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Abstract
Self-adjoint operators in smooth Banach spaces have been already defined in recent works.
Here, we extend the concept of adjoint of an operator to the scope of (non-necessarily Hilbert)
Banach spaces, obtaining in particular the notion of self-adjoint operator in the non-smooth
case. As a consequence, we define the probability density operator on Banach spaces and
verify most of its well-known properties.

Keywords Smooth Banach space · Duality mapping · Self-adjoint operator · Probability
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Introduction

The duality mapping of a normed space X is the set-valued map defined as

J : X → P(X∗)
x �→ J (x) := {x∗ ∈ X∗ : ‖x∗‖ = ‖x‖ and x∗(x) = ‖x∗‖‖x‖} .

A selection (or selector) of the duality mapping is simply a map J0 : X → X∗ such that
J0(x) ∈ J (x) for all x ∈ X . The Axiom of Choice, together with the Hahn-Banach Theorem,
guarantees the existence of plenty of selections.A selection J0 of the dualitymapping is called
a supporting map provided that it is positive-homogeneous, that is, J0(λx) = λJ0(x) for all
x ∈ X and all λ ≥ 0, and J0 is called a strong supportingmap if it is conjugate-homogeneous,
that is, J0(λx) = λJ0(x) for all x ∈ X and all λ ∈ C. We refer the reader to [6, 7, 12, 18,
27] for a wider perspective on duality mappings and supporting maps.

A point x in the unit sphere SX of X is said to be a smooth point of the unit ball BX of X
provided that J (x) is a singleton. The subset of smooth points of BX is typically denoted by
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smo(BX ). Notice that if J0, J1 are selections of the duality mapping, then J0(x) = J1(x) for
all x ∈ smo(BX ). See [11, 23] for a better explanation of smoothness and related geometrical
notions.

A vector x of a normed space X is said to be a supporting vector of a continuous linear
operator T : X → Y , where Y is another normed space, if ‖T (x)‖ = ‖T ‖‖x‖. According
to [10], the set of supporting vectors of T is denoted by suppv(T ), that is,

suppv(T ) := {x ∈ X : ‖T (x)‖ = ‖T ‖‖x‖}.
By relying on the duality mapping, in [14] the notion of self-adjoint operator was trans-

ported to the scope of smooth Banach spaces. Here, we will consider general Banach spaces
and we will define the adjoint of a general operator between Banach spaces, generalizing this
way the results in [14].

The probability density operator is an important observable magnitude in a quantum
mechanical system [19, Section 6]. Recall that a quantum mechanical system is represented
by an infinite-dimensional separable complex Hilbert space [25]. The states of the system
are the rays passing through a unit vector. The observable magnitudes are the bounded
or unbounded self-adjoint operators. The unsharp observations are given by the bounded
positive self-adjoint operators lying below the identity (this is the first example of effect
algebra [13]). Here, we will reproduce this situation by modeling a quantum mechanical
system with a general infinite-dimensional Banach space.

This manuscript is divided in three sections. The first section deals with selectors of the
duality mapping and we will use them to characterize classical geometrical properties of
Banach spaces. The second section is aimed at introducing the notion of adjoint of a general
operator between Banach spaces. Finally, in the third section, we will deal with modeling
quantummechanical systems in general Banach spaces and show that the probability density
operator satisfies similar properties as for classical systems on Hilbert spaces, improving this
way [17, Subsection 6.1] and [15, Example 5 & Theorem 10].

1 Selectors of the duality mapping

This section is aimed at characterizing several geometrical properties of the unit ball of a
normed space by means of the selectors in the duality mapping. However, before introducing
the precise setting, it is useful to review several basic properties of the duality mapping.

Remark 1.1 Let X be a normed space. The following holds for every x, y ∈ X and every
λ ∈ C:

(i) If J (x) ∩ J (y) 	= ∅, then ‖x‖ = ‖y‖.
(ii) J (λx) = λJ (x).
(iii) If x ∈ smo(BX ) and J0 is any selection of J , then J0(λx) = λJ0(x).
(iv) If x ∈ smo(BX ) and J0, J1 are selections of the duality mapping, then J0(x) = J1(x).

The first result of this section is a characterization of smoothness in terms of selectors of
the duality mapping. This result improves [18, Proposition 2.3].

Theorem 1.2 Let X be a normed space. The following conditions are equivalent:

(i) X is smooth.
(ii) Every selection of the duality mapping is a strong supporting map.
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The adjoint of an operator on a Banach space 825

(iii) Every selection of the duality mapping is a supporting map.

Proof Suppose first that X is smooth. Then J (x) is a singleton for all x ∈ X , hence all
selections coincide with the duality map. By Remark 1.1, the duality mapping is conjugate-
homogeneous. Conversely, suppose that every selection of the dualitymapping is a supporting
map. Assume to contrary that X is not smooth. Let x ∈ SX \ smo(BX ). Fix any arbitrary
selection J1 of the duality mapping. There exists g ∈ J (x) \ {J1(x)}. The following is a
well-defined selection of the duality mapping which is not positive-homogeneous:

J0 : X → X∗

z �→ J0(z) :=
{
J1(z) if z 	= 2x,
2g if z = 2x .

(1.1)


�
Our next result is a characterization of strict convexity in terms of selections of the duality

mapping. For this, a technical lemma is needed.

Lemma 1.3 Let X be a complex normed space. Let f ∈ X∗. If there exists x ∈ SX such that
|� f (x)| = ‖ f ‖, then f (x) = � f (x).

Proof Simply observe that

‖ f ‖2 ≥ | f (x)|2 = |� f (x)|2 + |
 f (x)|2 ≥ ‖ f ‖2,
meaning that 
 f (x) = 0, hence f (x) = � f (x). 
�
Theorem 1.4 Let X be a normed space. The following conditions are equivalent:

(i) X is strictly convex.
(ii) Every selection of the duality mapping is one-to-one.

Proof Suppose first that X is strictly convex. Fix any arbitrary selection J0 of the duality
mapping. Suppose that x, y ∈ X are so that J0(x) = J0(y). We will show that x = y.
In the first place, note that ‖x‖ = ‖J0(x)‖ = ‖J0(y)‖ = ‖y‖. Thus, if either x = 0
or y = 0, then both are also 0. So, we may assume that neither x nor y are 0. Denote
t := ‖x‖ = ‖J0(x)‖ = ‖J0(y)‖ = ‖y‖ and f := J0(x)

t = J0(y)
t . Then x

t ,
y
t ∈ f −1({1})∩BX .

Since X is strictly convex, f −1({1}) ∩ BX is a singleton, meaning that x
t = y

t , hence x = y.
As a consequence, J0 is one-to-one. Conversely, suppose that every selection of the duality
mapping is one-to-one. Assume to the contrary that X is not strictly convex. Then we can
find x 	= y both in SX satisfying that [x, y] ⊆ SX . In view of the Hahn-Banach Separation
Theorem, there exists f ∈ SX∗ such that � f ([x, y]) = {1}. According to Lemma 1.3,
f ([x, y]) = {1}. Fix any arbitrary selection J1 of the duality mapping. The following is a
well-defined selection of the duality mapping which is not one-to-one:

J0 : X → X∗

z �→ J0(z) :=
{
J1(z) if z /∈ [x, y],

f if z ∈ [x, y].
(1.2)


�
Notice that, under the settings of Theorem 1.4, the selection J0 constructed in (1.2) is not

necessarily a (strong) supporting map. There is a way of redefining J0 to become a (strong)
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supporting map provided that so is J1. Indeed, if J1 is a supporting map, then

J0 : X → X∗

z �→ J0(z) :=
{
J1(z) if z /∈ R

+[x, y],
‖z‖ f if z ∈ R

+[x, y],
(1.3)

is a supporting map, where R
+[x, y] := {tu : t ≥ 0, u ∈ [x, y]}. If J1 is a strong supporting

map, then
J0 : X → X∗

z �→ J0(z) :=
{
J1(z) if z /∈ C[x, y],

λ f if z = λu for λ ∈ C, u ∈ [x, y],
(1.4)

is a strong supporting map, where C[x, y] := {λu : λ ∈ C, u ∈ [x, y]}.
Theorem 1.5 Let X be a real normed space with dim(X) > 1. If BX has a proper face C
with nonempty interior relative to SX , then no selection of the duality mapping is one-to-one.

Proof Let J0 : X → X∗ be a selection of the duality mapping. According to [9, Lemma
5(2)], there exists a unique x∗ ∈ SX∗ such that x∗(C) = {1}. On the other hand, by bearing in
mind [9, Lemma 5(4)], we have that intSX (C) ⊆ smo(BX ). As a consequence, J (c) = {x∗}
for all c ∈ intSX (C). Since dim(X) > 1, we have that intSX (C) is not a singleton. Finally,
J0(c) = x∗ for all c ∈ intSX (C), meaning that J0 is not injective. 
�

In virtue of [16, Theorem 2.1], no complex Banach space has a convex subset in its unit
sphere with non-empty interior relative to the unit sphere. This is why Theorem 1.5 only
works for real spaces. On the other hand, in [1, Theorem 3.12] it is shown that every real
normed space can be equivalently renormed in such a way that its unit sphere contains a facet,
that is, a face with non-empty interior relative to the unit sphere. As a direct consequence of
this fact together with Theorem 1.5, we obtain the following corollary.

Corollary 1.6 Let X be a real normed space with dim(X) > 1. Then X can be equivalently
renormed so that no selection of the duality mapping is one-to-one

To finalize this section, we will discuss how much surjectivity of the selectors of the
duality mapping affects the reflexivity condition of a normed space. In the first place, it is
worth mentioning the existence of non-complete normed spaces on which every functional
attains its norm [21]. In view of the famous James’ Characterization of Reflexivity [20], it is
easy to understand that a smooth Banach space is reflexive if and only if the duality mapping
is surjective. We will show in the last theorem of this section that the previous equivalence
fails if we drop the smoothness hypothesis. Nevertheless, we first need to recall the notion of
rotund point [5]: a point x ∈ SX in the unit sphere of a normed space X is said to be a rotund
point of the unit ball of X if x is contained in no non-trivial segment of the unit sphere, in
other words, {x} is a maximal proper face of BX . The set of rotund points of BX is denoted
by rot(BX ).

Theorem 1.7 Let X be a normed space. If there exists x ∈ rot(BX )\smo(BX ), then no selector
of the duality mapping is surjective.

Proof Let J0 : X → X∗ be any selector of the duality mapping. Since x is not a smooth point
of BX , there exists f ∈ J (x)\ {J0(x)}. We will show that f /∈ J0(X). Indeed, suppose on the
contrary that f = J0(x ′) for some x ′ ∈ X . Observe that

∥∥x ′∥∥ = ∥∥J0(x ′)
∥∥ = ‖ f ‖ = ‖x‖ = 1.

Then f (x) = 1 = f (x ′), meaning that
[
x, x ′] ⊆ SX . Since x ∈ rot(BX ), we reach the

contradiction that x = x ′ because f 	= J0(x). 
�
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2 The adjoint of an operator

A semi-scalar product on a complex vector space is a function (•|•) : X × X → C such that:

(i) (•|•) is linear on the first component.
(ii) It is strictly positive, that is, (x |x) > 0 for all x ∈ X \ {0}.
(iii) It verifies the Cauchy–Swartz inequality: |(x |y)| ≤ √

(x |x)√(y|y) for all x, y ∈ X .

(•|•) is called positive-homogeneous (Hermitian) or conjugate-homogeneous if so it is in the
second component, respectively. Every semi-scalar product defines a norm ‖x‖ := √

(x |x)
[22, Theorem 2]. A semi-scalar product in a normed space is said to be (topologically)
consistent with the norm if the norm induced by the semi-scalar product (is equivalent to)
coincides with the original norm. The following theorem, whose proof is omitted, describes
a correspondence between semi-scalar products and selectors of the duality mapping [8].

Theorem 2.1 Let X be a normed space with duality mapping J : X → P(X∗). Then:

(i) Every selection J0 : X → X∗ of the duality mapping defines a semi-scalar product on
X consistent with the norm:

(•|•) : X × X → C

(x, y) �→ (x |y) := J0(y)(x).
(2.1)

(ii) Every semi-scalar product (•|•) consistent with the norm induces a selection of the
duality mapping:

J0 : X → X∗

x �→ J0(x) : X → C

y �→ J0(x)(y) := (y|x)
(2.2)

In this identification, the Hermitian semi-scalar products correspond with the supporting
maps and the conjugate-homogeneous semi-scalar products correspond with the strong
supporting maps.

Wewill be obviously interested in semi-scalar products consistentwith the norm.However,
next definition will be extensive to general semi-scalar products generalizing this way [14,
Definition 4.1].

Definition 2.2 Let X be a normed space endowed with a semi-scalar product (•|•). Let
T ∈ B(X). Then T is said to be:

• Self-adjoint if (T (x)|y) = (x |T (y)) for all x, y ∈ X ,
• Hermitian if (T (x)|x) ∈ R for all x ∈ X ,
• positive if (T (x)|x) ≥ 0 for all x ∈ X ,
• strongly normal if T = S2 for some self-adjoint S ∈ B(X),
• unitary if (T (x)|T (y)) = (x |y) for all x, y ∈ X .

If R ∈ B(X), then we will say that R ≤ T provided that T − R is positive. If S :=
(ek)k∈N ⊆ SX is a sequence of orthogonal vectors, then the S-trace of T is defined as
trS(T ) := ∑∞

k=1(T (ek)|ek) if this series converges.
The notion of adjoint operator in the context of non-Hilbert Banach spaces is, as far as

we know, undeveloped yet. Here, we propose the following definition, which consistently
generalizes [14, Definition 4.1].
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828 F. J. García-Pacheco

Definition 2.3 (Adjoint) Let X , Y be normed spaces. Fix selectors JX : X → X∗ and
JY : Y → Y ∗ of the duality mappings on X and Y , respectively. The set of adjoints of an
operator T ∈ B(X , Y ) is defined as the set

T ′ := {
S ∈ B(Y , X) : JX ◦ S = T ∗ ◦ JY .

}

Notice that, under the settings of the previous definition, an operator S ∈ B(Y , X) is an
element of T ′ if and only if JY (y)(T (x)) = JX (S(y))(x) for every x ∈ X and every y ∈ Y .
By bearing in mind the previous definition, an operator T is self-adjoint in the sense of [14,
Definition 4.1] if and only if T ∈ T ′. Note that T ′ might be empty unless, for instance,
X , Y are Hilbert spaces. According to [14, Theorems 2.3 and 4.3], there are examples of
non-Hilbert Banach spaces admitting non-trivial operators for which the set of adjoints is not
empty. The following results unveil the most characteristic properties satisfied by the adjoint
a of an operator.

Proposition 2.4 Let X , Y be normed spaces. Fix selectors JX : X → X∗ and JY : Y → Y ∗
of the duality mappings on X and Y , respectively. Let T ∈ B(X , Y ). Then:

(i) ‖S‖ = ‖T ‖ for every S ∈ T ′.
(ii) If JX is a strong supporting map, then (λT )′ = λT ′ for all λ ∈ C.
(iii) If JX is a supporting map, then (λT )′ = λT ′ for all λ ≥ 0.

Proof (i) Fix an arbitrary S ∈ T ′. For every y ∈ BY ,

‖S(y)‖ = ‖JX (S(y))‖ = ‖JY (y) ◦ T ‖ ≤ ‖JY (y)‖ ‖T ‖ ≤ ‖T ‖,
meaning that ‖S‖ ≤ ‖T ‖. If T = 0, then we obtain that S = 0, so we may assume that
T 	= 0. For every x ∈ BX ,

‖T (x)‖2 = ‖JY (T (x))(T (x))‖
= ‖JX (S(T (x)))(x)‖
≤ ‖JX (S(T (x)))‖
= ‖S(T (x))‖
≤ ‖S‖‖T ‖,

meaning that ‖T ‖2 ≤ ‖S‖‖T ‖, in other words, ‖T ‖ ≤ ‖S‖.
(ii) If λ = 0, then (0 · T )′ = 0′ = {0} = 0 · T ′, so let us assume that λ 	= 0. Take any

S ∈ (λT )′. We will show that λ
|λ|2 S ∈ T ′. Indeed, for every x ∈ X and every y ∈ Y ,

we have that

JX

(
λ

|λ|2 S(y)

)
(x) = λ

|λ|2 JX (S(y))(x)

= λ

|λ|2 JY (y)(λT (x))

= λ

|λ|2 λJY (y)(T (x))

= JY (y)(T (x)).
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The adjoint of an operator on a Banach space 829

Therefore, λ
|λ|2 S ∈ T ′, hence S = λ λ

|λ|2 S ∈ λT ′. As a consequence, (λT )′ ⊆ λT ′. A
similar argument shows the reverse inclusion.

(iii) Follows a similar proof as the item above.

�

The definition of unitary operators can also be extended to operators between different
normed spaces.

Definition 2.5 (Unitary operator) Let X , Y be normed spaces. An operator T ∈ B(X , Y ) is
said to be unitary provided that (T (x1)|T (x2))Y = (x1|x2)X for all x1, x2 ∈ X , where (•|•)X
and (•|•)Y are fixed semi-scalar products on X and Y , respectively.

The following proposition is the last result of this section and serves to characterized
unitary operators.

Proposition 2.6 Let X , Y be normed spaces. Fix selectors JX : X → X∗ and JY : Y → Y ∗
of the dualitymappings on X and Y , respectively, and consider the corresponding semi-scalar
products (•|•)X and (•|•)Y . Let T ∈ B(X , Y ). Then:

(i) If T is unitary, then T is an isometry.
(ii) If T is unitary and surjective, then T−1 ∈ T ′.
(iii) If T is unitary and surjective and JX is one-to-one, then T ′ = {

T−1
}
.

(iv) If T is an isomorphism such that T−1 ∈ T ′, then T is unitary.

Proof (i) Simply observe that

‖T (x)‖2 = JY (T (x))(T (x)) = (T (x)|T (x))Y = (x |x)X = JX (x)(x) = ‖x‖2
for all x ∈ X .

(ii) Fix arbitrary elements x ∈ X and y ∈ Y . Since T is surjective, there exists x ′ ∈ X
such that T (x ′) = y. Then

JY (y)(T (x)) = JY
(
T (x ′)

)
(T (x)) = (

T (x)|T (x ′)
)
Y

= (
x |x ′)

X = JX (x ′)(x) = JX
(
T−1(y)

)
(x).

As a consequence, T−1 ∈ T ′.
(iii) By hypothesis, for every x1, x2 ∈ X ,

JY (T (x2))(T (x1)) = (T (x1)|T (x2))Y = (x1|x2)X = JX (x2)(x1).

Take any S ∈ T ′. Note that

JX (S(T (x2)))(x1) = JY (T (x2))(T (x1)) = JX (x2)(x1)

for every x1, x2 ∈ X . In other words, JX (S(T (x))) = JX (x) for all x ∈ X . By hypoth-
esis, JX is one-to-one, meaning that S(T (x)) = x for all x ∈ X . As a consequence,
S is a left-inverse for T . However, T is invertible because T is a surjective isometry,
hence S = T−1.

(iv) Fix arbitrary elements x1, x2 ∈ X . Then

(T (x1)|T (x2))Y = JY (T (x2)) (T (x1)) =
= JX

(
T−1(T (x2))

)
(x1) = JX (x2)(x1) = (x1|x2)X ,

meaning that T is unitary.

�
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3 Probability density operator

In quantummechanics, the probability density operator of a quantum system in a mixed state
represented by the infinite dimensional separable complex Hilbert space H is given by

D : H → H

x �→ D(x) :=
∞∑
n=1

tn(x |xn)xn, (3.1)

where (xn)n∈N is a sequence of states in H , that is, a sequence of unit vectors of H such that
SCxn ∩ SCxm = ∅ if n 	= m, and

∑∞
n=1 tn is a convex series, that is, tn ≥ 0 for all n ∈ N

and
∑∞

n=1 tn = 1. In quantum mechanics, if a quantum system is in a mixed state described
by a density operator D, then tn indicates the probability that the system is at the state xn .
This type of operators can also be defined in Banach spaces by means of either semiscalar
products or selections of the duality mapping.

Definition 3.1 (Probability density operator) Let X be a smooth Banach space. Let (•|•)

be the Hermitian semiscalar product on X induced by the duality mapping like (2.1). Let
(xn)n∈N ⊆ SX be a sequence. Let (ρn)n∈N ∈ �∞(C). The probability density operator is
defined as

D : Y → X

x �→ D(x) :=
∞∑
n=1

ρn(x |xn)xn, (3.2)

where Y := {
x ∈ X : ∑∞

n=1 ρn(x |xn)xn is convergent
}
is the domain of convergence.

Under the settings of the previous definition, notice that Y is clearly a (non-necessarily
closed) subspace of X . Also, note that if (ρn)n∈N ∈ �1(C), then Y = X . In fact, if (ρn)n∈N ∈
�1(C), then D(x) is absolutely convergent for all x ∈ X .

Proposition 3.2 Let X be a smooth Banach space. Let (•|•) be the Hermitian semi-scalar
product on X induced by the duality mapping like (2.1). Let (xn)n∈N ⊆ SX be a sequence.
Let (ρn)n∈N ∈ �∞(C). Consider the probability density operator D given in Equation (3.2).
Then:

(i) If (xn)n∈N is a binormalized unconditional Schauder basis for X, then the convergence
domain Y of D in (3.2) is the whole of X.

(ii) If (ρn)n∈N ∈ �1(C), then the domain of convergence of D is the whole of X, ‖D‖ ≤
‖(ρn)n∈N‖1, and D can be approximated by finite-rank operators in the norm topology
of B(X).

Proof Note that D can be rewritten as D(x) = ∑∞
n=1 ρn J (xn)(x)xn for all x ∈ X , where

J : X → X∗ is the duality mapping.

(i) In the first place, observe that since (xn)n∈N ⊆ SX is a binormalized Schauder basis, the
basic sequence of coordinate functionals is normalized. Since X is smooth, then this
basic sequence of coordinate functionals is precisely the sequence (J (xn))n∈N ⊆ SX∗ .
Therefore, for every x ∈ X ,

∑∞
n=1 J (xn)(x)xn is an unconditional convergent series

in X whose summation is precisely x , meaning that
∑∞

n=1 ρn J (xn)(x)xn is convergent
because (ρn)n∈N ∈ �∞(C) [3, 4, 24]. As a consequence, D(x) exists in X for all x ∈ X .

123



The adjoint of an operator on a Banach space 831

(ii) For every x ∈ X , D(x) is absolutely convergent and

‖D(x)‖ ≤
∞∑
n=1

|ρn |‖J (xn)(x)xn‖ ≤ ‖x‖
∞∑
n=1

|ρn | = ‖x‖ ‖(ρn)n∈N‖1 ,

meaning that ‖D‖ ≤ ‖(ρn)n∈N‖1. Finally, D can be approximated in the operator norm
of B(X) by the sequence (Dk)k∈N of finite-rank operators, where for every k ∈ N

Dk : X → span{x1, . . . , xk}
x �→ D(x) :=

k∑
n=1

ρn J (xn)(x)xn .

Indeed, for every x ∈ BX we have that

‖D(x) − Dk(x)‖ =
∥∥∥∥∥

∞∑
n=k+1

ρn J (xn)(x)xn

∥∥∥∥∥ ≤
∞∑

n=k+1

|ρn | → 0

as k → ∞ because
∑∞

n=k+1 |ρn | is the rest of a convergent series.

�

In order to achieve more properties of the probability density operator, it is sufficient to
rely on another geometrical notion: L2-summand vectors [2].

Remark 3.3 (L2-summand subspace) Let X be a Banach space. A closed subspace M of X
is said be an L2-summand subspace of X provided that there exists another closed subspace
N of X satisfying that M and N are L2-complemented in X , that is, X = M ⊕2 N , or
equivalently, ‖m + n‖2 = ‖m‖2 + ‖n‖2 for all m ∈ M and all n ∈ N .

An L2-summand vector of a Banach space is simply a vector whose linear span is an
L2-summand subspace.

Remark 3.4 Let X be a smooth Banach space. In accordance with [2, Theorem 3.2], if x ∈ X
is an L2-summand vector of X , then J (x + y) = J (x) + J (y) and J (x)(y) = J (y)(x) for

all y ∈ X . As a consequence, if x1, . . . , xk are L2-summand vectors, then J
(∑k

n=1 xn
)

=∑k
n=1 J (xn).

Lemma 3.5 Let X be a Banach space and
∑∞

n=1 xn a convergent series in X of L2-summand
vectors. Then:

(i) If X is smooth, then J
(∑∞

n=1 xn
) = w∗ ∑∞

n=1 J (xn).
(ii) If X is strongly smooth, then J

(∑∞
n=1 xn

) = ∑∞
n=1 J (xn).

(iii) If X is smooth and
∑∞

n=1 J (xn) is convergent, then J
(∑∞

n=1 xn
) = ∑∞

n=1 J (xn).
(iv) If X is smooth and

∑∞
n=1 xn is absolutely convergent, then J

(∑∞
n=1 xn

) =∑∞
n=1 J (xn).

Proof Observe that
(∑k

n=1 xn
)
k∈N converges to

∑∞
n=1 xn .

(i) The duality mapping is J : X → X∗ norm-w∗ continuous, therefore by Remark

3.4,
(∑k

n=1 J (xn)
)
n∈N is w∗-convergent to J

(∑∞
n=1 xn

)
, that is, J

(∑∞
n=1 xn

) =
w∗ ∑∞

n=1 J (xn).
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(ii) The duality mapping J : X → X∗ is norm-norm continuous, therefore(
J

(∑k
n=1 xn

))
k∈N converges to J

(∑∞
n=1 xn

)
. Finally, by applying Remark 3.4 we

conclude that J
(∑∞

n=1 xn
) = ∑∞

n=1 J (xn).
(iii) We know that J

(∑∞
n=1 xn

) = w∗ ∑∞
n=1 J (xn). Since

∑∞
n=1 J (xn) is convergent, we

conclude that J
(∑∞

n=1 xn
) = w∗ ∑∞

n=1 J (xn) = ∑∞
n=1 J (xn).

(iv) Since ‖J (xn)‖ = ‖xn‖ for every n ∈ N, we have that
∑∞

n=1 J (xn) is also absolutely
convergent. Thus, we just need to call on the previous item.


�
Lemma 3.5 allows the following characterization of separable Hilbert spa-ces.

Lemma 3.6 Let X be a separable Banach space. The following conditions are equivalent:

(i) X is strongly smooth and there exists a sequence of L2-summand vectors which is a
Scahuder basis for X.

(ii) X is a Hilbert space.

Proof If X is a Hilbert space, then every closed subspace of X is L2-comple-mented, hence
every vector of X is an L2-summand vector. Also, Hilbert spaces are uniformly smooth, hence
strongly smooth. Since X is separable by assumption, any orthonormal basis is a Schauder
basis. Conversely, assume that X is strongly smooth and there exists a sequence (xn)n∈N of
L2-summand vectors which is a Scahuder basis for X . We will rely on [18, Theorem 2.8] and
prove that the duality mapping is additive. Indeed, fix arbitrary elements x, y ∈ X . Since
(xn)n∈N is a Scahuder basis for X , there are unique sequences (αn)n∈N and (βn)n∈N in C in
such a way that x = ∑∞

n=1 αnxn and y = ∑∞
n=1 βnxn . In view of Lemma 3.5, we have that

J (x + y) = J

( ∞∑
n=1

(αn + βn)xn

)
=

∞∑
n=1

J ((αn + βn)xn)

=
∞∑
n=1

(αn + βn)J (xn) =
∞∑
n=1

αn J (xn) +
∞∑
n=1

βn J (xn)

=
∞∑
n=1

J (αnxn) +
∞∑
n=1

J (βnxn) = J (x) + J (y).


�
Recall that in a smooth Banach space X , two elements x, y ∈ X are said to be orthogonal

provided that J (x)(y) = J (y)(x) = 0.

Lemma 3.7 Let X be a smooth Banach space. Let (ek)k∈N ⊆ SX be a sequence of orthogonal
L2-summand vectors. Let x ∈ X. Then:

(i)
∑∞

k=1 |J (ek)(x)|2 ≤ ‖x‖2.
(ii) If x ∈ span{e1, . . . , el}, then ∑l

k=1 |J (ek)(x)|2 = ‖x‖2.
(iii) If

∑∞
k=1 J (ek)(x)ek converges, then

∑∞
k=1 |J (ek)(x)|2 = ∥∥∑∞

k=1 J (ek)(x)ek
∥∥2.

Proof We canwrite x = J (e1)(x)e1+m1 withm1 ∈ ker(J (e1)). Thenm1 = J (e2)(m1)e2+
m2 for some m2 ∈ ker(J (e2)). Next, m2 = J (e3)(m2)e3 + m3 for some m3 ∈ ker(J (e3))
and we keep going on. Notice that the orthogonality yields

x = J (e1)(x)e1 + m1
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= J (e1)(x)e1 + J (e2)(m1)e2 + m2

= J (e1)(x)e1 + J (e2)(x)e2 + m2

= J (e1)(x)e1 + J (e2)(x)e2 + J (e3)(m2)e3 + m3

= J (e1)(x)e1 + J (e2)(x)e2 + J (e3)(x)e3 + m3

...

= J (e1)(x)e1 + J (e2)(x)e2 + J (e3)(x)e3 + · · · + J (el)(ml−1)el + ml

= J (e1)(x)e1 + J (e2)(x)e2 + J (e3)(x)e3 + · · · + J (el)(x)el + ml

...

Observe also that

‖x‖2 = |J (e1)(x)|2 + ‖m1‖2
= |J (e1)(x)|2 + |J (e2)(m1)|2 + ‖m2‖2
= |J (e1)(x)|2 + |J (e2)(x)|2 + ‖m2‖2
= |J (e1)(x)|2 + |J (e2)(x)|2 + |J (e3)(m2)|2 + ‖m3‖2
= |J (e1)(x)|2 + |J (e2)(x)|2 + |J (e3)(x)|2 + ‖m3‖2
...

= |J (e1)(x)|2 + |J (e2)(x)|2 + |J (e3)(x)|2 + · · · + |J (el)(ml−1)|2 + ‖ml‖2
= |J (e1)(x)|2 + |J (e2)(x)|2 + |J (e3)(x)|2 + · · · + |J (el)(x)|2 + ‖ml‖2
...

Asa consequence,
∑l

k=1 |J (ek)(x)|2 ≤ ‖x‖2,meaning that
∑∞

k=1 |J (ek)(x)|2 ≤ ‖x‖2 by the
arbitrariness of l ∈ N. Next, assume that x ∈ span{e1, . . . , el}. Then ml ∈ span{e1, . . . , el}.
The equation

x = J (e1)(x)e1 + J (e2)(x)e2 + J (e3)(x)e3 + · · · + J (el)(x)el + ml

allows that J (ek)(x) = J (ek)(x) + J (ek)(ml) for all k ∈ {1, . . . , l}, meaning that
J (ek)(ml) = 0 for all k ∈ {1, . . . , l}, that is, ml = 0. As a consequence,

‖x‖2 = |J (e1)(x)|2 + |J (e2)(x)|2 + |J (e3)(x)|2 + · · · + |J (el)(x)|2.
Finally, if

∑∞
k=1 J (ek)(x)ek is a convergent series, then

(∑l
k=1 J (ek)(x)ek

)
l∈N converges

to
∑∞

k=1 J (ek)(x)ek , hence

l∑
k=1

|J (ek)(x)|2 =
∥∥∥∥∥

l∑
k=1

J (ek)(x)ek

∥∥∥∥∥
2

→
∥∥∥∥∥

∞∑
k=1

J (ek)(x)ek

∥∥∥∥∥
2

as l → ∞, that is,
∑∞

k=1 |J (ek)(x)|2 = ∥∥∑∞
k=1 J (ek)(x)ek

∥∥2. 
�
Lemma 3.7 yields a new characterization of separable Hilbert spaces.

Corollary 3.8 Let X be a smooth Banach space. If there exists a binormalized Schauder basis
(en)n∈N ⊆ SX of L2-summand vectors, then X is a Hilbert space.
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Proof Since X is smooth and (en)n∈N ⊆ SX is a binormalized Schauder basis, the basic
sequence of coordinate functionals is precisely (J (en))n∈N ⊆ SX∗ . Therefore, for every
x ∈ X , x = ∑∞

n=1 J (en)(x)en . Fix an arbitrary x ∈ X . For every k ∈ N, let xk :=∑k
n=1 J (en)(x)en . Note that, for every n ∈ {1, . . . , k}, J (en)(xk) = J (en)(x), therefore

xk = ∑k
n=1 J (en)(xk)en . According to Lemma 3.7,

‖xk‖2 =
k∑

n=1

|J (en)(xk)|2 =
k∑

n=1

|J (en)(x)|2.

Since (xk)k∈N converges to x , we have that
(‖xk‖2)k∈N converges to ‖x‖2 and so ‖x‖2 =∑∞

n=1 |J (en)(x)|2. This shows that the embedding

X → �2
x �→ (J (en)(x))n∈N

(3.3)

is a linear isometry. 
�
The following technical lemma serves to assure sufficient conditions for the summations

of a double series of positive terms to be switched.

Lemma 3.9 Let X be a Banach space. Let (anm)n,m∈N ⊆ X be a double sequence. Suppose
that:

• For every m ∈ N,
∑∞

n=1 anm is absolutely convergent.
• ∑∞

m=1 βm is convergent, where βm := ∑∞
n=1 ‖anm‖ for all m ∈ N.

Then:

(i) For every n ∈ N,
∑∞

m=1 anm is absolutely convergent.
(ii)

∑∞
n=1 γn is convergent, where γn := ∑∞

m=1 ‖anm‖ for all n ∈ N.
(iii)

∑∞
m=1 βm = ∑∞

n=1 γn.

Proof (i) Fix an arbitrary n ∈ N. For every k ∈ N,
∑k

m=1 ‖anm‖ ≤ ∑∞
m=1 βm ≤

‖(βm)m∈N‖1. This shows that
∑∞

m=1 anm is absolutely convergent.
(ii) For every k ∈ N,

∑k
n=1 γn = ∑k

n=1
∑∞

m=1 ‖anm‖ = ∑∞
m=1

∑k
n=1 ‖anm‖ ≤∑∞

m=1 βm ≤ ‖(βm)m∈N‖1. This shows that
∑∞

n=1 γn is convergent and
∑∞

n=1 γn ≤∑∞
m=1 βm .

(iii) By repeating the same argument as above starting from the assumption that
∑∞

n=1 γn
is convergent, we conclude that

∑∞
m=1 βm ≤ ∑∞

n=1 γn .

�

We are finally ready to state and prove the main theorem of this section, which unveils
the main properties satisfied by the probability density operator and generalizes [17, Sub-
section 6.1] and [15, Example 5 & Theorem 10]. We will be assuming that the domain of
convergence of the probability density operator is the whole space. Proposition 3.2 reveals
two sufficient conditions for this.

Theorem 3.10 Let X be a smooth Banach space. Let (•|•) be the Hermitian semiscalar
product on X induced by the duality mapping like (2.1). Let (xn)n∈N ⊆ SX be a sequence
of L2-summand vectors. Let (ρn)n∈N ∈ �∞(C). Consider the probability density operator D
given in Equation (3.2) and suppose that the domain of convergence of D is the whole of X.
Then:
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(i) If (xn)n∈N is orthogonal, then ‖D(x)‖2 = ∑∞
n=1 |ρn |2|J (xn)(x)|2 for every x ∈ X

and ‖D‖ = ‖(ρn)n∈N‖∞.
(ii) If ρn ∈ R for each n ∈ N, then D is self-adjoint.
(iii) If ρn ≥ 0 for each n ∈ N, then D is positive.
(iv) If ρn ≥ 0 for each n ∈ N and (xn)n∈N is a binormalized unconditional Schauder basis,

then D is strongly normal.
(v) If ρn ≤ 1 for each n ∈ N and (xn)n∈N is orthogonal, then D ≤ I .
(vi) If ρn ≥ 0 for each n ∈ N and

∑∞
n=1 ρn ≤ 1, then 0 ≤ D2 ≤ D.

(vii) If ρn ≥ 0 for each n ∈ N,
∑∞

n=1 ρn < ∞ and S := (ek)k∈N ⊆ SX is a sequence of
orthogonal L2-summand vectors, then trS(D) ≤ ‖(ρn)n∈N‖1.

(viii) If ρn ≥ 0 for each n ∈ N,
∑∞

n=1 ρn < ∞ and S := (ek)k∈N ⊆ SX is a binormalized
Schauder basis of L2-summand vectors, then trS(D) = ‖(ρn)n∈N‖1.

(ix) If (xn)n∈N is orthogonal, then σp(T ) ⊇ {ρn : n ∈ N} and σp(T )\{0} ⊆ {ρn : n ∈ N}.
If (xn)n∈N is a binormalized Schauder basis, then σp(T ) = {ρn : n ∈ N}.

(x) If (xn)n∈N is orthogonal, then we have span
({
xm : |ρm | = ∥∥(ρn)n∈N

∥∥∞
}) ⊆

suppv(D) ⊆ {
x ∈ X : ∃m ∈ N J (xm)(x) 	= 0 ⇒ |ρm | = ∥∥(ρn)n∈N

∥∥∞
}
. If (xn)n∈N

is a binormalized Schauder basis, then the previous inclusions are equalities.

Proof Let us rewrite D as D(x) = ∑∞
n=1 ρn J (xn)(x)xn for all x ∈ X , where J : X → X∗

is the duality mapping.

(i) Fix an arbitrary x ∈ X . For every k ∈ N, let xk := ∑k
n=1 ρn J (xn)(x)xn . Note that, for

every n ∈ {1, . . . , k}, J (xn)(xk) = ρn J (xn)(x), therefore xk = ∑k
n=1 J (xn)(xk)xn .

According to Lemma 3.7,

‖xk‖2 =
k∑

n=1

|J (xn)(xk)|2 =
k∑

n=1

|ρn |2|J (xn)(x)|2.

Since (xk)k∈N converges to D(x), we have that
(‖xk‖2)k∈N converges to ‖D(x)‖2 and

so ‖D(x)‖2 = ∑∞
n=1 |ρn |2|J (xn)(x)|2. By using again Lemma 3.7, for every x ∈ X ,

‖D(x)‖2 =
∞∑
n=1

|ρn |2|J (xn)(x)|2 ≤ ‖(ρn)n∈N‖2∞ ‖x‖2,

meaning that ‖D‖ ≤ ‖(ρn)n∈N‖∞. Since D(xn) = ρnxn for all n ∈ N, we clearly
obtain that ‖D‖ = ‖(ρn)n∈N‖∞.

(ii) Fix arbitrary elements x, y ∈ X . By hypothesis,
∑∞

n=1 ρn J (xn)(x)xn is convergent,
thus Lemma 3.5 assures that

J

( ∞∑
n=1

ρn J (xn)(x)xn

)
= w∗

∞∑
n=1

J (ρn J (xn)(x)xn) .

Then

J (D(x))(y) = J

( ∞∑
n=1

ρn J (xn)(x)xn

)
(y)

=
∞∑
n=1

J (ρn J (xn)(x)xn) (y) by Lemma 3.5
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=
∞∑
n=1

ρn J (xn)(x)J (xn)(y) by Remark 1.1

=
∞∑
n=1

ρn J (xn)(y)J (x)(xn) by Remark 3.4

= J (x)

( ∞∑
n=1

ρn J (xn)(y)xn

)

= J (x)(D(y)).

(iii) Fix an arbitrary x ∈ X . Then

J (x)(D(x)) = J (x)

( ∞∑
n=1

ρn J (xn)(x)xn

)

=
∞∑
n=1

ρn J (xn)(x)J (x)(xn)

=
∞∑
n=1

ρn |J (xn)(x)|2 by Remark 3.4

≥ 0.

(iv) We will prove that D = C2, where C(x) = ∑∞
n=1

√
ρn J (xn)(x)xn for all x ∈ X .

Indeed, for every x ∈ X ,

C(C(x)) =
∞∑
n=1

√
ρn J (xn)(C(x))xn

=
∞∑
n=1

√
ρn

∞∑
m=1

√
ρm J (xm)(x)J (xn)(xm)xn

=
∞∑
n=1

ρn J (xn)(x)xn by orthogonality

= D(x).

Finally, notice that C is well defined in view of Proposition 3.2, and C is self-adjoint
by (ii).

(v) Fix an arbitrary x ∈ X . Then

J (x)(D(x)) = J (x)

( ∞∑
n=1

ρn J (xn)(x)xn

)
=

∞∑
n=1

ρn J (xn)(x)J (x)(xn)

=
∞∑
n=1

ρn |J (xn)(x)|2 by Remark 3.4

≤
∞∑
n=1

|J (xn)(x)|2 ≤ ‖x‖2 by Lemma 3.7

= J (x)(x).
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(vi) Fix an arbitrary x ∈ X . On the one hand, note that D2(x) = D(D(x)) =∑∞
n=1 ρn J (xn)(D(x))xn , so

J (x)
(
D2(x)

) =
∞∑
n=1

ρn J (xn)(D(x))J (x)(xn)

=
∞∑
n=1

ρn

∞∑
k=1

ρk J (xk)(x)J (xn)(xk)J (x)(xn).

On the other hand, since D is self-adjoint, we have that J (x)
(
D2(x)

) =
J (D(x))(D(x)) = ‖D(x)‖2, so J (x)

(
D2(x)

)
is real and positive. Finally,

J (x)
(
D2(x)

) = � (
J (x)

(
D2(x)

)) =
∞∑
n=1

ρn

∞∑
k=1

ρk� (J (xk)(x)J (xn)(xk)J (x)(xn))

≤
∞∑
n=1

ρn

∞∑
k=1

ρk |J (xk)(x)J (xn)(xk)J (x)(xn)|

=
∞∑
n=1

ρn |J (x)(xn)|
∞∑
k=1

ρk |J (xk)(x)| |J (xn)(xk)|

≤
∞∑
n=1

ρn |J (x)(xn)|
∞∑
k=1

ρk |J (xk)(x)|

=
( ∞∑
n=1

ρn |J (x)(xn)|
) ( ∞∑

k=1

ρk |J (xk)(x)|
)

=
( ∞∑
n=1

ρn |J (x)(xn)|
)2

=
( ∞∑
n=1

√
ρn

√
ρn |J (x)(xn)|

)2

≤
( ∞∑
n=1

ρn

) ( ∞∑
n=1

ρn |J (x)(xn)|2
)

by Hölder’s inequality

≤ J (x)(D(x)) by (iii).

(vii) By (iii), J (ek)(D(ek)) = ∑∞
n=1 ρn |J (ek)(xn)|2 for every k ∈ N. Fix an arbitrary l ∈ N.

Keeping in mind Lemma 3.7,

l∑
k=1

|J (ek)(xn)|2 ≤
∞∑
k=1

|J (ek)(xn)|2 ≤ ‖xn‖2

for every n ∈ N. Then

l∑
k=1

J (ek)(D(ek)) =
l∑

k=1

∞∑
n=1

ρn |J (ek)(xn)|2 =
∞∑
n=1

ρn

l∑
k=1

|J (ek)(xn)|2

≤
∞∑
n=1

ρn‖xn‖2 = ‖(ρn)n∈N‖1 .
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The arbitrariness of l ∈ N assures that

trS(D) :=
∞∑
k=1

J (ek)(D(ek)) ≤ ‖(ρn)n∈N‖1 .

(viii) Following Corollary 3.8, since X is smooth and (en)n∈N ⊆ SX is a binormalized
Schauder basis of L2-summand vectors, the basic sequence of coordinate functionals is
precisely (J (en))n∈N ⊆ SX∗ , thus, for every x ∈ X , x = ∑∞

n=1 J (en)(x)en and ‖x‖2 =∑∞
n=1 |J (en)(x)en |2. In particular, we have that 1 = ‖xn‖2 = ∑∞

k=1 |J (ek)(xn)|2 for
every n ∈ N. According to (iii), J (ek)(D(ek)) = ∑∞

n=1 ρn |J (ek)(xn)|2 for every
k ∈ N. Next, if we consider the double series

∑∞
k=1

∑∞
n=1 ρn |J (ek)(xn)|2, then we

have that for every k ∈ N, the series
∑∞

n=1 ρn |J (ek)(xn)|2 is absolutely convergent
to J (ek)(D(ek)), and for every n ∈ N, the series

∑∞
k=1 ρn |J (ek)(xn)|2 is absolutely

convergent as well to ρn‖xn‖2. Therefore, we can call on Lemma 3.9 to conclude that

∞∑
k=1

J (ek)(D(ek)) =
∞∑
k=1

∞∑
n=1

ρn |J (ek)(xn)|2 =
∞∑
n=1

∞∑
k=1

ρn |J (ek)(xn)|2

=
∞∑
n=1

ρn‖xn‖2 = ‖(ρn)n∈N‖1 .

(ix) For every n ∈ N, D(xn) = ρnxn , thus ρn ∈ σp(D) for all n ∈ N. Next, if λ ∈ σp(D) \
{0}, then there exists x ∈ X\{0} such that D(x) = λx . Then

∑∞
n=1 ρn J (xn)(x)xn =

λx , meaning that ρn J (xn)(x) = λJ (xn)(x) for all n ∈ N by orthogonality. Since x 	= 0
and λ 	= 0, there must exist n0 ∈ N for which J (xn0)(x) 	= 0, which implies that ρn0 =
λ. Suppose now that (xn)n∈N is a binormalized Schauder basis. If 0 ∈ σp(D), then wen
can find x ∈ ker(D)\{0}. Note that x = ∑∞

n=1 J (xn)(x)xn , so there exists n0 ∈ N such
that J (xn0)(x) 	= 0. The equation D(x) = 0 means that

∑∞
n=1 ρn J (xn)(x)xn = 0, so

in particular ρn0 J (xn0)(x) = 0, yielding ρn0 = 0.
(x) Fix arbitrary m1, . . . ,mk ∈ N such that

∣∣ρmn

∣∣ = ∥∥(ρn)n∈N
∥∥∞ = ‖D‖ for all n ∈

{1, . . . , k}. Take any x ∈ span
({
xm1 , . . . , xmk

})
. Note that x = ∑k

n=1 J (xmn )(x)xmn ,
hence

D(x) =
k∑

n=1

ρmn J (xmn )(x)xmn =
k∑

n=1

J (xmn )(D(x))xmn .

By applying Lemma 3.7,

‖D(x)‖2 =
k∑

n=1

|J (xmn )(D(x))|2 =
k∑

n=1

∣∣ρmn

∣∣2 ∣∣J (
xmn

)
(x)

∣∣2 = ‖D‖2‖x‖2.

As a consequence, x ∈ suppv(D). This shows that

span
({
xm : |ρm | = ∥∥(ρn)n∈N

∥∥∞
}) ⊆ suppv(D).

Since suppv(D) is trivially closed, we have that

span
({
xm : |ρm | = ∥∥(ρn)n∈N

∥∥∞
}) ⊆ suppv(D).

Next, fix an arbitrary x ∈ suppv(D). Then

‖D‖2‖x‖2 = ‖D(x)‖2 =
∞∑
n=1

|ρn |2|J (xn)(x)|2 by (i)
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≤ ∥∥(ρn)n∈N
∥∥2∞

∞∑
n=1

|J (xn)(x)|2 ≤ ∥∥(ρn)n∈N
∥∥2∞ ‖x‖2 by Lemma 3.7

= ‖D‖2‖x‖2 by (i).

Therefore, if there exists m ∈ N for which J (xm)(x) 	= 0, then |ρm | = ∥∥(ρn)n∈N
∥∥∞.

Finally, if (xn)n∈N is a binormalized Schauder basis and x ∈ X satisfies that |ρm | =∥∥(ρn)n∈N
∥∥∞ whenever J (xm)(x) 	= 0, then

x =
∞∑
n=1

J (xn)(x)xn ∈ span
({
xm : |ρm | = ∥∥(ρn)n∈N

∥∥∞
})

.


�
Acknowledgements The author would like to thank Prof. Richard Aron for his encouraging and never-ending
support. This research was funded by Ministerio de Ciencia, Innovación y Universidades: PGC-101514-
B-I00 (Métodos analíticos en Simetrías, Teoría de Control y Operadores); and Consejería de Universidad,
Investigación e Innovación de la Junta de Andalucía: FEDER-UCA18-105867 (Dispositivos electrónicos para
la estimulación magnética transcraneal), ProyExcel00780 (Operator Theory: An interdisciplinary approach),
and ProyExcel01036 (Multifísica y optimización multiobjetivo de estimulación magnética transcraneal).

Funding Funding for open access publishing: Universidad de Cádiz/CBUA

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Acosta, M.D., Aizpuru, A., Aron, R.M., García-Pacheco, F.J.: Functionals that do not attain their norm.
Bull. Belg. Math. Soc. Simon Stevin 14(3), 407–418 (2007)

2. Aizpuru, A., García-Pacheco, F.J.: L2-summand vectors in Banach spaces. Proc. Amer.Math. Soc. 134(7),
2109–2115 (2006)

3. Aizpuru, A., Pérez-Fernández, F.J.: Characterizations of series in Banach spaces. Acta Math. Univ.
Comenian. (N.S.) 68(2), 337–344 (1999)

4. Aizpuru, A., Pérez-Fernández, F.J.: Sequence spaces associated to a series in a Banach space. Indian J.
Pure Appl. Math. 33(9), 1317–1329 (2002)

5. Bandyopadhyay, P., Lin, B.: Some properties related to nested sequence of balls in Banach spaces.
Taiwanese J. Math. 5, 19–34 (2001)

6. Beurling, A., Livingston, A.E.: A theorem on duality mappings in Banach spaces. Arkiv fur Mathematik
4, 405–11 (1962)

7. Blazek, J.: Some remarks on the duality mapping. Acta Universitatis Carolinae. Mathematica et Physica
23, 15–19 (1982)

8. Botelho, F., Jamison, J., Jiménez-Vargas, A., Villegas-Vallecillos, M.: Hermitian operators on Lipschitz
function spaces. Studia Math. 215(2), 127–137 (2013)

9. Campos-Jiménez, A., García-Pacheco, F.J.: Geometric invariants of surjective isometries between unit
spheres. Mathematics 9, 2346 (2021)

10. Cobos-Sánchez, C., García-Pacheco, F.J., Moreno-Pulido, S., Saez-Martínez, S.: Suporting vectors of
continuous linear operators. Ann. Funct. Anal. 8(4), 520–530 (2017)

11. Cudia, D.F.: The geometry of Banach spaces. Smooth. Trans. Am. Math. Soc. 110, 284–314 (1964)
12. Diestel, J.: Geometry of Banach Spaces-Selected Topics, Lecture Notes in Mathematics, vol. 485.

Springer, Berlin (1975)

123

http://creativecommons.org/licenses/by/4.0/


840 F. J. García-Pacheco

13. Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1331–1352
(1994)

14. García-Pacheco, F.J.: Selfadjoint operators on real or complex Banach spaces. Nonlinear Anal. 192,
111696 (2020)

15. García-Pacheco, F.J.: Lineability of the set of supporting vectors. Rev. R. Acad. Cienc. Exactas Fís. Nat.
Ser. A Mat. RACSAM 115(2), Paper No. 41 (2021)

16. García-Pacheco, F.J., Miralles, A.: Real renormings on complex Banach spaces. Chinese Ann. Math. Ser.
B 29(3), 239–246 (2008)

17. Garcia-Pacheco, F.J., Cobos-Sanchez, C., Moreno-Pulido, S., Sanchez-Alzola, A.: Exact solutions
to max‖x‖=1

∑∞
i=1 ‖T i(x)‖2 with applications to physics, bioengineering and statistics. Commun.

Nonlinear Sci. Numer. Simul. 82, 105054 (2020)
18. García-Pacheco, F.J., Miralles, A., Puglisi, D.: Selectors of the duality mapping. Math. Proc. R. Ir. Acad.

116A(2), 105–111 (2016)
19. Grandy, W.T.: Time evolution in macroscopic systems. I. Equations of motion. Found. Phys. 34, 1–20

(2004)
20. James, R.C.: Characterizations of reflexivity. Studia Math. 23, 205–216 (1964)
21. James, R.C.: A counterexample for a sup theorem in normed spaces. Israel J. Math. 9, 511–512 (1971)
22. Lumer, G.: Semi-inner-product spaces. Trans. Amer. Math. Soc. 100, 29–43 (1961)
23. Megginson, R.: An Introduction to Banach Space Theory, Graduate Texts in Mathematics, vol. 183.

Springer, New York (1998)
24. Pérez-Fernández, F.J., Benítez-Trujillo, F., Aizpuru, A.: Characterizations of completeness of normed

spaces through weakly unconditionally Cauchy series. Czechoslovak Math. J. 50(4), 889–896 (2000)
25. Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley Publishing Company (1993)
26. Shtraus, V.A.: The theory of self-adjoint operators in Banach spaces with a Hermitian form. Sib. Math. J.

19(3), 483–489 (1978)
27. Szlachtowska, E., Mielczarek, D.: Generalized duality mapping. J. Indian Math. Soc. 82, 169–83 (2015)
28. Wójcik, P.: Self-adjoint operators on real Banach spaces. Nonlinear Anal. Theory Methods Appl. 81,

54–61 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	The adjoint of an operator on a Banach space
	Abstract
	Introduction
	1 Selectors of the duality mapping
	2 The adjoint of an operator
	3 Probability density operator
	Acknowledgements
	References




