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Abstract A method is developed to estimate pavement

macrotexture depth (MTD), using measurements from a

microphone mounted underneath a moving vehicle. The

acoustic energy is assumed to have positive linear corre-

lation with MTD of the pavement. However, the acoustic

measurements will include tire-generated sound that carries

information about the road features as well as noise gen-

erated by the environment and vehicle. The variations in

frequency of the noise are assumed to be small compared to

the variations in frequency of the signal related to road

features, which allows principal component analysis (PCA)

to filter noise from microphone data prior to estimating its

energy over an optimally selected bandwidth. The acoustic

energy computed from the first principal component (PC)

is termed as PCA energy, which is an important variable

for MTD prediction. The frequency band most relative to

pavement macrotexture was determined to be 140–700 Hz.

Then, an MTD prediction model was built based on a

Taylor series expansion with two variables, PCA energy

and driving speed. The model parameters were obtained

from an engineered track (interstate highway) with known

MTD and then applied to urban roads for the feasibility

test. The predicted MTD extends its range from

0.4–1.5 mm of the engineered track to 0.2–3 mm, which is

the typical range of MTD. In addition, the excellent re-

peatability of the MTD prediction is demonstrated by the

urban road test. Moreover, the potential to use the predicted

MTD for pavement condition assessment is discussed.

Therefore, the PCA Energy Method is a reliable, efficient,

and cost-effective approach to predict equivalent MTD for

engineering applications as an important index for pave-

ment condition assessment.

Keywords Macrotexture � Mean texture depth (MTD) �
Tire-generated sound � Principal component analysis

(PCA) � Pavement condition index (PCI)

1 Introduction

Pavement texture is ‘‘the deviation of a pavement surface

from a true planar surface’’ within a specific wavelength

range [1]. Macrotexture of pavement is one type of pave-

ment texture in the same order of size as coarse aggregate

or tire tread elements, with spatial wavelengths from 0.5 to

50 mm [1]. Referring to the physical meaning of macro-

texture, macrotexture depth (MTD) is related to tire/road

friction in wet weather [1], and the severity of segregation,

which will lead to raveling, a type of pavement distress [2].

Hence, the main applications of surface macrotexture in

engineering are to: (1) measure the frictional properties of

the pavement surface (skid resistance) [3]; (2) evaluate

construction segregation or non-uniformity [4]. The first

application is directly related to crash rate especially on

rainy days, and the second application is related to pave-

ment condition rating. Therefore, an accurate, easy, safe,
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and cost-effective approach to test and monitor the pave-

ment MTD is needed.

Current methods for macrotexture measurement could

be classified by manual measurements and automatic

measurements. Manual measurements include the sand

patch method [5], the outflow meter, and the circular tex-

ture meter [4]; automatic measurement includes the vehi-

cle-mounted laser profilometer [6]. Manual measurement

can only be taken when traffic is closed, while the auto-

matic measurement has cost issues that might hinder its

widespread use. Based on the limitation of the mentioned

methods, the authors developed approaches to estimate

macrotexture based on the acoustic measurement of tire/

road noise. In the discussion that follows, the term ‘‘tire/

road noise’’ refers to all the sound measured by the mi-

crophone underneath the vehicle, including the ‘‘tire-gen-

erated sound’’ by tire–road interaction and the ‘‘noise’’

caused by wind and vehicle vibration. Previous research on

tire/road noise indicates that dynamic interactions between

the tire and the road surface produce sounds whose fre-

quency dependence is related to the road macrotexture

while the vehicle is moving [7, 8]; therefore, the idea to

utilize tire/road noise for macrotexture measurement has

potential. Acoustic measurement is collected from one

microphone mounted behind the driver side rear tire, di-

rected at the tire/road interface.

Two approaches are developed currently. The first

approach, referred to here as the Energy Method, uses an

integration of the frequency spectra of the collected

acoustic measurement over a certain frequency band

(40–400 Hz) to linearly correlate with the macrotexture

mean texture depth (MTD) [9]. However, the Energy

Method includes noise from wind and vehicle vibration

that is unrelated to MTD. To increase the accuracy of the

Energy Method, we developed the second approach re-

ferred to here as the PCA method. A broader frequency

band (DC to 2 kHz) is selected and a principal component

analysis (PCA) is applied for noise and speed effect re-

duction [10, 11]. The MTD is estimated by matching the

principal component vector set derived from the tested

pavement with one of the vector sets of known road

conditions at an average accuracy of 90 % [10, 11].

However, the Energy Method may produce some negative

MTD values in regular driving test because of speed ef-

fect, which reduces the accuracy and applicability of the

method. Also, the PCA method requires a database of the

first principal component vectors with known pavement

MTD values to match with the test pavement, which will

limit the prediction to the MTD values in the database.

The accuracy of MTD prediction depends on the diversity

of pavement types with different MTDs in the database.

In reality, it is difficult to build a database containing as

much as possible types of pavement surface within a

broad MTD range. The current database in use by the

authors is from an engineered track with 44 pavements of

different MTD values, which already presents drawbacks

caused by the limited database when testing on regular

urban roads.

Hence, an improved approach for MTD estimation is

needed to get rid of the noise not related to road texture and

the limitation by the diversity of known road database.

Before the improved approach is proposed, two assump-

tions are made based on the previous study about the re-

lation between tire/road noise and pavement macrotexture.

First, the pavement macrotexture is related to vehicle

driving speed and the tire/road noise level [8]; secondly,

the acoustic energy (integration of frequency spectrum of

tire/road noise) below 1 kHz is positively proportional to

the MTD of pavement [8, 9, 12]. Hence, based on the

advantage of those two developed methods described

above, one approach to combine both methods is explored

and this is the PCA Energy Method.

2 Data collection

Figure 1 shows the sensor arrangement on the test vehicle

for data collection. The microphone is mounted behind the

driver side rear tire and directed to the tire/road interface to

collect the tire/road noise, which will be utilized in this

paper. The data acquisition system is located inside the test

vehicle. The directional microphone was produced by

GRAS, with the sensitivity of 44 mV/Pa. The same tire was

used throughout the experiment to exclude the possibility

of a tire effect.

Two experiments were carried out in this study. The first

experiment was conducted in September 2010 on an

engineered track at the National Center for Asphalt Tech-

nology (NCAT) in Lee County, Alabama [11]. The track is

2.7 km long, consisting of 46 sections of pavement, each

61 m in length. The vehicle collected over 50 GB of

acoustic data as it drove around the track for different

testing configurations. The sampling frequency of this test

is 40 kHz. Among the 46 pavement types, 44 are consid-

ered. The vehicle drove at three different speeds over the

track, 32 kph (20 mph), 56 kph (35 mph), and 80 kph

(50 mph), three rounds for each speed. For each round,

there are 44 measurements corresponding to the 44 pave-

ment sections. The collected data would be analyzed to

explore the potential for MTD prediction and to build the

prediction model.

The second test was conducted with the same vehicle

(Fig. 1) in August 2012. The vehicle was driven over 20

two-lane two-way streets in the northeast section of

Brockton, MA. Three loops of the route were driven in the

clockwise direction and three loops were drive in the
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counterclockwise direction (to include the opposite lane).

The sampling frequency of this test is 50 kHz. Brockton,

MA, was selected because the city of Brockton and CDM

smith (a consulting, engineering, construction and op-

eration firm headquarters in Cambridge, MA) agreed to

share an existing pavement condition survey from 2006.

For this survey, performed by CDM smith, a pavement

condition index (PCI) value was assigned to each street

ranging from 0 to 100, where 0 is the worst possible con-

dition and 100 is the best. The PCI values are the forward

projected values to 2012 using Micro PAVER’s [13] built-

in deterioration model. This survey information provides a

valuable tool for validating algorithms for pavement MTD

prediction using the test vehicle (Fig. 1), because a high

MTD value of pavement predicted from the tire/road noise

will result in a low PCI value indicating poor pavement

condition [14]. Therefore, the collected data would then be

used to test the feasibility of the MTD prediction model

developed from the data collected in NCAT.

3 Method description

The general idea of this study is to combine the Energy

Method and the PCA method together to include the ad-

vantages of both methods in one method. A central ques-

tion addressed in the present study is the choice of model

used to predict MTD, and in particular the choice of

measured variables to include. Based on the first assump-

tion given in the introduction section, pavement macro-

texture is related to the tire/road noise level and the driving

speed of the vehicle. Hence, both tire/road noise level and

driving speed need to be included in this model.

The tire/road noise level is represented by the acoustic

energy which has linear relationship to MTD [9]. To obtain

better estimates of energy with the purpose of getting a

more linear relationship with MTD, a PCA is incorporated.

PCA is a well-known statistical approach for feature ex-

traction from measurements [15]. Pearson [16] and

Hotelling [17] firstly described this technique [18]. The

fundamental purpose of PCA is to reduce the dimension-

ality of a data set containing a quantity of variables cor-

related to each other, so as to keep the maximum possible

variation. PCA was applied to the tire/road noise by the

authors in a previous study. The inputs are the original data

matrix composed of the fast Fourier transform (FFT) re-

sults of a certain length of the acoustic data (around 0.2 s),

in which the rows of matrix are different time windows and

the columns are different frequencies. In addition, from the

view of PCA, the time windows are treated as the variables

and the different frequencies are viewed as different ob-

servations in this study. Zhang et al. [11] assumed that the

variations in frequency of the noise are small compared to

the variations in frequency of the tire-generated sound re-

lated to the road features, which allows the PCA approach

to separate noise from tire-generated sound that carries

information about the road condition, including macro-

texture. Moreover, because of the normalization of original

data, in which the mean value of each row is subtracted off

and then divided by the standard deviation of the row

vector, the speed effect on the amplitude of sound pressure

level (SPL) is largely reduced [10, 11]. Since the first

Fig. 1 Sensor arrangement of

test vehicle
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principal component (PC) vector carries pavement macro-

texture information with a high signal-to-noise ratio (SNR)

[11], the present study uses the first PC vector for energy

computation instead of the original data. The energy

computed from that first PC vector is named PCA energy.

Hence, PCA energy will be one variable for consideration

representing tire/road noise level in the MTD prediction

model. A flowchart is listed in Fig. 2 to show the procedure

for PCA energy computation. It is noticed that the data

points for each window are set to be 213 with the consid-

eration of data length requirement for PCA treatment.

Detailed information of data normalization and PCA

treatment may be found in the paper by Zhang et al. [11].

PCA energy is computed from the integration of the first PC

vector over an optimally selected frequency band. One issue

that needs to be pointed out is the unit conversion during the

procedure. The data used is sound pressure with the unit of

pascal; after FFT, the pascal is converted to the SPL decibel.

Accordingly, data normalization would make the first PC

vector have negative and positive values at decibel. To

obtain positive energy as an integration of the first PC

vector, the decibel of the first PC vector is converted back to

pascal to make all the scales of the vector positive.

Therefore, two variables will be included in this model:

PCA energy (e) and driving speed (v). With these two vari-

ables, an MTD prediction model based on a Taylor series

expansion will be developed. The model parameter will be

determined using NCAT test data. The next section will

discuss model creation and model parameter calculations.

4 Modeling for MTD prediction

It is clearly explained in method description that two vari-

ables will be considered for MTD prediction: PCA energy

(e) and driving speed of vehicle (v). Also, the frequency

range used for computing PCA energy has been figured out.

The next question is how to build a mathematical model to

obtain the MTD of the pavement. The concept of a Taylor

series expansion [19] motivates the idea of using a two-

dimensional (2D) Taylor series to build the model for MTD

prediction. Any function, as long as analytic at a certain

point, could be expressed as Taylor expansion [19]. The

accuracy of the function will be improved with the order of

the variables. The general Taylor expansion [20] for 2D

function f (x, y) at (x0, y0) is listed in Eq. (1):

f x;yð Þj x0;y0ð Þ

¼
X1

n¼ 0

1

n!

Xn

0

n

k

� �
onf x;yð Þ
oxn� koyk

j x0;y0ð Þ x� x0ð Þn�k
y� y0ð Þk

( )
;

ð1Þ

where n is the the order number to be considered and k the

integer varying from 0 to n,

n

k

� �
¼ n!

k! n� kð Þ! :

Considering the case for MTD prediction, the input

variables x and y in Eq. (1) are PCA energy (e) and driving

speed (v), respectively, and the output f (x, y) is the pre-

dicted MTD. Given that the order above 3 will be neglected

in this model, Eq. (1) could be converted to Eq. (2), which

is more readable:

f en; vnð Þj en0;vn0ð Þ ¼ c0 þ c1en þ c2vn þ c3e
2
n þ c4v

2
n þ c5envn

þ c6e
3
n þ c7v

3
n þ c8e

2
nv

þ O en � en0ð Þ4þ vn � vn0ð Þ4
h i

;

ð2Þ

where en is the normalized PCA energy (no dimension), see

Eq. (3), vn is the normalized driving speed (no dimension),

see Eq. (4), ci is the derivative of the corresponding terms

of Taylor expansion (constant), en0 , is the center of Taylor

expansion of f (en, vn), f (en, vn) is the predicted MTD

(mm), and O en � en0ð Þ4þ vn � vn0ð Þ4
h i

are the terms to be

neglected.

The normalized PCA energy (en) and normalized driv-

ing speed (vn) are calculated in Eqs. (3) and (4) separately:

Fig. 2 Flowchart for PCA energy computation
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en ¼
e � emin

emax � emin

; ð3Þ

where e is the PCA energy computed from tire/road noise

of the tested road (Hz–Pa), emin the minimum PCA energy,

i.e., sound collected from stationary vehicle with engine on

(Hz–Pa), emax the maximum PCA energy of the analysis

data in NCAT test (Hz–Pa), and en the normalized PCA

energy (0 B en B 1, no dimension).

vn ¼
v� vmin

vmax � vmin

; ð4Þ

where v is the driving speed over the tested road (m/s), vmin

the minimum driving speed in NCAT test (8.94 m/s), vmax

the maximum driving speed in NCAT test (22.35 m/s), and

vn the normalized driving speed (0 B vn B 1, no dimension).

The minimum and maximum values in Eqs. (3) and (4)

are both collected from NCAT test.

As the general form of the model is listed in Eq. (2), the

model parameter ci needs to be determined. To estimate a

reasonable MTD value from this model, limiting conditions

are required. Roe et al. [21] claimed that a typical MTD is

from 0.2 to 3 mm. Hence, the limits should define the

minimum MTD as well as the maximum one in the model.

They are listed in Eqs. (5) and (6):

f en; vnð Þ ¼ 0:2when en ¼ vn ¼ 0; ð5Þ
f en; vnð Þ ¼ 3when en ¼ vn ¼ 1: ð6Þ

By substituting Eqs. (5) and (6) into Eq. (2), respec-

tively, Eqs. (7) and (8) are obtained:

c0 ¼ 0:2; ð7Þ
Xi ¼ 9

i ¼ 1

ci þ c0 ¼ 3: ð8Þ

Accordingly, a least-squares (LS) analysis is performed

over the NCAT test data. After the accuracy analysis with

different orders being considered and the sensitivity ana-

lysis to the items in the determined order, the model is

simplified and obtained as shown in Eq. (9). The normal-

ized PCA energy (en), the normalized driving speed (vn),

and the product of these two variables (en vn) are included

in the model:

f en; vnð Þ � 0:2þ 1:55en þ 0:44vn þ 0:76envn: ð9Þ

The accuracy of this model over NCAT data is 84 % of

the actual MTD. Also, instead of from 0.4 to 1.5 mm of the

MTDs in NCAT, it is expanded to a more reasonable range

of 0.2 to 3 mm. It is possible that the accuracy of the model

is decreased because of the expanded range. Therefore, the

feasibility of the model will be tested from two aspects.

One is a comparison of the accuracy of the model with the

previous Energy Method and the other is its application to

an urban road test.

5 Feasibility of the MTD prediction model

The next concern is the feasibility of this model. Feasibility

here includes two parts: (1) advantage of PCA treatment

before computing the acoustic energy; (2) reasonable pre-

diction of MTD in field test. The first part for accuracy

comparison will be done to the NCAT test data. The en-

ergy-based method is very similar to the procedure of the

proposed method, but without PCA treatment to the data. If

the accuracy level of the proposed approach is higher than

the Energy Method without PCA treatment, more confi-

dence will be gained for the application to an urban road.

Then, the second part for field test ability will be performed

over the Brockton test data. Even though the MTD of the

road in Brockton is unknown, the rationality could be

checked from the camera at the back of the vehicle (Fig. 1)

with the road actual condition as well as the PCI value from

CDM smith as introduced in the data collection part.

5.1 Accuracy analysis

The advantage of the present method is investigated

through the accuracy comparison of MTD estimation with

the Energy Method. The Energy Method here has exactly

the same procedures as the PCA Energy Method, however,
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Fig. 3 MTD prediction at 56 kph by the two methods

Fig. 4 Predicted MTD along Field St.
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the former is not treated by PCA. The accuracy is com-

puted from all the runs and speeds at NCAT test. Figure 3

is an example for MTD prediction by both methods at

56 kph. Figure 3 shows that the PCA Energy Method (-

dashed line with ‘‘?’’) has a high accuracy (84 %) com-

pared to the Energy Method (dash line with ‘‘O’’), which

proves that PCA treatment contributes a lot to high accu-

racy. Therefore, PCA treatment improves the accuracy of

the PCA Energy Method, which is eligible to be applied for

the urban road test.

5.2 Field test performance

The advantages of the PCA Energy Method are found

through comparison with the Energy Method. However, the

data used for the comparison were collected on an engi-

neered NCAT track. A field test is needed to validate the

feasibility of the model for a ‘‘real’’ road. Therefore, the

test data collected from Brockton, MA, are analyzed to

evaluate its performance on urban road.

A detailed investigation was conducted for a randomly

selected road—Field St. Figure 4 is the MTD predictions

along the distance of the road. For this case, acoustic data

collected along a certain distance 7.8 m (optimal dis-

tance for MTD prediction) is used to estimate one MTD

value as displayed in Fig. 4. To simplify the data pro-

cessing and to assure the prediction accuracy, MTD is

estimated every second, which is equivalent to 7.8 m at

the speed of 28 kph. As explained before, high MTD

corresponds to a poor road condition and vice versa. Four

points A, B, C, and D in Fig. 4 are selected to check

against the pavement surface pictures taken by the

camera in Fig. 1.

The predicted values of MTD of A, B, C, and D are

0.77, 0.82, 0.92, and 1.02 mm in ascending order. Ac-

cordingly, the pavement surface macrotexture of the cor-

responding pictures (Fig. 5) is supposed to vary from fine

to coarse in order. The pictures shown in Fig. 5 coincide

with their predicted MTDs. The surface macrotexture does

change from fine to coarse with the predicted MTD in-

creases from A to D as indicated in Fig. 4. Also, Fig. 5

illustrates how PCI value will decrease as MTD increases

by checking that the area and severity of cracking in Fig. 5

intensifies as MTD increases. Therefore, the predicted

MTDs match the true pavement macrotexture conditions

from the observation of the corresponding pictures.

Moreover, Fig. 6 shows the MTD predictions over

2 years on the same streets in the city of Brockton. Good

repeatability is displayed. Additionally, most predicted

MTDs in 2013 are higher than those in 2012, which

matches the situation that road condition gets worse from

2012 to 2013.

Based on the single road MTD variation analysis and the

comparison of the MTD prediction over 2 years, it is

concluded that the proposed PCA Energy Method is a

promising tool for MTD prediction. Besides, the MTD

value could indicate the road condition.

6 The application of predicted MTD

The predicted MTD shows the potential to indicate road

condition in the field test results; therefore the predicted

MTD values of the roads in Brockton is compared with the

corresponding PCI values. Table 1 represents the predicted

MTD of the roads in Brockton, MA, with corresponding

PCI values. The results shown in Table 1 are plotted in

Fig. 7. The predicted MTD increases as the PCI decreases,

i.e., the predicted MTD increases as the road condition gets

worse, which matches the expectation explained by Metro

Nashville [14]. Since the MTD in this study is predicted

based on the acoustic energy of tire/road noise, it can be an

index for the degree of pavement damage, which is related

to the PCI value [2, 4]. Wang et al. [22] developed a PCI

prediction method by introducing the predicted MTD in

this study, the standard deviation (Std) of Fourier transform

results of tire/road noise, and the standard deviation of

dynamic tire pressure collected by the dynamic tire pres-

sure sensor shown in Fig. 1. It is proven that the predicted

Fig. 5 Pavement surface

macrotexture condition [each

picture is 1.9 m

(width) 9 1.3 m (height)]
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MTD and the Std of Fourier transform results of tire/road

noise can predict PCI accurately. Hence, MTD is able to

indicate the pavement condition. However, it is to be em-

phasized that this is true only for the same mixture type of

pavement. The pavements shown in Fig. 7 have the same

mixture type, so the PCI can be directly correlated with the

predicted MTD.

For pavements with different mixture types, the pre-

dicted MTD cannot straightly project to the corresponding

PCI. Figure 8 shows the MTD range for pavements with

different mixture types. For example, for open grade fric-

tion course (OGFC) pavement, the MTD ranges from 2.2 to

3 mm, and for stone matrix asphalt (SMA) pavement from

1.0 to 1.6 mm. Therefore, it is concluded that the pavement

condition assessment through MTD depends on a mixture

method of pavement. A more reasonable scale needs be

developed to indicate pavement condition in real time.

Motivated by the knowledge of pavement segregation and

its way to determine the segregation level, a method to

evaluate the severity of pavement deterioration is derived.

Pavement segregation indicates the debonding between

aggregates, which will accelerate pavement distresses [2].

Stroup and Brown summarized the relationship between

macrotexture and segregation level [2].

Referring to segregation level identification [2], the

concept of texture ratio can be incorporated to represent the

severity of pavement deterioration. In this paper, a new

term ‘‘macrotexture index (MTI)’’ is created to represent

the texture ratio to rank the pavement deterioration by the

predicted MTD. Equation 10 is developed to calculate the

MTI for pavement condition indication:

MTI ¼ MTD

MTD good
; ð10Þ

where MTD is the predicted MTD from tire/road noise by

the PCA Energy Method (mm), MTD_good the mean

MTD of the range for a certain mixture type of pavement

with good condition (mm) and MTI the texture ratio (no

dim.).

The key in Eq. 10 to get the MTI is to define the

MTD_good, which represents the MTD of the range for a

certain mixture type of pavement with good condition.

Moreover, MTD_good is the denominator, so the function of

this MTD_good is to classify the mixture type of pavement.

Then dividing the predictedMTD byMTD_good, theMTI is

obtained. Since different surface treatment andmix type will

lead to different MTD scale level (Table 2), probability

distribution of the estimated MTDs within a certain distance

is referred to identify different types of mixture.

The flowchart to determine the MTD_good is indicated

in Fig. 9. For example, for one street about 200 m, if over

60 % of the predicted MTD falls in the range listed in

Table 2, this street is identified as the corresponding type

of surface mixture and the MTD_good is determined to be

the minimum value of the range shown in Table 2. For

instance, if over 60 % of predicted MTDs of one street are

0.5 0.6 0.7 0.8 0.9 1.0 1.1
0
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40
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Predicted MTD (mm)

P
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R2 = 0.9912

Fig. 7 PCI variation with predicted MTD for different roads

Fig. 8 MTD range for pavements with different mixture types

(OGFC is short for open grade friction course; SMA is short for stone

matrix asphalt)

Table 1 Predicted MTD of roads with corresponding PCIs at Brockton, MA

Road names Randolph St Brookville Ave Lynn St Field St Lisa Rd N Montello St Hovendon Ave

PCI (no Dim.) 0 6 13 41 64 84 91

Predicted MTD (mm) 1.03 0.98 0.95 0.83 0.75 0.63 0.57

Table 2 MTD range for different surface mixture types with good pavement condition

MTD (mm) 0.4–0.6 0.6–1.2 1.5–3.5

Mixture type Asphalt concrete (fine) Asphalt concrete (coarse) Open grade friction course
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in the range of 0.6–1.2 mm, the mixture type of this street

is classified as course asphalt concrete and the MTD_good

is 0.6 mm. The value of 60 % is obtained by testing over

960 km of urban road. Moreover, up to 2000, course as-

phalt concrete with the mixture method of superpave has

accounted for 62 % of the total hot-mix asphalt (HMA)

across the USA [23]. Thus, if the predicted MTDs within

200 m does not fall in any of the three ranges, it will be

defaulted as coarse asphalt concrete.

With the flowchart in Fig. 9, an approach to rate the

pavement deterioration level based on the predicted MTD

throughmicrophone is investigated and an example is shown

in Fig. 10. In this example, the MTD_good is 0.6 mm, since

the pavement is identified as course asphalt concrete pave-

ment. Hence, the range of MTD with good pavement

condition varies from 0.6 to 1.2 mm. The minimum value

(0.6 mm) is selected to be the MTD_good. Accordingly, the

MTD is converted to the MTI at each second corresponding

to about 7.8 m distance. From the corresponding pictures of

Pavement A to Pavement G (Fig. 10), the pavement condi-

tion gets worse as theMTI increases.Moreover, in Pavement

F and G some patches start appearing besides cracks, which

also indicates that this texture ratio has potential to identify

the distress type combined with a certain PCI. To understand

how the MTI indicates road condition, the predicted MTD

for different roads in Table 1 is converted to MTI, and the

correlation between PCI andMTI is demonstrated in Fig. 11.

Fig. 9 Flowchart for determination of MTD with good pavement

condition

Fig. 10 Example of severity of

pavement deterioration

observed from texture ratio for

Field St. in Brockton
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Fig. 11 PCI variation with MTI for different roads
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Since the tested roads belong to the same type of pavement,

MTD works the same way as MTI. However, when the

mixture types of pavement are different, the advantage of

MTI will be pronounced by eliminating the influence on

MTD scale due to this difference. It is a significant im-

provement for pavement condition assessment. With the

MTI, the difference caused by different pavement mixture

designs would be phased out, and the pavement condition

assessment would become more objective.

7 Conclusions

This paper conducted an overall study to produce the PCA

Energy Method for MTD prediction based on the tire/road

acoustic energy of the first principal component over the

frequency band 140–700 Hz. To simplify the model,

Taylor expansion theory is applied to determine the vari-

ables including PCA energy and driving speed. The pre-

diction range from 0.2 to 3 mm is validated by field test

with good repeatability. The MTD can be predicted every

second at speed from 32 to 80 kph.

The predicted MTD could be used for severity of

pavement deterioration evaluation. The macrotexture is

converted from the predicted MTD to MTI with the mix-

ture type of pavement considered. The new scale MTI

eliminates the difference caused by different pavement

mixture design, so that a more accurate PCI estimation is

expected. Besides, a waterproof equipment is needed for

use under rainy days. Accordingly, the influence of wet

surface in the prediction will be explored.
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