve the best accuracy performance than

SIFT and SURF to process in-plan transformation and

deformation scenarios.

In terms of the efficiency, SURF reveals the superiority

among the three algorithms. It can be treated to be real time

or near real time in processing the experimental image

pairs. The DIC algorithm is inefficient compared to SIFT

and SURF algorithms.

In general, the DIC algorithm can perform better in

measurement accuracy than SIFT and SURF, which reveals

that the DIC algorithm is quite potential to be utilized to

build the temporary structure monitoring system. However,

the operation efficiency of DIC is an obstacle to apply this

algorithm into the monitoring system. Therefore, in the

future work, this problem will be further investigated by

reducing the computing complexity of the algorithm.

This study primarily focused on identifying a superior

visual sensing method for monitoring the deflection of

temporary structures. Because the failure of a structure can

be associated with large deflection or deformation on its

load-bearing structural members, promptly obtaining the

deflection or deformation will help assess whether the

structure is at risk. Such informative observation is par-

ticularly important for situations such as cement pouring

workers who stand on a temporary structure to conduct

their work and other workers working on temporary

structures such as scaffolding and formwork support.

Nevertheless, there is still room for improvements of the

current study. One is the establishment of the relationship

between the structural deformation/deflection and prob-

ability of collapse of structure. The change of the magni-

tude of deformations or deflections over time might be a

good indicator for estimation. However, more investiga-

tions are needed.
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