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Abstract
Weinitiate the studyof the resolutionof singularities properties ofNashblowupsoverfields of
prime characteristic. We prove that the iteration of normalized Nash blowups desingularizes
normal toric surfaces. We also introduce a prime characteristic version of the logarithmic
Jacobian ideal of a toric variety and prove that its blowup coincides with the Nash blowup
of the variety. As a consequence, the Nash blowup of a, not necessarily normal, toric variety
of arbitrary dimension in prime characteristic can be described combinatorially.
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Introduction

The Nash blowup of an algebraic variety is a modification that replaces singular points by
limits of tangent spaces. It has been proposed to solve singularities by iterating this blowup
[16, 20]. This question has been extensively studied [1, 2, 5, 6, 8–11, 13, 14, 16, 19, 21].

Until recently, the resolution properties ofNash blowups have been studied only over fields
of characteristic zero. This is due to a well-known example given byA. Nobile that shows that
the Nash blowup could be trivial in prime characteristic [16]. It was recently shown that Nash
blowups behave as expected in prime characteristic after adding the condition of normality
[7]. Hence, the original question regarding Nash blowups and resolution of singularities can
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be reconsidered in arbitrary characteristic by iterating normalized Nash blowups. We stress
that the condition of normality is frequently assumed for many results also in characteristic
zero. For instance, M. Spivakovsky showed that the iteration of normalized Nash blowups
gives a resolution of singularities for complex surfaces [21].

In this paper we initiate the study of the resolution properties of normalized Nash blowups
in prime characteristic. We study this question in the context of toric varieties.

Our first goal in this paper is to describe combinatorially the Nash blowup of a not
necessarily normal toric variety of arbitrary dimension over fields of prime characteristic.
In characteristic zero, the key ingredient for such a description is given by the so-called
logarithmic Jacobian ideal, which was originally introduced by González-Sprinberg [8].
This is a monomial ideal determined by linear relations on the generators of the semigroup of
the toric variety. González-Sprinberg showed that the Nash blowup of a normal toric variety
is isomorphic to the blowup of its logarithmic Jacobian ideal. This result was later revisited
and generalized by several authors. For instance, M. Lejeune-Jalabert and A. Reguera gave
a new proof of this result [15]. In addition, P. González and B. Teissier extended this result
for not necessarily normal toric varieties [11].

It is worth mentioning that the isomorphism between Nash blowups of toric varieties and
the blowup of their logarithmic Jacobian ideal does not hold over fields of prime characteristic
(see Example 1.5). In this paper we define a positive characteristic version of the logarithmic
Jacobian ideal (see Definition 1.6) that allows us to extend the known result in characteristic
zero to prime characteristic.

Theorem A (Theorem 1.9) The Nash blowup of a toric variety over a field of characteristic
p > 0 is isomorphic to the blowup of its logarithmic Jacobian ideal modulo p.

Combining Theorem A with previous work by Gónzalez-Teissier [11], one obtains a
combinatorial description of the Nash blowup in prime characteristic. We specialize this
description to dimension two to obtain our second main theorem.

Theorem B (Theorem 2.5) The iteration of normalized Nash blowups desingularizes normal
toric surfaces over fields of prime characteristic.

G.González-Sprinberg proved the characteristic-zero version ofTheoremB[8].An impor-
tant step in his proof consists in showing that the normalized Nash blowup of a normal toric
surface is determined by a subdivision of the cone defining the surface. The key step to
prove Theorem B is to show that this subdivision is actually the same in prime characteristic.
As a consequence, it is equivalent to solve normal toric surfaces iterating normalized Nash
blowups in zero or prime characteristic. Once this is shown, the rest of the proof of Theorem
B follows the work of González-Sprinberg.

As mentioned before, the combinatorics of normalized Nash blowups of toric surfaces are
independent of the characteristic. One may ask whether this is true for higher dimensions.
We conclude this paper by exhibiting an example of a toric variety of dimension three whose
Nash blowup behaves differently in characteristic zero and two. In particular, the normalized
Nash blowup of this variety is nonsingular in characteristic zero but singular in characteristic
two. A further iteration of normalized Nash blowup gives a nonsingular variety in this case.

Convention 0.1 Throughout this manuscript K denotes an algebraically closed field.
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1 Nash blowups of toric varieties

We are interested in studying the Nash blowup of a toric variety over fields of prime charac-
teristic. We first recall some classical results of the characteristic zero case.

Definition 1.1 LetK be an algebraically closed field of arbitrary characteristic. Let X ⊆ K
n

be an equidimensional algebraic variety of dimension d . Consider the Gauss map:

G : X \ Sing(X) → Gr(d, n)

x �→ Tx X ,

where Gr(d, n) is the Grassmanian of d-dimensional vector spaces in K
n , and Tx X is the

tangent space to X at x . Denote by X∗ the Zariski closure of the graph of G. Call ν the
restriction to X∗ of the projection of X ×Gr(d, n) to X . The pair (X∗, ν) is called the Nash
blowup of X .

Definition 1.2 ([4, 22]) Let � ⊆ Z
d be a semigroup generated by {γ1, . . . , γn}. Consider

the K-algebra homomorphism π� : K[x1, . . . , xn] → K[t±1 , . . . , t±d ], xi �→ tγi . Let I� =
ker π� . The variety X� = V(I�) ⊆ K

n is called the toric variety defined by �. We denote
as K[t�] the coordinate ring of X� .

The first step towards a combinatorial description of Nash blowups of toric varieties
in characteristic zero is given by the so-called logarithmic Jacobian ideal. This ideal was
originally introduced by G. González-Sprinberg [8, Section 2], and later revisited by several
authors [3, 11, 15].

Definition 1.3 Suppose that char(K) = 0. Let � = 〈γ1, . . . , γn〉N ⊆ Z
d be a semigroup

such that 〈γ1, . . . , γn〉Z = Z
d . Consider the following ideal:

J0 = 〈tγi1+···+γid | det(γi1 · · · γid ) �= 0, 1 ≤ i1 < · · · < id ≤ n〉 ⊆ K[t�].
The ideal J0 is called the logarithmic Jacobian ideal of X� .

Theorem 1.4 ([8, 11, 15]) Suppose that char(K) = 0. The Nash blowup of X� is isomorphic
to the blowup of its logarithmic Jacobian ideal.

The previous theorem is false over fields of prime characteristic.

Example 1.5 Suppose that char(K) = 2, � = 〈2, 3〉N, and X� = V(x3 − y2). Then
Bl〈t2,t3〉 X� is nonsingular but X∗

�
∼= X� [16, Example 1].

Our first goal is to give the positive characteristic version of Theorem 1.4.

Definition 1.6 Suppose that char(K) = p > 0. Let� = 〈γ1, . . . , γn〉N ⊆ Z
d be a semigroup

such that 〈γ1, . . . , γn〉Z = Z
d . Consider the following ideal:

Jp = 〈tγi1+···+γid | det(γi1 · · · γid ) �= 0mod p, 1 ≤ i1 < · · · < id ≤ n〉 ⊆ K[t�].
The ideal Jp is called the logarithmic Jacobian ideal modulo p of X� .

Example 1.7 Let � = 〈2, 3〉N ⊆ N. Then J2 = 〈t3〉, J3 = 〈t2〉, and Jp = 〈t2, t3〉, for p = 0
and p ≥ 5.
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We now present a property of short exact sequence of matrices. In fact, there is a more
general version of this property in the context of realizable matroids, which is known as Gale
duality [18, Theorem 2.2.8]. We give the proof of this property for the sake of completeness.

Lemma 1.8 Let

0 �� Kc B �� Kn A �� Kd �� 0 .

be a short exact sequence of vector spaces over K. Let K ⊆ [n] = {1, . . . , n}, |K | = c.
Denote as BK the matrix formed by the rows of B corresponding to K . Similarly, denote as
A[n]\K the matrix formed by the columns of A corresponding to [n] \ K. Then

det BK �= 0 ⇔ det A[n]\K �= 0.

Proof Without loss of generality we assume K = {d + 1, . . . , n}. Denote D = [n] \ K .
Assume that det(AD) �= 0. Let u ∈ K

c. Since multiplication by BT is surjective, there

exists

(
w0

v0

)
such that BT

(
w0

v0

)
= BT

Dw0 + BT
K v0 = u. Since det(AT

D) = det(AD) �= 0,

there exists z ∈ K
d such that AT

Dz = w0. Letv = v0−AT
K z. Thus,

(
0
v

)
=

(
w0

v0

)
−

(
AT
Dz

AT
K z

)
=(

w0

v0

)
− AT z. Hence,

BT
K v = 0 + BT

K v = BT
(
0
v

)
= BT

(
w0

v0

)
− BT AT z = BT

(
w0

v0

)
= u.

Hence, the linear transformation associated to BT
K is surjective, and so, det(BK ) =

det(BT
K ) �= 0.

The other implication follows as in the previous paragraph working on the dual exact
sequence. ��
Theorem 1.9 Suppose that char(K) = p > 0. The Nash blowup of X� is isomorphic to the
blowup of its logarithmic Jacobian ideal modulo p.

Proof The proof follows the arguments given byGonzález Pérez andTeissier [11, Proposition
60], combined with the previous lemma.

Assume that {γ1, . . . , γn} is a minimal generating set of � ⊆ Z
d and 〈γ1, . . . , γn〉Z =

Z
d . Let A = (γ1 · · · γn)d×n and c = n − d . Since K is algebraically closed, there exist

xα1 − xβ1 , . . . , xαc − xβc ∈ I� such that α1 − β1, . . . , αc − βc define a basis of the kernel
of A. Let B = (b1 · · · bc)n×c, where bi = αi − βi . Then we have an exact sequence,

0 �� Zc B �� Zn A �� Zd �� 0 .

Since the kernel of A is a saturated sublattice of Zn , one can extend b1, . . . , bc to a basis of
Z
n . We denote as Ā and B̄ the matrices obtained by taking the entries modulo p. Hence, we

obtain an exact sequence of Zp-vector spaces,

0 �� Zc
p

B̄ �� Zn
p

Ā �� Zd
p

�� 0 . (1)

Take D0 ⊆ {1, . . . , n} such that |D0| = d and det( ĀD0) �= 0. Letting K0 = [n] \ D0, we get
det(B̄K0) �= 0 byLemma 1.8. Denote as JK0 thematrix formed by the columns corresponding
to K0 of the Jacobian matrix Jac(xαi − xβi )1≤i≤c.
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We have that
∏

k∈K0
xk det JK0 ≡ ∏c

i=1 x
αi det B̄K0 mod I� [8, Section 2.2, Lemme

2], [11, Proposition 60]. We point out that this congruence is usually proved over fields of
characteristic zero; however, the same proof holds in arbitrary characteristic. Since I� is
a prime ideal and {γ1, . . . , γn} is a minimal generating set of �, we obtain det(JK0) �= 0
mod I� . Hence, Jac(xαi − xβi )1≤i≤c has maximal rank equal to c. It follows that the blowup
of X� along the ideal 〈det JK | K ⊆ [n], |K | = c〉 is isomorphic to the Nash blowup of X�

[16, Theorem 1].
Let K ⊆ [n], |K | = c. As before,

∏
k∈K xk det JK ≡ ∏c

i=1 x
αi det B̄K mod I�.Multiply

this congruence by the monomial
∏

i∈[n]\K xi to obtain:

(x1 · · · xn) det JK ≡
⎛
⎝ ∏

i∈[n]\K
xi

⎞
⎠ c∏

i=1

xαi det B̄K mod I�. (2)

Since multiplying an ideal by a principal ideal gives isomorphic blowups, Congruence (2)
implies:

X∗
�

∼= Bl〈det JK | K⊆[n],|K |=c〉 X�

∼= Bl〈x1···xn〉〈det JK | K⊆[n],|K |=c〉 X�

∼= Bl〈(∏i∈[n]\K xi )(
∏c

i=1 x
αi ) det B̄K | K⊆[n],|K |=c〉 X�

∼= Bl〈(∏i∈[n]\K xi ) det B̄K | K⊆[n],|K |=c〉 X�.

Using the isomorphism K[x1, . . . , xn]/I� ∼= K[t�] and Lemma 1.8 applied to the exact
sequence (1), the ideal

〈⎛
⎝ ∏

i∈[n]\K
xi

⎞
⎠ det B̄K

∣∣∣ K⊆[n]
|K |=c

〉
=

〈 ∏
i∈[n]\K

xi

∣∣∣∣∣∣ det B̄K �= 0, K⊆[n]
|K |=c

〉

corresponds to the ideal

〈tγi1+···+γid | det(γi1 · · · γid ) �= 0mod p, 1 ≤ i1 < · · · < id ≤ n〉 = Jp.

In conclusion, X∗
�

∼= BlJp X� . ��

Using Theorem 1.9, a combinatorial description of the Nash blowup of a toric variety can
be obtained with the framework developed by Gónzalez-Teissier for the blowup of a toric
variety along any monomial ideal [11, Section 2.6].

Remark 1.10 As mentioned in the introduction, the characteristic zero analogue of Theorem
1.9 was studied by several authors. In particular, there is a version using the language of
Minkowski sums [1, Theorem 2.9]. Even though the characteristic zero assumption is not
explicitly stated in that work [1, Theorem 2.9], it is implicitly used in the proof.

2 Resolution of normal toric surfaces by iterated normalized Nash
blowups

In this section we prove that normalized Nash blowups solve the singularities of normal toric
surfaces over fields of prime characteristic.
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Notation 2.1 Throughout this section, σ ⊆ R
2 denotes a nonregular strongly convex rational

polyhedral cone of dimension 2, and � = σ̌ ∩ Z
2, where σ̌ ⊆ R

2 is the dual cone of σ .
Let 	 ⊆ R

2 be the convex hull of � \ {(0, 0)}. Let {γ1, . . . , γn} ⊆ Z
2 be the points lying

on the compact edges of the boundary polygon ∂	. We order {γ1, . . . , γn} according to the
counterclockwise order.

We note that n ≥ 3 since σ is nonregular. We now recall the following description of the
minimal generating set of �.

Proposition 2.2 ([17, Proposition 1.21]) In the context of Notation 2.1, {γ1, . . . , γn} is the
minimal set of generators of �.

We use Theorem 1.9 to prove that iterated normalized Nash blowups solve normal toric
surfaces in prime characteristic. We show that the involved combinatorics are independent of
the characteristic. The result thus follows from the classical work of G. González-Sprinberg
[8].

Lemma 2.3 Let α, β, γ ∈ Z
2≥0 be pairwise linearly independent vectors, in counterclockwise

orientation. For a subset S ⊆ R
2, denote as Conv(S) the convex hull of S.

(1) If β ∈ Conv({α, γ }), then α + γ ∈ Conv({α + β, β + γ }).
(2) If β /∈ Conv({α, γ }) + R≥0(α, γ ), then

α + γ ∈ Conv({α + β, β + γ }) + R≥0(α, γ ).

Proof The first statement of the lemma follows from direct computation.
We now prove (2). There exist unique r , s ∈ R such that β = rα + sγ . We claim that

r , s > 0 and 0 < r + s < 1. By the orientation, we have that β is in the cone spanned by α

and γ . Thus, r , s ≥ 0 and r = 0 or s = 0 contradicts linear independence. If r + s ≥ 1, let
r = r ′ + r ′′ and s = s′ + s′′ with r ′ + s′ = 1 and r ′, s′, r ′′, s′′ ≥ 0. Then

β = (r ′α + s′γ ) + (r ′′α + s′′γ ) ∈ Conv({α, γ }) + R≥0(α, γ ),

which contradicts the hypothesis on β. This justifies the claim. Hence, 0 < r , s < 1 and
0 < r + s < 1.

We have α+β = (1+r)α+ sγ and β +γ = rα+ (s+1)γ . Set u = 1−r and v = 1− s.
Then 0 < u, v < 1 and 1 < u + v. Write u = u′ + u′′ and v = v′ + v′′ with u′ + v′ = 1 and
u′, v′, u′′, v′′ ≥ 0. Thus,

α + γ = (α + γ − β) + β

= (uα + vγ ) + (u′ + v′)β
= u′(α + β) + v′(β + γ ) + u′′α + v′′γ
∈ Conv({α + β, β + γ }) + R≥0(α, γ ).

��
Proposition 2.4 In the setting of Notation 2.1, let p = char(K), not necessarily positive. Let
Nσ (Jp) denote the convex hull of

{(γi + γ j ) + σ̌ | det(γi γ j ) �= 0mod p}1≤i< j≤n .

Then the vertices of Nσ (Jp) are contained in the set

{γ� + γ�+1 | � ∈ {1, . . . , n − 1}}.
In particular, Nσ (Jp) = Nσ (J0), for any p > 0.
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Proof As before, {γ1, . . . , γn} denotes the minimal generating set of �, ordered counter-
clockwise. Recall that n ≥ 3. Up to a change of coordinates, we can assume that � ⊆ Z

2≥0.
Let 1 ≤ i < j < k ≤ n. By Proposition 2.2, we know that γi , γ j , γk , satisfy the first and
second conditions in Lemma 2.3. By the lemma,

γi + γk ∈ Conv
({

γi + γ j , γ j + γk
}) ⊆ Nσ (Jp),

or

γi + γk ∈ Conv
({

γi + γ j , γ j + γk
}) + R≥0(γi , γk) ⊆ Nσ (Jp).

Hence, γi +γk is either on the facet determined by γi +γ j and γ j +γk , or it is in the interior of
Nσ (Jp). In particular, it is not a vertex ofNσ (Jp). We conclude that the vertices ofNσ (Jp)

must be of the form γ� + γ�+1 for some � ∈ {1, . . . , n − 1}.
The last part of the proposition follows from the fact det(γ� γl+1) = 1 for all � ∈

{1, . . . , n − 1}. ��
A similar statement to Proposition 2.4 was already known [1, Proposition 4.11].

Theorem 2.5 In the setting of Notation 2.1, suppose that char(K) = p > 0. The iteration of
Nash blowups followed by normalization solves the singularities of normal toric surfaces.

Proof Recall the following classical theorem due to G. González-Sprinberg: if char(K) = 0,
normalized Nash blowups solves normal toric surfaces [8, Section 2.3, Théorème]. Equiv-
alently, by Theorem 1.4, normalized blowups of the logarithmic Jacobian ideal J0 solves
normal toric surfaces.

The normalized blowup of the logarithmic Jacobian idealJ0 is determined by the Newton
polygon Nσ (J0), which, in turn, induces a subdivision of σ [11, Section 2.6 and Remark
26]. Hence, the iteration of normalized blowups of J0 gives place to a regular subdivision of
σ .

Now suppose char(K) = p > 0. By Proposition 2.4, Nσ (Jp) = Nσ (J0). In particular,
the subdivision of σ induced by Nσ (Jp) is the same as the one induced by Nσ (J0). Hence,
the iteration of normalized blowups of Jp gives place to a regular subdivision of σ . By
Theorem 1.9, we conclude that the iteration of normalized Nash blowups solves X� . ��

3 Higher dimensional toric varieties

In view of the results of previous sections, one may wonder whether the combinatorics of the
Nash blowup of toric varieties are independent of the characteristic in general. In other words,
me may ask whether the last statement of Proposition 2.4 also holds for higher dimensional
toric varieties.We conclude this paper by showing that this is not the case already in dimension
three.

Let σ ⊆ R
3 be a cone such that σ̌ = 〈(1, 0, 0), (0, 1, 0), (1, 1, 2)〉R≥0 ⊆ R

3. Using
Macaulay2 [12], we obtain that � = σ̌ ∩ Z

3 is minimally generated by γ1 = (1, 0, 0),
γ2 = (0, 1, 0), γ3 = (1, 1, 1), and γ4 = (1, 1, 2). Hence, the logarithmic Jacobian ideals in
characteristic zero and two are, respectively, J0 = 〈t (2,2,1), t (2,3,3), t (3,2,3), t (2,2,2)〉, J2 =
〈t (2,2,1), t (2,3,3), t (3,2,3)〉.

LetNσ (Jp) = Conv{γi + γ j + γk + σ̌ | det(γi γ j γk) �= 0 mod p}1≤i< j<k≤4. We claim
that Nσ (J0) �= Nσ (J2). We obtain {x − 2 = 0}, {y − 2 = 0}, and {x + y − z − 2 = 0} are
supporting hyperplanes ofNσ (J0) from a direct computation. The intersection of these three
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planes is {(2, 2, 2)}. Hence, (2, 2, 2) is a vertex of Nσ (J0). Finally, notice that (2, 2, 2) /∈
Nσ (J2).

Nowwe study the normalizedNash blowup of X� . In characteristic zero, the normalization
of X∗

� is nonsingular [1, Section 6, Table 5].
To compute X∗

� in characteristic two, we compute the blowup of J2 following the combi-
natorial description for the blowup of a toric variety along any monomial ideal [11, Section
2.6]. The polyhedronNσ (J2) has three vertices: v1 = (2, 2, 1), v2 = (3, 2, 3), v3 = (2, 3, 3).
These vertices give place to the affine charts of X∗

� . Each of these affine charts are also toric
varieties, determined by the following semigroups:

�1 = � + 〈v2 − v1, v3 − v1〉N
= 〈(1, 0, 0), (0, 1, 0), (1, 1, 1), (1, 0, 2), (0, 1, 2)〉N,

�2 = � + 〈v1 − v2, v3 − v2〉N
= 〈(1, 0, 0), (1, 1, 1), (1, 1, 2), (−1, 0,−2), (−1, 1, 0)〉N,

�3 = � + 〈v1 − v3, v2 − v3〉N
= 〈(0, 1, 0), (1, 1, 1), (1, 1, 2), (0,−1,−2), (1,−1, 0)〉N.

To compute the normalization of X∗
� we need to find the saturation of these semigroups.

Using Macaulay2 we obtain the following minimal set of generators for the saturation of
each �i , denoted as �i :

�1 = 〈(1, 0, 0), (0, 1, 0), (1, 0, 2), (0, 1, 2), (1, 0, 1), (0, 1, 1)〉N,

�2 = 〈(1, 0, 0), (−1, 1, 0), (0, 0,−1), (−1, 0,−2), (1, 1, 2), (0, 1, 1)〉N,

�3 = 〈(1,−1, 0), (0, 1, 0), (0, 0,−1), (0,−1,−2), (1, 1, 2), (1, 0, 1)〉N.

In particular, the normalization of X∗
� is singular. Repeating the entire algorithm for

each �i , the resulting saturated semigroups can all be generated by three elements. We
conclude that by iterating twice the normalized Nash blowup in characteristic two, we obtain
a resolution of X� .

We note also that the corresponding fans for the normalized blowups of X� with respect
to J0 and J2 have different rays; in particular, neither blowup factors through the other via
a small morphism.
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