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Abstract
Let R be a commutative noetherian ring and I an ideal of R. Assume that for all integers i
the local cohomology module Hi

I (R) is I -cofinite. Suppose that Rp is a regular local ring for
all prime ideals p that do not contain I . In this paper, we prove that if the I -cofinite modules
form an abelian category, then for all finitely generated R-modules M and all integers i , the
local cohomology module Hi

I (M) is I -cofinite.

Keywords Local cohomology module · Cofinite module · Abelian subcategory · Thick
subcategory · Serre subcategory · Resolving subcategory · Support · Nonfree locus · Infinite
projective dimension locus · Large restricted flat dimension
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1 Introduction

Let R be a commutative noetherian ring and I an ideal of R. An I -cofinite R-module is by
definition an R-module X that satisfies both of the following two conditions (a) and (b).

(a) Supp X is contained in V(I ).
(b) ExtiR(R/I , X) is finitely generated for all integers i .

Hartshorne [11] introduced the notion of an I -cofinite module, and constructed an example
(see Example 2.4 stated below) where a local cohomology module Hi

I (M) is not I -cofinite,
which is a counterexample to a conjecture of Grothendieck [10]. Since then, so many people
have worked on the question asking when Hi

I (M) is I -cofinite, and so many results on it
have been obtained; see for example [4] and references therein.
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Denote by ModR the category of R-modules and by CofI (R) the full subcategory of
ModR consisting of I -cofinite R-modules. After proving results on the relationship between
the categorical structure of CofI (R) and the cofiniteness of local cohomology modules,
Bahmanpour [4] posed the following question.

Question 1.1 (Bahmanpour) Suppose that CofI (R) is an abelian subcategory of ModR. Is
then Hi

I (M) an I -cofinite R-module for all finitely generated R-modules M and all integers
i ?

The purpose of this paper is to provide a couple of answers to Question 1.1 mainly by
means of techniques of subcategories of modules. Denote by Cof0I (R) the full subcategory
of ModR consisting of R-modules X satisfying the above condition (b) only; such modules
are called I -ETH-cofinite and investigated, see [1] for example. Note that for an R-module
M and an integer i there are equivalences

Hi
I (M) is I -cofinite ⇐⇒ Hi

I (M) ∈ CofI (R) ⇐⇒ Hi
I (M) ∈ Cof0I (R).

The main result of this paper is the following theorem.

Theorem 1.2 Assume that one of the following three conditions is satisfied.

(1) Cof0I (R) is abelian.
(2) CofI (R) is Serre, and Hi

I (R) is I -cofinite for any integer i .
(3) CofI (R) is abelian,Hi

I (R) is I -cofinite for any integer i , and Sing R is contained inV(I ).

Then Hi
I (M) is I -cofinite for any finitely generated R-module M and any integer i .

In fact, the singular locus condition in Theorem 1.2(3) can be removed, if a suitable
assumption is imposed on the finitely generated R-module M , as follows.

Theorem 1.3 Suppose that CofI (R) is abelian and that Hi
I (R) is I -cofinite for all i ∈ Z. Let

M be a finitely generated R-module such that pdRp
Mp < ∞ for all p ∈ D(I ). Then Hi

I (M)

is I -cofinite for all i ∈ Z.

The organization of this paper is as follows. In Sect. 2, we recall the precise definition of
an I -cofinite module, a theorem of Bahmanpour [4] and Hartshorne’s celebrated example.
In Sect. 3, we first recall the definitions of Serre, abelian and thick subcategories, and then
investigate the structures of the subcategories CofI (R), Cof0I (R) of ModR. Cases (1) and
(2) of Theorem 1.2 are proved in this section; we apply a Mayer–Vietoris sequence and a
result shown in [3], respectively. In Sect. 4, using the results obtained so far, we explore
the structure of the full subcategory consisting of finitely generated modules with I -cofinite
local cohomology modules. The proofs of case (3) of Theorems 1.2 and 1.3 are given in this
section. The main methods are the notions of resolving subcategories, large restricted flat
dimension, nonfree loci and infinite projective dimension loci.

2 Preliminaries

This short section is to give preliminaries for the later sections. First of all, we state our
convention.

Convention 2.1 Throughout this paper, let R be a commutative noetherian ring and I an
ideal of R. All subcategories that are considered in this paper are assumed to be strictly
full. We denote byModR the category of R-modules and bymodR the subcategory ofModR
consisting of finitely generated R-modules.
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Cofiniteness of local cohomology...

Let us recall the definition of a cofinite module, whose notion is a main subject of this
paper.

Definition 2.2 An R-module M is called I -cofinite if the support SuppM of M is contained
in V(I ) (or in other words, Mp = 0 for each prime ideal p of R that does not contain I )
and ExtiR(R/I , M) is a finitely generated R-module for all integers i (or equivalently, for
all non-negative integers i). We denote by CofI (R) the subcategory of ModR consisting of
I -cofinite R-modules.

The I -cofiniteness of a local cohomology module Hi
I (M) has long been a main topic in

the studies of local cohomology. Bahmanpour [4, Theorem 3] relates it with the structure of
the subcategory CofI (R) of ModR.

Theorem 2.3 (Bahmanpour) Consider the following two conditions.

(i) Hi
I (M) is I -cofinite for all finitely generated R-modules M and all integers i .

(ii) CofI (R) is an abelian subcategory of ModR.

If the ring R is semi-local, then (i) implies (ii).

This theorem naturally leads us to ask whether or not (ii) implies (i), which is none other
than Question 1.1 mentioned in the previous section.

Finally, we recall a celebrated example constructed by Hartshorne [11], and several
properties it satisfies. Note that this example supports Question 1.1.

Example 2.4 (Hartshorne) Let k be a field, and let R = k[x, y][[u, v]] be a formal power series
ring over a polynomial ring. Consider the ideal I = (u, v) of R and the finitely generated
R-module M = R/(xu + yv). It is shown in [11, §3] that the following statements hold.

(a) It holds that Hi
I (R) = 0 for all i �= 2.

(b) One has HomR
(
R/I ,H2

I (R)
) ∼= R/I and ExtiR

(
R/I ,H2

I (R)
) = 0 for all i > 0.

(c) The R-module HomR(R/I ,H2
I (M)) is not finitely generated.

(d) There is an exact sequence H2
I (R)

xu+yv−−−−→ H2
I (R) → H2

I (M) → 0.

Since the support of Hi
I (R) is contained in V(I ), it follows from (a) and (b) that Hi

I (R)

is I -cofinite for all i . The module H2
I (M) is not I -cofinite by (c). Hence the subcategory

CofI (R) of ModR is not abelian by (d).

3 The subcategories CofI(R) and Cof0I (R) of ModR

In this section, we give the definitions of the subcategories CofI (R) and Cof0I (R) of ModR
which are related to cofiniteness, and investigate the structures of those subcategories.We start
by recalling the definitions of Serre, abelian and thick subcategories of an abelian category,
together with their fundamental properties.

Definition 3.1 Let A be an abelian category. Let X be a subcategory of A.

(1) We say thatX is a Serre subcategory ofA if it is closed under subobjects, quotient objects
and extensions.

(2) We say that X is an abelian subcategory ofA if X inherits the abelian structure fromA,
namely, if X is an abelian category with respect to the abelian structure of A.
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(3) We say thatX is a thick subcategory ofA if it is closed under direct summands, extensions,
kernels of epimorphisms and cokernels of monomorphisms.

Remark 3.2 Let A be an abelian category, and let X be a subcategory of A.

(1) The subcategory X is Serre if and only if for a short exact sequence 0 → L → M →
N → 0 in A, one has M ∈ X if and only if L, N ∈ X .

(2) The subcategory X is abelian if and only if it is closed under kernels and cokernels.
(3) Assume that X is closed under direct summands. Then X is a thick subcategory if and

only if X satisfies the two-out-of-three property, that is, X is such that for a short exact
sequence 0 → L → M → N → 0 inA, if two of L, M, N are in X , then so is the third.

(4) Suppose that X is an abelian subcategory closed under extensions (this is equivalent
to supposing that X is a wide subcategory; see Remark 3.6 stated below). Then X is
a thick subcategory. Indeed, let M, N ∈ A. Splicing the split short exact sequences
0 → N → M ⊕ N → M → 0 and 0 → M → M ⊕ N → N → 0, we get an exact
sequence 0 → N → M ⊕ N → M ⊕ N → N → 0. It is easy to observe from this exact
sequence that if X is closed under kernels or cokernels, then it is closed under direct
summands.

(5) Suppose thatX is a Serre subcategory. Then it is obvious thatX is an abelian subcategory.
It follows from (4) that X is a thick subcategory as well.

We introduce two subcategories of ModR and give some basic properties.

Definition 3.3 (1) We denote by Cof0I (R) the subcategory of ModR consisting of modules
M such that ExtiR(R/I , M) is finitely generated for all integers i .

(2) For a subset � of Spec R we denote by Supp−1 � the subcategory of ModR consisting
of modules M such that SuppM is contained in �.

Remark 3.4 (1) Let � be a subset of Spec R. Then Supp−1 � is a Serre subcategory of
ModR. This is an immediate consequence of the fact that for a short exact sequence
0 → L → M → N → 0 of R-modules one has SuppM = Supp L ∪ Supp N .

(2) Clearly, Cof0I (R) containsmodR. It is easy to verify that one has CofI (R) = Cof0I (R) ∩
Supp−1 V(I ).

Here we state a property CofI (R) and Cof0I (R) share, which is used several times later.

Proposition 3.5 Both CofI (R) and Cof0I (R) are thick subcategories of ModR.

Proof Let X be an R-module in Cof0I (R) and Y is a direct summand of X . Then for each
integer i the R-module ExtiR(R/I , X) is finitely generated, and hence so is its direct summand
ExtiR(R/I , Y ). It follows that Cof0I (R) is closed under direct summands.

Let 0 → L → M → N → 0 be a short exact sequence of R-modules. Then there exists
an exact sequence

Exti−1
R (R/I , N ) → ExtiR(R/I , L) → ExtiR(R/I , M) → ExtiR(R/I , N ) → Exti+1

R (R/I , L)

for all integers i . Suppose that L, M belong to Cof0I (R). Then ExtiR(R/I , M) and
Exti+1

R (R/I , L) are finitely generated for all i , and the above exact sequence shows that
ExtiR(R/I , N ) is also finitely generated for all i . Hence N belongs to Cof0I (R). This shows
that Cof0I (R) is closed under cokernels of monomorphisms. In a similar way, one can check
that Cof0I (R) is closed under kernels of epimorphisms and extensions.

We now conclude that Cof0I (R) is a thick subcategory of ModR. Combining this with
Remarks 3.2(5) and 3.4, we observe that CofI (R) is a thick subcategory ofModR as well. �
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Remark 3.6 A wide subcategory of an abelian category is by definition a subcategory closed
under kernels, cokernels and extensions. So far, a lot of works have been done on wide
subcategories; see [7, 9, 12–15, 17] for instance. It follows from Proposition 3.5 that CofI (R)

is abelian if and only if it is wide.

The proposition below is shown by using a theorem given in [3]. It says that Question 1.1
has an affirmative answer if the assumption of abelianity in the question is replaced with
the stronger assumption of Serreness and the assumption that Hi

I (R) is I -cofinite for all i is
added.

Proposition 3.7 Suppose that CofI (R) is a Serre subcategory ofModR and that Hi
I (R) is I -

cofinite for all integers i . ThenHi
I (M) is I -cofinite for all integers i and all finitely generated

R-modules M.

Proof Let M be a finitely generated R-module. We have SuppM ⊆ Spec R = Supp R, and
by assumption, Hi

I (R) belongs to CofI (R) for all integers i � 0. Applying [3, Theorem 2.3]
to the Serre subcategory CofI (R), we see that Hi

I (M) belongs to CofI (R) for all integers
i � 0. Thus the proposition follows. �

Nowwe state and prove the following proposition, which says that Question 1.1 is affirma-
tive if CofI (R) is replaced with Cof0I (R). Note that if Cof0I (R) is abelian, then so is CofI (R)

by Remark 3.4(2).

Proposition 3.8 Suppose that Cof0I (R) is an abelian subcategory of ModR. Then the R-
module Hi

I (M) is I -cofinite for all finitely generated R-modules M and all integers i .

Proof We begin with establishing a claim.

Claim Let n be a non-negative integer. Let x1, . . . , xn be elements of I . Then the module
Hi

(x1,...,xn)
(M) belongs to Cof0I (R) for all integers i .

Proof of Claim We use induction on n. Let n = 0. Then (x1, . . . , xn) = (0). We have
H0

(0)(M) = M and Hi
(0)(M) = 0 for all i �= 0. Hence Hi

(0)(M) ∈ modR ⊆ Cof0I (R)

for all i ∈ Z (see Remark 3.4(2)). Let n = 1. Then (x1, . . . , xn) = (x), where x := x1. Then
Hi

(x)(M) = 0 for all i �= 0, 1, and H0
(x)(M) = �(x)(M) ∈ modR ⊆ Cof0I (R). The Čech

complex of x induces a short exact sequence

0 → M/�(x)(M) → Mx → H1
(x)(M) → 0

of R-modules. We have M/�(x)(M) ∈ modR ⊆ Cof0I (R). For each i the module
ExtiR(R/I , Mx ) is isomorphic to ExtiRx

(Rx/I Rx , Mx ), and the latter module is zero as

I Rx = Rx . Hence Mx is in Cof0I (R). Proposition 3.5 implies that Cof0I (R) is closed under
cokernels of monomorphisms, so that H1

(x)(M) belongs to Cof0I (R).

Let n � 2 and fix an integer i . Note that H j
a∩b = H j

ab for all ideals a, b of R and all
integers j ; see [6, Page 47]. Using this fact and the Mayer–Vietoris sequence [6, 3.2.3], we
get an exact sequence

Hi−1
(x1,...,xn−1)

(M) ⊕ Hi−1
(xn)

(M)
fi−1−−→ Hi−1

(x1,...,xn−1)xn
(M) → Hi

(x1,...,xn)
(M)

→Hi
(x1,...,xn−1)

(M) ⊕ Hi
(xn)

(M)
fi−→ Hi

(x1,...,xn−1)xn
(M)
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for every integer i . The induction hypothesis implies that the R-modules

Hi−1
(x1,...,xn−1)

(M), Hi−1
(xn)

(M), Hi−1
(x1,...,xn−1)xn

(M), Hi
(x1,...,xn−1)

(M), Hi
(xn)

(M),

Hi
(x1,...,xn−1)xn

(M)

belong to Cof0I (R). From the assumption that Cof0I (R) is an abelian subcategory of ModR,
it follows that Coker fi−1 and Ker fi are in Cof0I (R). There is a short exact sequence

0 → Coker fi−1 → Hi
(x1,...,xn)

(M) → Ker fi → 0

of R-modules. By Proposition 3.5, the subcategory Cof0I (R) ofModR is closed under exten-
sions. It is seen from the above short exact sequence that the module Hi

(x1,...,xn)
(M) belongs

to Cof0I (R). �
Let x1, . . . , xn be a system of generators of the ideal I . We deduce from the above claim

that Hi
I (M) belongs to Cof0I (R) for all integers i . Since the support of the R-module Hi

I (M)

is contained in V(I ), we obtain Hi
I (M) ∈ Cof0I (R) ∩ Supp−1 V(I ) = CofI (R) for all i by

Remark 3.4(2). �
Remark 3.9 Let R and I be as in Example 2.4.

(1) As a consequence of Proposition 3.7, one sees that the subcategory CofI (R) ofModR is
not Serre. (As is stated in Example 2.4, the subcategory CofI (R) of ModR is not even
abelian.)

(2) It follows from Proposition 3.8 that the subcategory Cof0I (R) of ModR is not abelian.

We close the section by presenting a natural question arising from Proposition 3.8.

Question 3.10 Does the converse of Proposition 3.8 hold? To be precise, suppose thatHi
I (M)

is I -cofinite for all finitely generated R-modules M and all integers i . Is then Cof0I (R) an
abelian subcategory of ModR ?

4 The subcategory CI(R) of modR

In this section, applying the results obtained in the previous section, we study the structure
of the subcategory CI (R) of the category modR of finitely generated R-modules, whose
definition and a couple of whose basic properties are stated below.

Definition 4.1 Wedenote byCI (R) the subcategory ofmodR consisting of finitely generated
R-modules M such that the R-module Hi

I (M) is I -cofinite for all integers i .

Remark 4.2 (1) The subcategory CI (R) of modR is closed under finite direct sums and
direct summands. Indeed, Proposition 3.5 says that the subcategory CofI (R) ofModR is
closed under finite direct sums and direct summands, from which one can easily deduce
the assertion.

(2) Question 1.1 is equivalent to asking whether the abelianity of the subcategory CofI (R)

of ModR implies the equality CI (R) = modR.

We give a connection of the subcategory CI (R) of modR with the subcategory CofI (R)

of ModR.
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Proposition 4.3 Suppose that CofI (R) is an abelian subcategory of ModR. Then CI (R) is a
thick subcategory of modR.

Proof Let 0 → L
f−→ M

g−→ N → 0 be a short exact sequence of finitely generated
R-modules. Then for each integer i there exists an exact sequence

Hi−1
I (M)

Hi−1
I (g)−−−−→ Hi−1

I (N )
δi−1−−→ Hi

I (L)
Hi
I ( f )−−−→ Hi

I (M)
Hi

I (g)−−−→ Hi
I (N )

δi−→ Hi+1
I (L)

Hi+1
I ( f )−−−−→ Hi+1

I (M).

Assume that M, N are in CI (R). Then for each i the four R-modules Hi−1
I (M), Hi−1

I (N ),
Hi

I (M) and Hi
I (N ) belong to CofI (R). Since CofI (R) is abelian, it is closed under kernels

and cokernels. Hence Coker Hi−1
I (g) and Ker Hi

I (g) are in CofI (R). By Proposition 3.5, the
subcategory CofI (R) of ModR is thick, so in particular it is closed under extensions. The
exact sequence

0 → Coker Hi−1
I (g) → Hi

I (L) → Ker Hi
I (g) → 0

is induced, which implies that Hi
I (L) is in CofI (R). It follows that L belongs to CI (R). Thus,

CI (R) is closed under kernels of epimorphisms. An analogous argument shows that CI (R)

is closed under cokernels of monomorphisms and extensions.
Thus, CI (R) satisfies the two-out-of-three property. It follows from this together with

Remark 4.2(1) that CI (R) is a thick subcategory ofmodR. �
To prove the main result of this section, we need some preparations. We first recall the

definitions of certain loci in Spec R and a certain invariant for finitely generated R-modules.

Definition 4.4 Let M be a finitely generated R-module.

(1) The set of prime ideals p of R such that the Rp-moduleMp is nonfree is called the nonfree
locus of M and denoted by NF(M). The set of prime ideals p of R such that the Rp-
module Mp has infinite projective dimension is called the infinite projective dimension
locus of M and denoted by IPD(M).

(2) We denote by RfdR M the (large) restricted flat dimension of M , which is defined by

RfdR M = sup
p∈Spec R

{depth Rp − depthMp}.

It holds that RfdR M ∈ Z�0 ∪ {−∞}, and RfdR M = −∞ if and only if M = 0; see [2,
Theorem 1.1] and [8, Proposition (2.2) and Theorem (2.4)].

Next we recall the definition of a syzygy. Let M be a finitely generated R-module. Let

· · · ∂i+1−−→ Pi
∂i−→ Pi−1

∂i−1−−→ · · · ∂2−→ P1
∂1−→ P0

∂0−→ M → 0

be an exact sequence of finitely generated R-modules such that each Pi is projective. Then
the image of ∂i is called the i th syzygy of M , and denoted by �i M . Note that it is uniquely
determined by M and i up to projective summands, that is, if X and Y are the i th syzygies
of M , then X ⊕ P ∼= Y ⊕ Q for some finitely generated projective R-modules P and Q.

For a subset � of Spec R, we denote by NF−1(�) and IPD−1(�) the subcategories of
modR consisting of finitely generated R-modules M such that NF(M) and IPD(M) are
contained in �, respectively. The following lemma is necessary in the proof of our main
result in this section.
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Lemma 4.5 (1) Let� be a subset ofSpec R. Let M be a nonzero finitely generated R-module.
Put r = RfdR M. If M belongs to IPD−1(�), then �r M belongs to NF−1(�).

(2) There is an inclusion Supp−1(V(I )) ∩ modR ⊆ CI (R).

Proof (1) The assertion follows from the equality IPD(M) = NF(�r M) shown in [19,
Remark 10.2(4)].

(2) Let M be a finitely generated R-module such that SuppM ⊆ V(I ). Then H0
I (M) = M

and Hi
I (M) = 0 for all i > 0; see [16, Proposition 3.2(1a)]. Hence for all integers i ,

the R-module Hi
I (M) is finitely generated, which implies that Hi

I (M) is I -cofinite (see
Remark 3.4(2)). Therefore, M belongs to CI (R). �

We also need the notion of resolving subcategories of finitely generated modules.

Definition 4.6 (1) A resolving subcategory of modR is defined to be a subcategory X of
modR which satisfies the following three conditions.

(i) X contains the finitely generated projective R-modules.
(ii) X is closed under direct summands and extensions.
(iv) X is closed under kernels of epimorphisms.

(2) For a subcategory C of modR we denote by resC the resolving closure of C, that is to
say, the smallest resolving subcategory ofmodR containing C.

Remark 4.7 In Definition 4.6(1), condition (i) can be replaced with the condition that X
contains R. In fact, a finitely generated projective R-module is a direct summand of a finite
direct sum of copies of R, and if X is closed under extensions, then it is closed under finite
direct sums.

We denote by Sing R the singular locus of R, that is, the set of prime ideals p of R such
that the local ring Rp is not regular. Now we are ready to prove the following theorem, which
is the main result of this section.

Theorem 4.8 Suppose that R belongs to CI (R) and that CofI (R) is an abelian subcategory
of ModR.

(1) One has that IPD−1(V(I )) is contained in CI (R).
(2) Suppose that Sing R is contained in V(I ). Then CI (R) coincides with modR, that is to

say, Hi
I (M) is I -cofinite for every integer i and every finitely generated R-module M.

Proof (1) Let M be finitely generated R-module with M ∈ IPD−1(V(I )). Put r = RfdR M .
It holds that

�r M ∈ NF−1(V(I )) = res(Supp−1(V(I )) ∩ modR) ⊆ CI (R). (1)

In fact, the containment and the equality in (1) are consequences of Lemma 4.5(1) and [18,
Theorem 4.1(1)], respectively. Since CofI (R) is an abelian subcategory ofModR, it follows
from Proposition 4.3 that CI (R) is a thick subcategory ofmodR. As R belongs to CI (R) by
assumption, we see from Remark 4.7 that CI (R) is a resolving subcategory of modR. The
inclusion in (1) is now shown by Lemma 4.5(2).

By (1), the syzygy �r M is in CI (R). Since CI (R) contains any finitely generated projec-
tive R-module and is closed under cokernels of monomorphisms, it is seen by descending
induction on r that M is in CI (R).
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(2) Let M be a finitely generated R-module. If p is a prime ideal of R such that Rp is
a regular local ring, then the Rp-module Mp has finite projective dimension. This shows
that IPD(M) is contained in Sing R, and the latter set is contained in V(I ) by assumption.
Therefore, the module M belongs to IPD−1(V(I )). By virtue of (1), we conclude that M is
in CI (R). Now we obtain the equality CI (R) = modR. �

Remark 4.9 Hartshorne’s Example 2.4 satisfies both of the assumptions in Theorem 4.8 that
R ∈ CI (R) andSing R ⊆ V(I ). In fact, the former statement has beenverified inExample 2.4.
As for the latter, since the ring R is regular, Sing R is an empty set, so that it is contained in
V(I ).

Now we can complete the proofs of our main theorems stated in Sect. 1.

Proof of Theorem 1.2 The assertion follows from Propositions 3.7, 3.8 and Theorem 4.8(2).
�

Proof of Theorem 1.3 The assertion is a direct consequence of Theorem 4.8(1). �

Recall that a local ring (R,m) is called an isolated singularity if the localization Rp is a
regular local ring for all prime ideals p of R with p �= m. Here is an application of the above
theorem.

Corollary 4.10 Let R be an isolated singularity such that Hi
I (R) is I -cofinite for all i ∈ Z.

If CofI (R) is an abelian subcategory of ModR, then Hi
I (M) is I -cofinite for all finitely

generated R-modules M and all i ∈ Z.

Proof If I is a unit ideal of R, then Hi
I (M) = 0 for all R-modules M and all integers i , and

the conclusion obviously holds. Hence we may assume that I is contained in the maximal
ideal m of R, and then it holds that Sing R ⊆ {m} ⊆ V(I ). Now the assertion follows from
Theorem 4.8(2). �

In view of Theorems 1.2(2)(3) and 1.3, we may wonder how strong the assumption that
R ∈ CI (R) is. Needless to say, this is at least a necessary condition for the equality CI (R) =
modR to hold, but it would be reasonable to state it explicitly as a question.

Question 4.11 Let I be an ideal of R. When is Hi
I (R) an I -cofinite module for all integers

i?

Remark 4.12 (1) It is proved in [4, Theorem 2] that Hi
I (M) is I -cofinite for all integers i

and all finitely generated R-modules M if and only if Hi
I (R) is I -cofinite and has Krull

dimension at most 1 for all i � 2.
(2) It does not necessarily hold that Hi

I (R) is I -cofinite for all i , even if R is a regular local
ring. Indeed, for example, consider the formal power series ring R = k[[x, y, z]] over
a field k, and the ideal I = (xy, xz) of R. Then it follows from [5, Theorem 3.8] that
HomR(R/I ,H2

I (R)) is not a finitely generated R-module. In particular, the R-module
H2

I (R) is not I -cofinite.
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