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Abstract
This paper is devoted to a deep analysis of the process known asCheeger deformation, applied
to manifolds with isometric group actions. Here, we provide new curvature estimates near
singular orbits and present several applications. As the main result, we answer a question
raised by a seminal result of Searle–Wilhelm about lifting positive Ricci curvature from the
quotient of an isometric action. To answer this question, we develop techniques that can
be used to provide a substantially streamlined version of a classical result of Lawson and
Yau, generalize a curvature condition of Chavéz, Derdzinski, and Rigas, as well as, give an
alternative proof of a result of Grove and Ziller.

1 Introduction

An interesting and challenging problem in Riemannian geometry is that of producing exam-
ples of metrics of positive (Ricci or sectional) curvatures. The current scarcity of known
examples of metrics with positive sectional curvature compared to the known examples of
metrics with non-negative sectional curvature illustrates the difficulty of the problem for the
sectional curvature.

Of particular interest is the search for positively curved metrics on exotic manifolds.
Gromoll and Meyer [13] constructed the first exotic sphere with a metric of non-negative
sectional curvature; Wilhelm [34] constructed metrics of positive Ricci curvature and almost
non-negative sectional curvature in every exotic sphere which is a 3-sphere bundle over the
4-sphere; Grove and Ziller [18] produced metrics of nonnegative sectional curvature on these
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examples and Goette, Kerin and Shankar [12] extended Grove–Ziller’s result to all 7-spheres.
Apart from spheres, Grove, Verdiani and Ziller [15], and independently Dearricott [10], built
an exotic unit tangent space with positive sectional curvature.

Concerning non-trivial examples of manifolds with metrics of positive Ricci curvature,
Nash [24], Poor [26], Searle and Wilhelm [32], Wraith [36, 37], Joachim [21] and Crowley
and Nordström and Crowley and Wraith [6, 9] proved the existence of such metrics on
certain bundles and exotic manifolds. In [7, 8] the first and third named authors built metrics
of positive Ricci curvature on several exotic manifolds and on the total space of bundles
where the fibers and/or the base spaces are exotic manifolds, or even when the base manifold
is a so-called Shrinking Ricci Soliton ( [7, 8] are particularly related to the ones of Searle and
Wilhelm, Nash and Poor). With different aims, the works of Gilkey, Park and Tuschmänn
[14] and Belegradek and Wei [3] are also interesting references for positive Ricci curvature
on bundles.

Riemannian submersions play an important role in the construction of manifolds with
positive curvature properties due to the O’Neill submersion formula, which implies that
Riemannian submersions do not decrease sectional curvature. However, it is not necessarily
true that Riemannian submersions preserve positive Ricci curvature (see [27]).

On the other hand, one may ask whether one can lift positive curvature from the base of a
Riemannian submersion to its total space. There is an easy counterexample to this question:
simply consider the projection onto the first coordinate RP2 × RP2 → RP2. The base
of this submersion has positive sectional curvature, however Synge’s Theorem implies that
the positive sectional curvature cannot be lifted to the total space since π1(RP2 × RP2) ∼=
Z2 × Z2.

A next natural question is can one lift positive Ricci curvature from the orbit space? Searle
and Wilhelm [32] answered this question in affirmative for a large class of submersions.

Theorem 1.1 [Searle–Wilhelm, [32]] Let (M, g) be a compact Riemannian manifold
endowed with a G-action satisfying

(SW1) G is a compact connected Lie group acting effectively and by isometries;
(SW2) A G-principal orbit has finite fundamental group;
(SW3) RicM/G ≥ 1 in the orbital distance metric.

Then M carries a G-invariant metric of positive Ricci curvature.

The main idea in the proof of Theorem 1.1 is to perform a conformal change on the metric
g followed by a standard deformation, commonly used for constructing metrics of non-
negative/positive sectional curvature, called Cheeger deformation (see [5, 23] for instance).
Based on the proof’s delicate estimates and the lack of examples, the question was raised: is
it possible to prove Theorem 1.1 using only Cheeger deformations?

Motivated by the two questions above, we provide a deep analysis of the behavior of
the Cheeger deformation near singular orbits. As a consequence, we answer in negative the
second question (TheoremA); simplify the proof of a result in [19] (Theorem1.3); recover the
celebrated result on the existence of metrics of positive scalar curvature under non-Abelian
symmetry assumptions [22] (Theorem 1.2); and improve the condition for positive sectional
curvature in [4] (Theorem E).

As the first result, we show that it is not always possible to lift positive Ricci curvature
from the quotient only by using Cheeger deformation. Or, equivalently, we show that the
conformal change in the proof of Theorem 1.1 was applied in an essential way (see the
family of examples presented in Sect. 5.1.1 for details):
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Theorem A There are Riemannian manifolds satisfying the hypotheses of Theorem 1.1 that
do not develop positive Ricci curvature after any Cheeger deformation.

TheoremA is proved through a fully algebraic characterization of sufficient conditions for
a manifold to admit a G-invariant metric that does not develop positive Ricci curvature after
Cheeger deformation. Such a characterization is obtained by reducing the study to tangent
vectors at singular orbits, that are fixed by the isotropy representation, which we call fixed
axes. Afterwards, we recognize these algebraic conditions in terms of geometric obstructions.
This is the content of Theorem 5.9, which has Proposition 5.8 as a local converse.

Related to what we just mentioned, given p ∈ M , denote by ρ : G p → O(Hp) the
restriction of the isotropy representation at p to Hp = (TpGp)⊥, and let G0

p denote the
identity component of the isotropy subgroup G p . We prove:

Theorem B Let (M, g) and G satisfy (SW1)-(SW3). Then, if g has directions with negative
Ricci curvature after any finite Cheeger deformation, it follows that

1. there is a point q in a singular orbit and a non-zero vector X ∈ Hq which is fixed by
ρ(G0

q);
2. the restriction of ρ to Hq ∩ span{X}⊥ is reducible.

In particular, we conclude some simple criteria for Cheeger deformations to allow the
development of positive Ricci curvature under the hypotheses (SW1)-(SW3):

Corollary C Let (M, g) and G satisfying (SW1)-(SW3). Then g develops positive Ricci
curvature after a finite Cheeger deformation if any of the following conditions hold:

(a) the singular strata are composed of isolated orbits;
(b) isotropy representations have no non-zero fixed points;
(c) the isotropy representation ρ : G0

q → O(Hq) is irreducible at every point in the singular
strata.

Moreover, item (a) can be viewed as a condition on the quotient M/G:

Corollary D Suppose that (M, g) and G satisfy (SW1)-(SW3). Then g develops positive
Ricci curvature after a finite Cheeger deformation if the singular strata of the quotient M/G
is 0-dimensional.

The analysis here employed is rich enough to furnish a better understanding of Cheeger
deformations, making it possible to produce other positive curvatures, or at least furnishing
some criteria for it. For instance,we recall that in [22], Lawson andYau construct ametricwith
positive scalar curvature on any compact manifold M endowed with an action of a compact
non-Abelian Lie group G. The proof considers a copy of SU (2) ⊆ G (or SO(3) ⊆ G)
and is broken in two parts: one first applies the canonical deformation to the S3 fibers (see
[2] for details) on the regular part; then delicate estimates are made near the singular strata,
independent of the deformation parameter. A downside of the construction is the loss of
symmetry. By using Cheeger deformations, we maintain the original symmetry and reduce
the problem near singular orbits to elementary estimates. More precisely, we re-prove:

Theorem 1.2 (Lawson–Yau) Let (M, g) be a compact Riemannian manifold. Suppose that G
is a compact Lie group with non-Abelian Lie algebra that acts effectively on M by isometries.
Then g develops positive scalar curvature after a finite Cheeger deformation.

In the realm of sectional curvature, we generalize the condition for positive sectional
curvature in [4], by replacing the canonical deformation, whichwould onlywork for principal
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S3- or SO(3)-bundleswith totally geodesic fibers, with Cheeger deformations. An interesting
property of the condition below is an almost complete decoupling of the threemain ingredients
that characterize the geometry of the regular part Mreg: the geometry of thefiber; the dynamics
of the horizontal distribution; and the geometry of the base. This fact should be extremely
useful in applying analysis methods to problems of existence of positive sectional curvature
on principal bundles.

To better understand the statement of Theorem E, we recall that given a biinvariant inner
product Q on g, for every point p in a principal orbit, we denote by � : Hp×Hp → mp the
curvature 2-form of the bundle Mreg → Mreg/G, where Mreg stands for the open, dense
and convex set where each two orbits are diffeomorphic to each other. More precisely, given
two horizontal vector fields X , Y , we define �(X , Y ) as the unique element in mp , where
mp is identified via isometric action vectors with the tangent space to the orbit through p,
such that

�(X , Y )∗ = −[X , Y ]V = −2AX Y ,

where A : Hp×Hp → Vp stands to the so-called O’Neill tensor and the superscript ∗ refers
to action vectors. Observe that it can also be equivalently characterized by:

g(�∗X V ∗, Y ) = Q(�(X , Y ), V ) = −2g(A∗X P−1V ∗, Y ),

where P is uniquely characterized by g|Vp (·, ·) = Q(P·, ·). In particular, −2A∗P−1V ∗ =
�∗V .

Theorem E Suppose that G is compact and that G/G p has positive sectional curvature as
a normal homogeneous manifold for every p ∈ Mreg. Then secgt > 0 for any sufficiently
large t if, and only if, there is k > 0 such that

(RM/G(X , Y , Y , X)− k‖X ∧ Y‖2g)
( 12 Q(Hess P−1(X)V , V )+ 1

4‖�∗X V ‖2g − k‖X‖2g Q(P−1V , V ))

≥ Q((∇X �)X Y , V )2 (1)

for every X , Y ∈ Hp, V ∈ g and p ∈ Mreg.

By recalling that Cheeger deformation preserves positive sectional curvature, one con-
cludes that the condition in Theorem E is a necessary condition for a manifold to have
positive sectional curvature (even before applying a Cheeger deformation).

Finally, Theorem 1.1 demands positive Ricci curvature on the quotient. This is not possible
if the quotient is an interval, as in the case of cohomogeneity-one actions. By studying the
limit behavior of the Cheeger deformation, we also use our techniques in this direction,
recovering a special case of a result of Grove and Ziller:

Theorem 1.3 (Grove–Ziller, [19]) Suppose that M is a compact cohomogeneity one manifold
such that

(i) M has two singular orbits;
(ii) a principal orbit has a finite fundamental group.

Then, there is an invariant metric g on M with positive Ricci curvature.

The paper is structured as follows: the definition, construction and basic facts about
Cheeger deformations are gathered in Sect. 2. The main estimates around singular orbits
are in Sect. 3. Section 4 applies the theory so far to prove Theorems E, 1.3, 1.2 and item 1
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of Theorem B. In Sect. 5 we begin providing some algebraic description of the Ricci ten-
sor on fixed axes, proving item 2 of Theorem B. The examples that ensure Theorem A are
described in Sect. 5.1.1. Finally, Sect. 5 fully describes sufficient conditions, despite present-
ing some obstructions, to positive Ricci curvature be lifted from orbit spaces. Later on, the
characterizations they provided are recognized as geometric data.

2 Cheeger deformations on G-manifolds

We follow [23] and [38] to give a brief review on the procedure known as Cheeger deforma-
tions. Specifically, we recall some results that we shall need in the rest of this work.

2.1 Cheeger deformations and its associated tensors

Let (M, g) be a Riemannian manifold endowed with an isometric action by a compact Lie
group G with a biinvariant Riemannian metric Q. We recall that, for each point p ∈ M , the
map g → gp induces a diffeomorphism ofG

/
G p onto the orbitGp, whereG p is the isotropy

subgroup at p. Moreover, the metric Q induces an orthogonal decomposition g = gp ⊕mp ,
where gp stands for the Lie algebra of G p and mp is isomorphic to TpGp via action fields:

g � U → U∗p =
d

dt

∣∣∣
t=0etU p,

where etU denotes the Lie group exponential map.
We call the tangent space to the orbit at p the vertical space at p and denote TpGp = Vp;

the g-orthogonal complement of Vp in Tp M is called the horizontal space at p and is denoted
byHp . Thus, every tangent vector X ∈ Tp M can be uniquely written as X = X+U∗p , where
X ∈ Hp and U ∈ mp . We omit the subscript p in U∗p whenever there is no risk of ambiguity.

The Cheeger deformation consists of a 1-parameter family of G-invariant Riemannian
metrics on M produced by an appropriate shrinking of the metric g in the orbit’s direction. It
preserves the horizontal space at each point together with its metric. This procedure promptly
generalizes the classical Canonical Variation (see [16, Example 2.1.1, p. 56]) on G-principal
bundles.

To construct the family of metrics, consider the following free isometric G-action on
(M × G, g + 1

t Q):

r(p, g) := (r p, rg), ∀r ∈ G. (2)

The map π̄ : (p, g) → g−1 p defines a diffeomorphism between the quotient and M , thus
inducing a 1-parameter family of Riemannian metrics gt . One observes that gt (Hp,Vp) = 0
and that gt |Hp = g|Hp for every p ∈ M .

Definition 2.1 We call the resulting metric gt the Cheeger deformation of g (at time t).

The metric gt can be completely described by the following tensors:

Definition 2.2 • The orbit tensor at p is the linear map P : mp → mp defined by

g(U∗, V ∗) = Q(PU , V ), ∀U∗, V ∗ ∈ Vp.

• The deformed orbit tensor of gt at p is defined to be the linear map Pt : mp → mp such
that

gt (U
∗, V ∗) = Q(PtU , V ), ∀U∗, V ∗ ∈ Vp.
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• The metric tensor of gt at p is the linear map Ct : Tp M → Tp M satisfying

gt (X , Y ) = g(Ct X , Y ), ∀X , Y ∈ Tp M .

All three tensors are symmetric, positive definite, and related in the following way:

Proposition 2.3 (Proposition 1.1, [38])

1. Pt = (P−1 + t1)−1 = P(1+ t P)−1,
2. Given X = X +U∗ then Ct (X) = X + ((1+ t P)−1U )∗.

Remark Concerning our comment on the fact that Cheeger deformations can be seen as a
1-parameter subgroup, just observe that: at least in the case of principal bundles, we can see
the orbit tensor P as a section of the bundle over M in which the fibers are automorphisms
of the Lie algebra g of G. In this manner, using the fact that P is a symmetric tensor, one
can check that the Cheeger deformed tensor Pt corresponds to the flow associated to the
following ODE:

{
d
dt ψ(t) = −(ψ(t))2,

ψ(0) = P
(3)

The metric tensor Ct also plays a crucial role in the computation of the sectional curvature
of gt . As initially observed by Cheeger and essential in the work of Müter (see [23]), the
expression of the sectional curvature of gt is much more natural when computed in the
reparameterized plane C−1t X ∧C−1t Y , instead of the original X ∧Y . Specifically, it is better
to consider the following quantity:

κt (X , Y ) := Rgt (C
−1
t X , C−1t Y , C−1t Y , C−1t X) (4)

where Rgt stands for the (4,1) Riemannian curvature tensor

Rgt (X , Y , Z , W ) = gt (∇X∇Y Z − ∇Y∇X Z − ∇[X ,Y ]Z , W ).

In particular, one concludes that the reparameterized sectional curvature is non-decreasing
in t :

Theorem 2.4 (Proposition 1.3, [38]) Let X = X + U∗, Y = Y + V ∗ be tangent vectors.
Then,

κt (X , Y ) = Rg(X , Y , Y , X)+ t3

4
‖[PU , PV ]‖2Q + zt (X , Y ), (5)

where zt is bilinear in each entry, non-decreasing, and zero at t = 0. Moreover, at points on
the regular stratum, it can be written as

zt (X , Y ) = 3t

∥∥∥∥(1+ t P)−1/2P∇v
X

Y − (1+ t P)−1/2t
1

2
[PU , PV ]

∥∥∥∥

2

Q
.

Remark A precise definition of zt , together with important properties, is given in Lemma
3.5.
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2.2 The Ricci and scalar curvatures of a Cheeger deformation

Finally, we take advantage of Theorem 2.4 to present formulae for the limit Ricci curvature
of gt as t →∞ as well as for the scalar curvature scalgt for any t > 0.

In what follows, fix p ∈ M , denote X = X + U∗ ∈ Tp M and consider {v1, . . . , vk}, a
Q-orthonormal basis of eigenvectors of P with eigenvalues λ1 ≤ . . . ≤ λk . Additionally,
consider a g-orthonormal basis {e1, ...., en} for Tp M , where {ek+1, ..., en} is a basis for Hp

and ei = λ
−1/2
i v∗i for i ≤ k.

Definition 2.5 We define the horizontal Ricci curvature of g at p as

RicH(X) :=
n∑

i=k+1
Rg(X , ei , ei , X). (6)

Lemma 2.6 For any X = X +U∗ ∈ Tp M one has

lim
t→∞Ricgt (X) = RicHg (X)+ lim

t→∞

n∑

i=1
zt (Ct X , C1/2

t ei )+ 1

4

∑

j

‖[v j , U ]‖2Q .

Moreover, the scalar curvature of gt is given by:

scalgt (p) =
n∑

i, j=1
κ0(C

1/2
t ei , C1/2

t e j )+ zt (C
1/2
t ei , C1/2

t e j )

+
k∑

i, j=1

λiλ j t3

(1+ tλi )(1+ tλ j )

1

4
‖[vi , v j ]‖2Q . (7)

Proof Using Proposition 2.3, it is easy to check that {C−1/2t ei }ni=1 is a gt -orthonormal basis

for Tp M . Moreover, C−1/2t ei = (1 + tλi )
1/2ei for i ≤ k and C−1/2t ei = ei for i > k. We

claim that the Ricci curvature of gt satisfies:

Ricgt (X) =RicHg (Ct X)+
n∑

i=1
zt (C

1/2
t ei , Ct X)

+
k∑

i=1

1

1+ tλi

(
κ0(ei , Ct X)+ λi t

4
‖[vi , t P(1+ t P)−1U ]‖2Q

)
. (8)

Indeed, note that Eq. (5) implies that

Ricgt (C
−1
t X) =

n∑

i=1
Rgt (C

−1/2
t ei , C−1t X , C−1t X , C−1/2t ei ) =

n∑

i=1
κt (C

1/2
t ei , X)

=
n∑

i=1
κ0(C

1/2
t ei , X)+

n∑

i=1
zt (C

1/2
t ei , X)+ t3

4

k∑

i=1
‖[PC1/2

t λ
−1/2
i vi , PU ]‖2Q

= RicHg (X)+
n∑

i=1
zt (C

1/2
t ei , X)+

k∑

i=1

1

1+ tλi

(
κ0(ei , X)+ λi t

4
‖[vi , t PU ]‖2Q

)
.
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Equation (8) now follows by replacing X by Ct X above. Besides, limt→∞ Ct X = X . There-
fore RicHg (Ct X)→ RicHg (X) and

k∑

i=1

1

1+ tλi
κ0(ei , Ct X)→ 0.

Moreover,

k∑

i=1

tλi

1+ tλi

1

4
‖[vi , t P(1+ t P)−1U ]‖2Q →

k∑

i=1

1

4
‖[vi , U ]‖2Q .

Equation (7) follows from an analogous calculation. ��

3 The behavior of Cheeger deformations at singular orbits

In this section, we shall explore the limit behavior of Cheeger deformations at a singular
orbit (Definition 3.1) and its influence on the sectional, Ricci, and scalar curvatures. Although
relatively elementary, these consist of the main steps in the article.

Let (M, g) be a compact connected Riemannian manifold equipped with an isometric
action by a compact Lie group G. We recall that, as a consequence of the Slice Theorem (see,
for example [1, Theorem 3.49, p. 65]), there is an open dense convex set, Mreg ⊆ M , called
the regular stratum of the G-action, where the orbits have maximal dimension. In particular,
for all p, q ∈ Mreg it holds that mp and mq are isomorphic. Moreover, the restriction of the
quotient projection Mreg → Mreg/G defines a Riemannian submersion (see [1, Theorem
3.82, p. 75]).

Definition 3.1 The orbit through any point p ∈ Mreg is called either a regular orbit or a
principal orbit. Both the strata M \ Mreg and any orbit through it are called singular.

To motivate our interest in singular orbits, we recall that [7, Theorem 6.3, p. 33] and
[32, Proposition 6.7] implies that, after Cheeger deformation, one can uniformly make the
Ricci curvature positive in any compact K ⊆ Mreg , as long as principal orbits have finite
fundamental group and the quotient G K/G has positive Ricci. It is then only left to produce
positiveRicci around singular orbits. To this aim, one usually needs two ingredients: estimates
on the Ricci curvature at singular orbits and understanding the right hypothesis needed for
these bounds to guarantee positive curvature. We deal with the first ingredient in this section.
For the second part, we must consider how Searle–Wilhelm’s hypothesis (SW3) affects the
geometry. This is relatively more delicate and is done in Sect. 5.

This claim about positive Ricci in K ⊆ Mreg easily follows from the limit expres-
sion in Lemma 2.6. Indeed, this is achieved since zt is non-negative and the hypotheses
of RicM/G ≥ 1 and |π1(G/G p)| < ∞ are translated as positive RicHg and positive
∑

j ‖[v j , U ]‖2, respectively (see Sects. 4 and 5 below). However, once in a singular orbit, the
RicHg -term becomes less related to the (SW3)-hypothesis and we are compelled to rely on
zt to produce new curvature estimates. As a result, this section is devoted to the (interesting,
but usually less explored) zt -tensor.

Let q ∈ M \ Mreg and consider a horizontal geodesic s → γ (s) starting at q with initial
velocity X ∈ Hq . Assume further that γ ((0, ε]) ⊂ Mreg for some ε > 0. We will see that
Rgt (X ,−,−, X) has a very special behavior with respect to vectors which are the limit of
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Gq -action fields. As a first step, denote the restriction of the isotropy representation of Gq

to Hq by ρ : Gq → O(Hq) and observe that the differential of ρ at the identity e ∈ Gq

defines a linear map dρ : gq → o(Hq). Since the geodesic exponential is a Gq -equivariant
map from Tp M to M , it follows that

dρ(U )X = (∇X U∗)q .

We can naturally define an extension of this skew-symmetric transformation (with fixed
X ) as the linear map

S̃X : g→ Tq M

U → ∇X U∗q .

We also remark that the restriction U∗(s) := U∗(γ (s)) is a Jacobi field, since isometric
action vector fields are Killing.

Lemma 3.2 Let q be a point in a singular orbit and X ∈ Hq . Assume that the horizontal
geodesic γ : [0, ε] → M defined as γ (s) = expq(s X) intersects the regular stratum for any
s > 0. Then

1. The image S̃X (gq) is contained inHq . Moreover, for ε > 0 sufficiently small, the following
defines a smooth bundle on γ ([0, ε))

H̃s =
{
Hγ (s) if s > 0

(S̃X (gq))⊥ if s = 0.

2. the kernel of the restriction S̃X |gq coincides with gX , the Lie algebra of G X = {g ∈
Gq | ρ(g)X = X}.

Proof We follow [35] (see also [16]). Consider the following family of Jacobi fields:

J = {U∗|γ | U ∈ g} + {J | J (0) = 0, J ′(0) ∈ Hγ (0)}.
Given J1, J2 ∈ J , as in [16], we have

g(J ′1(s), J2(s)) = g(J1(s), J ′2(s)) (9)

for all s. That is, J is a (n− 1)-dimensional family of normal Jacobi fields with self-adjoint
Riccati operator. We remark that Eq. (9) can be used to define a symplectic 2-form, see [17,
Section 1.1].

From [16, 35] it follows that

γ̇ (s)⊥ = span{J (s) | J ∈ J } ⊕ span{J ′(s) | J ∈ J , J (s) = 0} (10)

is an orthogonal splitting of γ̇ (s)⊥ ⊂ Tγ (s)M . In particular, if U∗(0) = 0, then for every
V ∈ g we have

g(∇X U∗(0), V ∗(0)) = g(U∗(0),∇X V ∗(0)) = 0.

Therefore, ∇X U∗(0) ∈ Hp . Observe further that J1 = {U∗|γ |U ∈ g} is itself a family with
self-adjoint Riccati operators. Therefore, as stated in [35],

V (s) = {J (s) | J ∈ J1} + {J ′(s) | J ∈ J1, J (s) = 0}
is smooth along γ . In particular, V (s)⊥ = H̃s is smooth. Item 2 follows directly from the
identity dρ(U )X = ∇X U∗(0). ��

123



490 L. F. Cavenaghi et al.

Denote by pX := gq ∩ (gX )⊥ the Q-orthogonal complement of gX on gq . Then Lemma
3.2 says that the restriction S̃X |pX : pX → Hq is injective. We define:

Definition 3.3 Let q ∈ M be singular and X ∈ Hq be such that the horizontal geodesic
expq(s X) lies in the regular part for every s > 0.

• Elements on the image S̃X (pX ) are called fake horizontal vectors with respect to X .
• Given Y ∈ Hq , we denote by YpX the unique element in pX = gq ∩ (gX )⊥ such that

S̃X YpX is the orthogonal projection of Y onto S̃X (gq).

Remark The idea of taking the limit of horizontal vectors along horizontal geodesics is also
present in Searle–Wilhelm [32, section 4]. Here we provide straightforward estimates for zt .

3.1 The term zt

Let X ∈ Hq be a horizontal vector at q ∈ M \Mreg and suppose that expq(s X) lies in Mreg

for s ∈ (0, ε]. Note that, since the regular stratum is dense, there is an open and dense set
of horizontal directions with such a property and for which the following estimate holds.
Therefore, it must hold for every X , Y . The main result of this section is stated as:

Proposition 3.4 Let X , Y ∈ Hq \ {0}, where Y is a fake horizontal with respect to X. Then,

zt (X , Y ) ≥ 3t
‖S̃X YpX ‖4g
‖YpX ‖2Q

. (11)

In what follows, we prove Proposition 3.4. To this aim, for any Z ∈ g define the auxiliary
1-form

wZ : T M → R (12)

X → 1
2 g(X , Z∗), (13)

where Z∗ is the action vector associated with Z . We shall use Lemma 3.2 and Lemma 3.5
below, that provides a characterization of zt . For a proof, see [23, p. 23, Lemma 3.9]. We
remark, however, that contrary to [23, 38], we use the convention dω(X , Y ) = Xω(Y ) −
Yω(X)− ω([X , Y ]).

Lemma 3.5 For every X = X +U∗, Y = Y + V ∗, zt satisfies

zt (X , Y ) = 3t max
Z∈g,
‖Z‖Q=1

{dwZ (X , Y )+ t
2 Q([PU , PV ], Z)}2

tg(Z∗, Z∗)+ 1
. (14)

Moreover, at regular points,

dwZ (X , V ∗) = 1

2
Xg(V ∗, Z∗) = −g(SX V ∗, Z∗), (15)

dwZ (X , Y ) = −1

2
g([X , Y ]V , Z∗) = −g(AX Y , Z∗), (16)

where AX Y = pV (∇X Y ), SX V ∗ = −pV (∇X V ∗) and pV denotes the orthogonal projection
onto V = H⊥.
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Proof of Proposition 3.4 Given a fake horizontal Y ∈ S̃X (pX ), we define

Y (s) := 1

s
Y ∗pX

(γ (s)), (17)

where γ (s) is the geodesic generated by X . It is easy to see that Y (s) is well-defined and,
according to Lemma 3.2,

lim
s→0

Y (s) = ∇X Y ∗pX
(0) = dρ(YpX )X = Y . (18)

Our next goal consists in computing dwZ (Y , X). In what follows, we write X(s) =
d
ds exp(s X) and, for any W ∈ g, we let W ∗(s) := W ∗(γ (s)). We claim that

lim
s→0+

dwZ (Y (s), X(s)) = g
(
Y ,∇X Z∗(0)

)
. (19)

Indeed, on the one hand, for any s > 0, Eq. (15) implies that

dwZ (Y (s), X(s)) = 1

2s
dωZ (Y ∗pX

(s), Z∗(s)) = 1

2s
Xg(Y ∗pX

(s), Z∗(s)).

On the other hand, since Y ∗pX
(0) = 0, Eq. (15) gives

0 = dwZ (Y ∗pX
(0), X) = 1

2
Xg(Y ∗pX

, Z∗)|s=0. (20)

Therefore,

lim
s→0+

dwZ (Y (s), X(s)) = 1

2

∂2

∂s2

∣∣∣
s=0g(Y ∗pX

(s), Z∗(s))

= 1

2

{
g

(
D2

ds2
Y ∗pX

(0), Z∗(0)
)
+g

(
Y ∗pX

(0),
D2

ds2
Z∗(0)

)
+2g

(
D

ds
Y ∗pX

(0),
D

ds
Z∗(0)

)}
.

The claim follows since D2

ds2
Y ∗pX

(0) = −R(Y ∗pX
(0), X(0))X(0) = 0 and, according to Eq.

(18), one has D
ds Y ∗pX

(0) = Y .

Now observe that, since zt (X , Y ) ≥ 0, Proposition 3.4 follows immediately if Y⊥S̃X (gp),
once YpX = 0. If YpX �= 0, take Z = YpX /‖YpX ‖Q on Eq. (14) and apply Eq. (19). Since

Z∗(0) = 0 and D
ds Z∗(0) = S̃X Yp

‖Yp‖Q
, one has

zt (X , Y ) ≥ 3t
g
(
Y , D

ds Z∗(0)
)2

tg(Z∗(0), Z∗(0))+ 1
= 3tg

(

Y ,
S̃X YpX

‖YpX ‖Q

)2

= 3t
‖S̃X YpX ‖4g
‖YpX ‖2Q

.

��

4 Sufficient conditions for positive curvatures and applications

In this section, we explore the blow-up behavior of zt . In particular, we prove Theorem B,
item 1, and Corollary D. We also analyze the limit of the sectional curvature under Cheeger
deformations, obtaining the condition in Theorem E. Finally, we apply the limiting analysis
to both cohomogeneity-one manifolds and scalar curvature, proving Theorems 1.3 and 1.2.
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4.1 Lifting positive Ricci curvature via Cheeger deformations

This paragraph is dedicated to the proof of the following result, which concerns our first goal
of this subsection.

Theorem 4.1 Let (M, g) be a compact Riemannian manifold with a G-action satisfying
(SW1)-(SW3). If, for every t > 0, there exists a unit vector X ∈ Tp M such that Ricgt (X) <

0, then there exists a point q ∈ M \Mreg and a non-zero vector X ∈ Hq fixed by the isotropy
representation at q.

For the proof, we need the following auxiliary result. Although it follows from [32,
Proposition 3.3], here we give a different proof based on Eq. (8).

Lemma 4.2 Consider the Riemannian submersion π : (Mreg, g) → (Mreg/G, ḡ). If p ∈
Mreg then

lim
t→∞Ricgt (X) = Ricḡ(dπ X), ∀X ∈ Hp. (21)

Proof Observe that

lim
t→∞Ricgt (X) = RicHg (X)+

n∑

i=1
lim

t→∞ z(C1/2
t ei , X)

as long as limt→∞ zt (C
1/2
t ei , X) exists for all i . Now, on the one hand, Lemma 3.5 (see also

[23] or [38]) gives:

zt (X , Y ) = 3 max
Z∈g
‖Z‖Q=1

{
g(AX Y , Z∗)2

g(Z∗, Z∗)+ t−1

}
(22)

zt (X , W ∗) = 3 max
Z∈g
‖Z‖Q=1

{
g(SX W ∗, Z∗)2

g(Z∗, Z∗)+ t−1

}
(23)

for all Y ∈ Hp , W ∈ g. In particular, zt (C
1/2
t ei , X)→ 0 for i ≤ k, since C1/2

t ei → 0, and
zt (X , Y )→ 3‖AX Y‖2g . On the other hand, O’Neill’s submersion formula and Eq. (5) give

Rḡ(dπ X , dπY , dπY , dπ X)− Rgt (X , Y , Y , X) = 3‖AX Y‖2g − zt (X , Y ),

completing the proof.

Proof of Theorem 4.1 Assume that, for every m ∈ N, there is a g-unit vector Xm = Xm +
U∗m ∈ Tpm M such that Ricgm (Xm) < 0. By compactness, we can pass to a convergent
subsequence to obtain m∗ > 0 and a limiting g-unit vector limm→∞ Xm = X ∈ Tp M , such
that Ricgm (X) ≤ 0 for all m > m∗. We will show that q = limm→∞ pm lies in a singular
orbit and that ρ(G0

q)X = X where G0
q stands for the connected component of the identity

of Gq .
Indeed, using the same bases as in Lemma 2.6, it gives

0 ≥ RicHg (X)+ lim
m→∞

n∑

i=1
zm(Cm X , C1/2

m ei )+ 1

4

∑

j

‖[v j , U ]‖2Q . (24)
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Writing X = X+U∗ and noting that, by Eq. (14) zm(CmU , C1/2
m )→ 0 as m →∞, Lemma

4.2 then implies that q lies in the singular strata, otherwise we would have

0 ≤ Ricg(dπ X)+ 1

4

∑

j

‖[v j , U ]‖2Q,

which contradicts the hypothesis of positive Ricci curvature on Mreg/G. Moreover, X �= 0,
since, otherwise (24) would imply that

0 ≥ lim
m→∞

n∑

i=1
zm(CmU∗, C1/2

m ei )+ 1

4

∑

j

‖[v j , U ]‖2Q . (25)

Equation (25) is a contradiction since zt is nonnegative and
∑

j ‖[v j , U ]‖2Q > 0 whenever

|π1(Gq)| < ∞. To conclude the latter, observe that the term
∑

j ‖[v j , U ]‖2Q is closely
related to the Ricci curvature of G/Gq in its normal homogeneous metric. Indeed,

RicG/Gq (U ) =
∑

j

‖[v j , U ]‖2Q +
∑

j

3‖[v j , U ]mq ‖2Q .

In particular, RicG/Gq (U ) = 0 if
∑

j ‖[v j , U ]‖2Q = 0. On the other hand, if |π1(Gq)| <∞,

RicG/Gq is a positive definite bilinear form. Therefore,
∑

j ‖[v j , U ]‖2Q = 0 implies U = 0,

a contradiction to the fact that X = U is g-unit.
To conclude that |π1(Gq)| < ∞, one uses the hypothesis (SW2): For every isotropy

subgroup H of points in the regular stratum, it holds that π1(G/H) is finite. Since we can
assume that, up to conjugation, H < Gq , the long exact sequence in homotopy Gq/H ↪→
G/H → G/Gq then gives:

· · · → π1(G/H)→ π1(G/Gq)→ π0(G p/H)→ {0}
Therefore, π1(G/Gq) is finite if, and only if, Gq/H has a finite number of connected com-
ponents. Which is true, since Gq is a closed subgroup of a compact group. We thus conclude
that X �= 0.

To conclude that X is fixed byρ(G0
q), note that, otherwise, therewould be a fake horizontal

vectorwith respect to X (Lemma3.2).Hence, by applyingProposition3.4,wewould conclude
that the sum

∑n
i=1 zm(Cm X , C1/2

m ei ) diverges, contradicting inequality (24).

To prove Corollary D, we further observe that the existence of an X fixed by ρ(G0
q) is

related to the existence of a geodesic inside the singular strata.

Proof of Corollary D Assume that there is X ∈ Hq \{0} fixed by ρ(G0
q). Since the exponential

map is ρ-equivariant, we have

g expq(s X) = expρ(g)q(ρ(g)s X) = expq(s X)

for every s and g ∈ G0
q . Therefore, Gexpq (s X) ⊇ G0

q , so we conclude that expq(s X) is in
M \ Mreg . Therefore, the singular strata is not composed of isolated points, as wanted.

4.2 A condition for positive sectional curvature

To motivate our approach for the second goal, we make a small digression. As observed in
[31], Cheeger deformations “renormalizes” themetric in the foliation induced by theG-orbits
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as t →∞. More precisely, gt approaches ametric with totally geodesic orbits as t →∞. For
instance, assuming that the action is free, one can consider the connection metric g̃t defined
through the original vertical and g-horizontal spaces by: g̃t (H,V) = 0; g̃t |H = gt |H; and
g̃t (U∗, V ∗) = t−1Q(U , V ).

Roughly, gt approaches g̃t as 1/t2. So much so that, recalling that a Cheeger deformation
does not produce negative curvature, one is tempted to conjecture the following:

Conjecture 4.3 Suppose that G is a compact Lie group that acts freely and by isometries on a
compact Riemannian manifold (M, g). If g has positive sectional curvature, then M admits
a metric with nonnegative sectional curvature where every G-orbit is totally geodesic.

As pointed out in [28], this conjecture implies strong restrictions in themanifold, including
that the related principal bundle M → M/G is fat, i.e., for any non-zero horizontal vector
X and any horizontal extension X̃ of it, it holds that [X̃ ,H]V = V; (we redirect the reader to
[33, 39] or [16] for definitions and results). This implies, for instance, Petersen–Wilhelm’s
dimension restriction conjecture (see [11]), for the case of principal bundles.

Although it provides a promising approach,Cheeger deformation does not solve conjecture
4.3 directly. Heuristically, the difference between the curvatures of gt and g̃t decreases as 1/t .
Since the (vertizontal) curvature of both decaywith 1/t2, the approaching speed is not enough
to guarantee that g̃t has non-negative curvature. More specifically, Theorem E provides one
(and the only one) curvature condition that is preserved under Cheeger deformation.

Here we explore the limit behavior of the Cheeger deformation and present a necessary
and sufficient condition for a G-manifold to have positive sectional curvature after finite
Cheeger deformation. Although seemly hard to apply, this condition amounts to the intrin-
sic geometry of the fiber (decoded by the orbit tensor P) being relatively decoupled from
O’Neill’s integrability tensor.

Although the next lines are already presented in the Introduction, for the readers’ conve-
nience, we recall some notation before proceeding to the proof of the Theorem E. Given a
biinvariant inner product Q on g, for every p ∈ Mreg we denote by � : Hp×Hp → mp the
curvature 2-form of the bundle Mreg → Mreg/G. Specifically, given two horizontal vector
fields X , Y , we define �(X , Y ) as the unique element in mp such that

�(X , Y )∗ = −[X , Y ]
(see [16, p. 70].) It is equivalently characterized by:

g(�∗X V ∗, Y ) = Q(�(X , Y ), V ) = −2g(A∗X P−1V ∗, Y ).

In particular, −2A∗P−1V ∗ = �∗V . We now prove Theorem E. That is, if secG/G p > 0,
then gt has positive sectional for any t sufficiently large, if and only if

(RB(X , Y , Y , X)− k‖X ∧ Y‖2g)
( 12 Q(Hess P−1(X)V , V )+ 1

4‖�∗X V ‖2g − k‖X‖2g Q(P−1V , V ))

≥ Q((∇X�)X Y , V )2

for every X , Y ∈ Hp , V ∈ mp and p ∈ Mreg .

Remark Here we think of P as a function from M to the linear endomorphisms of g (setting
Pgp = {0}). Given a basis of g, Hess is computed as the Hessian of each entry in the matrix
of P on that basis.
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Proof of Theorem E Since κt is the unnormalized sectional curvature of gt reparametrized by
a continuous parameter, we conclude that secgt > 0 if and only if there exists k > 0, not
depending on any particular plane, such that limt→∞ κt (X , Y + V ∗) ≥ k‖X ∧ (Y + V ∗)‖2g .

Let p ∈ Mreg and consider the plane {X , Y } ∈ Gr2(Tp M)where X , Y is a g-orthonormal

pair. As pointed out in Section 2, C
− 1

2
t X , C

− 1
2

t Y is gt -orthonormal. We compute

Rgt (C
− 1

2
t X , C

− 1
2

t (Y + V ∗), C
− 1

2
t (Y + V ∗), C

− 1
2

t X) = κt (C
1
2
t X , C

1
2
t (Y + V ∗)).

Observe that the right-hand side decays like t−2. To correct this rate of decay, we consider
the following family of linear isomorphisms Lt : Tp M → Tp M :

Lt (Y + V ∗) = Y + t
1
2 C

1
2
t P−

1
2 V ∗. (26)

Note now that the term t
1
2 compensates the decay ofC

1
2
t while P− 1

2 works as a t-independent

renormalization which takes the leaf metric into account: g(P− 1
2 V ∗, P− 1

2 U∗) = Q(V , U ).
Furthermore, a direct calculation shows that limt→∞ Lt = P−1.

Now since the parametrization Lt still covers all planes of T M , it suffices to show that

lim
t→∞ κt (Lt X , Lt (Y + V ∗)) ≥ k‖X ∧ (Y + P−1V ∗)‖2g. (27)

To this aim, note that

lim
t→∞ κt (X , Y + t

1
2 C

1
2
t P−

1
2 V ∗) = κ0(X , Y )+ 2Rg(X , Y , P−1V ∗, X)

+κ0(X , P−1V ∗)+ z∞(X , Y + P−1V ∗), (28)

where (22) gives

z∞(X , Y + V ∗) := lim
t→∞ zt (X , Y + V ∗) = 3‖AX Y + SX V ∗‖2g. (29)

Also, we can see Eq. (28) as a quadratic function on V ∗ by considering the change
V ∗ → λV ∗, where λ ∈ C, resulting in a polynomial p(λ) = aλ2 + bλ + c, for some
a, b, c ∈ R.

Since for any degree two polynomial to be non-negative we only need to understand the
sign of the coefficients (a and c) and its discriminant b2 − 4ac, applying these criteria we
conclude that there exists k > 0 such that (27) holds if, and only if, there exists k > 0 such
that

(KM/G(X , Y )− k‖X ∧ Y‖2g)(κ0(X , P−1V ∗)− 3‖SX P−1V ∗‖2g − k‖X‖2g Q(P−1V , V ))

≥ 1

4
(Rg(X , Y , P−1V ∗, X)+ 3g

(
SX P−1V ∗, AX Y

)
)2,

where we have used that κ0(X , Y ) = KM/G(X , Y )− 3‖AX Y‖2.
Now let γ (s) be the geodesic defined by X . Recall that the restriction of V ∗ to γ defines a

holonomy Jacobi field (see [16, Definition 1.4.3, p.17]), or, equivalently, ∇V
X V ∗ = −SX V ∗.

Moreover, for any W ∈ g,

g(W ∗(γ (s)), P−1V ∗(γ (s))) = Q(PW , P−1V ) = Q(W , V )

does not depend on s.
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Gathering this informantion with the expression for the vertizontal curvature of a Rie-
mannian submersion (see [16, Corollary 1.5.1, p. 28])

Kg(X , V ∗) = 〈(∇SX )X V ∗, V ∗〉 − ‖SX V ∗‖2 + ‖A∗X V ∗‖2 (30)

one gets

κ0(X , P−1V ∗)− 3‖SX P−1V ∗‖2 = 1
2 Q(HessP−1(X)V , V )+ 1

4‖�∗X V ‖2g (31)

where we have used that

∇V
X (P−1s V )∗ = SX (P−1s V )∗ (32)

(we refer to [29] for further details).
We remark that Eq. (32), in its turn, follows from

g(∇V
X (P−1s V )∗, W ∗) = Xg((P−1s V )∗, W ∗)− g((P−1s V )∗,∇V

X W ∗)
= −g((P−1s V )∗,∇V

X W ∗)
= g((P−1s V )∗, (SX W ∗))
= g(SX (P−1s V )∗, W ∗).

The term Rg(X , Y , P−1V ∗, X) + 3g(SX
(
P−1V

)∗
, AX Y ) appears in [28] where it is

proved to be independent of P . Here we identify this term with −2Q( d
ds �(X , Y ), V ). We

assume ∇X X = ∇X YH = 0 until the end of the proof and recall that (see [16, section 1.9]):

Rg(X , Y ,
(
P−1s V

)∗
, X) = g((∇X A)X Y , P−1s V ∗)− 2g(SX

(
P−1s V

)∗
, AX Y ).

Therefore, (32) gives

Rg(X , Y , (P−1s V )∗, X)+3g(SX (P−1V )∗, AX Y )

= g((∇X A)X Y , (P−1V )∗)+ g(SX (P−1V )∗, AX Y )

= g
(∇X (AX Y ), (P−1V )∗

)+ g(SX (P−1V )∗, AX Y )

= Xg(AX Y , (P−1V )∗)
= −2X Q(�(X , Y ), V )

= −2Q(V ,∇X �(X , Y )).

��

4.3 Positive Ricci curvature of cohomogeneity-onemanifolds

Our next step is to prove Theorem 1.3. Cohomogeneity-one manifolds present a special
challenge. Here we again consider the limit behavior of the Cheeger deformation, but now
considering that there is no horizontal curvature. We deal with the case where the quotient
space is a closed interval M/G = [0, R] and denote π : M → [0, R] as the quotient map.
Let γ : [0, R] → M be a horizontal geodesic satisfying π ◦ γ (s) = s. Denote γ̇ = X . From
the G-invariance of the curvature, it suffices to show that Ricgt > 0 along γ . As in [19],
we use diagonal metrics and (to a lesser extent) a disk bundle argument to provide suitable
smoothness conditions at the singular orbits. In the process, we also show that not every
invariant metric has positive Ricci curvature, even after Cheeger deformation. This points to
the fact that M/G is flat, contrasting with Theorem 1.1.
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The natural stepswould be to produce an initialmetric g and then use a sequential argument
in the spirit of the proof of Theorem 4.1. To motivate the construction of the initial metric, we
invert the order of the steps,making explicit which conditions g must satisfy before producing
it. More precisely, Proposition 4.4 below provides necessary and sufficient conditions to the
existence of the desired metric with positive Ricci curvature. Theorem 1.3 then follows
verifying such conditions in a standard way. That said, the merit in our approach relies only
on establishing such a proposition.

In what follows, to emphasize the dependence of the orbit tensor along the points in M ,
we denote the orbit tensor at γ (s) by Ps .

Proposition 4.4 Suppose that (M, g) is a cohomogeneity one manifold whose orbits have
finite fundamental group. Then gt has positive Ricci curvature for all large t if and only if
there is c > 0 such that, for all s ∈ (0, R),

d2

ds2
tr P−1s ≥ c.

Proof We only prove the if part. The converse can be proven in a similar way.
Consider the function F(Y , t) = t Ricgt (Y ) where Y has unit g-norm (the t-factor is

essential since the Ricgt (Y ) might decay.) Arguing by contradiction, we assume that for
every m ∈ N there is Y m such that F(Y m, m) ≤ 0. By compactness, passing to a converging
subsequence, we obtain a g-unit vector Y such that limm→∞ F(Y , m) ≤ 0.

Denote by p ∈ γ ([0, R]) the footpoint of Y and decompose Y = Y + V ∗ into its
horizontal and vertical components. We first note that p must lie in a regular orbit: recall
that Gγ (0), Gγ (R) act transitively on their respective horizontal spheres, as noted in [18, 19].
Therefore, dρ(gp)Y �= {0}whenever p ∈ M \Mreg . Hence, Lemma 2.6 and Proposition 3.4
imply that Ricgt (Y ) would have an unbounded zt -term whether Y �= 0 (by summing it with
any fake horizontal) or V ∗ �= 0 (by summing it with Y ). Therefore, p ∈ Mreg , as claimed.

Now, since p lies in a regular orbit, RicHg (Y ) = 0 and conclude that V ∗ = 0; otherwise

we would have lim
m→∞Ricgm (Y ) ≥ 1

4

∑ ‖[vi , V ]‖2Q , which is positive whenever V ∗ �= 0.

Therefore, the limit vector Y is precisely the velocity γ̇ = X . To finish the proof, observe
that Eq. (8) gives

0 ≥ lim
m→∞ F(X , m) = lim

m→∞

k∑

i=1

m

1+ mλi

(
κ0(ei , X)+ zm(ei , X)

)

=
k∑

i=1

(
κ0(λ

−1
i v∗i , X)+ 3‖SX (λ−1i v∗i )‖2g

)

=
k∑

i=1

(
κ0(P−1s v∗i , X)+ 3‖SX (P−1s v∗i )‖2g

)
.

This finishes the proof since (31) gives

κ0(P−1s v∗i , X)+ 3‖SX (P−1s v∗i )‖2g =
1

2

d2

ds2
Q(P−1s vi , vi ) ≥ c.

��

We are now ready to prove Theorem 1.3.
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Proof of Theorem 1.3 Let π : M → [0, R] be the quotient projection and γ : [0, R] → M be
a horizontal geodesic satisfying π ◦γ (s) = s. Set γ̇ = X and recall that bothmγ (s) and Gγ (s)

do not depend on s ∈ (0, R). Write mγ (R/2) = n and Gγ (R/2) = H . A diagonal metric is a
metric satisfying Ps |ni = fi (s)2 id, where n = ⊕ni is an Ad(H)-invariant decomposition
of n.

Since (see for instance Lemma 3.3 in [19])

d2

ds2
tr P−1s =

∑ d2 f −2i

ds2
=

∑
−2 f ′′i

f 3i
+ 6

( f ′i )2

f 4i
,

we conclude Theorem 1.3 by showing that we can choose { fi } as a set of concave functions
such that, for each s ∈ [0, R], there is at least one index, say i , for which f ′′i < 0. Such
functions can be easily produced by imitating bundle metrics on the tubular neighborhoods
of each singular orbit, then manipulating the behavior of the functions in the regular part.

For instance, we choose the decomposition n = n− +n0+nR +n+ where: n− = gγ (0) ∩
gγ (R) is composed of vectors whose action fields vanish at both 0 and R; n0 = gγ (0)∩ (n−)⊥
(respectively, nR = gγ (R) ∩ (n−)⊥), composed of vectors whose action fields vanish only at
0 (respectively, at R); n+ = n ∩ (gγ (0) + gγ (R))

⊥ is composed of fields that never vanish.
Instead of choosing one function for each ni , we choose f0, f−, f+, fR relative to the new
decomposition.

Based on the geometry of disk bundles, see for instance the content of Lemma 3.3 in
[19], it is known that there is some A > 0 for which we can impose that: f−, f0 agree
with A−1 sin(At) near 0; f−, fR agree with A−1 sin(A(R − t)) near R; and fi is constant
near an extreme point where it does not vanish (see [19].) Since we are assuming that both
γ (0), γ (R) are at the singular orbits, both n0 + n−, nR + n− are non-trivial, therefore, we
guarantee that there are strictly convex functions around each singular orbit. Fixing these
conditions, it is straightforward to manipulate the functions fi in the interior of (0, s) so that
the desired concavity conditions hold. ��

4.4 Non-abelian symmetry and positive scalar curvature

Lawson and Yau in [22] prove that any Riemannian manifold (M, g) endowed with the
action of a non-Abelian compact connected Lie group G has a metric of positive scalar
curvature. The result was specially interesting at the time, since it guarantees both positive
scalar curvature in a plethora of exotic spheres and lack of symmetry in the examples of
exotic spheres without positive sectional curvature recently found by Hitchin [20].

The positively curved metric in [22] was obtained by reducing the group to S3 (or SO(3))
and then proceeding in two parts: they considered a bundle-like metric in a compact subset
of Mreg , with totally geodesic orbits, where they could freely apply the Canonical Variation
(see [16, Example 2.1.1, p. 56]); and then constructed fixedmetrics around the singular strata,
considering delicate estimates independent of the canonical variation. In particular, during
the procedure, the symmetry group is reduced to either S3 or SO(3). To our fortune, scalar
curvature is much more susceptible to become positive through Cheeger deformation than
Ricci or sectional curvature. Indeed, the blow-up of zt and the last term in (7) guarantee
positive scalar curvature in a straightforward manner, as long as g is non-abelian1.

As a result, we provide a simpler proof of the result of Lawson and Yau.

1 C. Searle and F. Wilhelm were already aware that Cheeger deformation yields this result.
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Proof of Theorem 1.2 Assume by contradiction that there is a sequence of points pm ∈ M
such that scalgt (pm) ≤ 0. By compactness, we conclude that there is a point p ∈ M such
that

lim
t→∞ scalgt (p) ≤ 0.

On the one hand, p cannot be regular since, in this case, there is c > 0 such that λi > c for
every i . Therefore,

λiλ j t3

(1+ tλi )(1+ tλ j )
‖[vi , v j ]‖2Q ≥ t

‖[vi , v j ]‖2Q
( 1c + 1)2

.

Assuming g non-Abelian, there is some pair i, j such that [vi , v j ] �= 0. Since
∑n

i, j=1 κ0

(C1/2
t ei , C1/2

t e j ) is bounded and zt is non-negative, by recalling Eq. (7), we conclude that
one can take t large enough so that scalgt (p) is positive.

On the other hand, p cannot be in a singular orbit: if p ∈ M \ Mreg , dim gp > 0 and
there is U such that U∗ is not the zero field but U∗(p) = 0. We claim that S̃Hp U �= {0}, thus
Proposition 3.4 and the arguments in the last paragraph shows that scalgt (p) is arbitrarily
large as t →∞, a contradiction to the existence of the sequence pm .

To prove S̃Hp U �= {0}, consider a g-unit horizontal vector X such that γ (s) = expp(s X)

is in Mreg for some interval (0, ε). Since U∗|γ is a non-zero Jacobi field and U∗(p) = 0,
∇X U∗(p) = S̃X U �= 0, as desired. ��

5 The Ricci tensor on fixed axes

Throughout this section we consider compact (M, g) and G also satisfying the hypotheses
of Theorem 1.1. Our main goal now is to prove Theorem A, besides giving some concrete
algebraic conditions for the existence of metrics whose no Cheeger deformation lifts positive
Ricci curvature. These examples are presented in Sect. 5.1.1. Also see Proposition 5.8 for a
local description of the metrics to be produced.

We start by showing that the only obstruction for lifting positive Ricci curvature is the term
RicHg at fixed axes (see definition 5.1 below. The term RicHg first appears in Eq. (8) in this
paper). This emphasizes the need for using a conformal change on the metric to guarantee
positive Ricci curvature everywhere. We soon shall see that the irreducibility of the isotropy
representation for every orbit at the singular strata implies that Cheeger deformations do
work on lifting positive Ricci curvature from the orbit space. Hence, in Sect. 5.1 we shall
study some combinatorial and algebraic descriptions of the Ricci tensor on the fixed axes to
provide a general picture of whether Cheeger deformations can be used as a single tool to
produce positive Ricci curvature.

Though such algebraic characterization proves to be very useful in providing the needed
examples to complete TheoremA, it is natural to translate it in terms of some geometric data.
This is the content presented in Sect. 5.2.

Definition 5.1 Let q ∈ M \ Mreg . We say that a vector X ∈ Hq is a fixed axis if it is fixed
by ρ(G0

q), or equivalently, if S̃X = 0.

Remark • Since fixed axes are only defined at points in a singular orbit, from now on it is
implicit we are considering only such points.
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• The complete failure of Cheeger deformations for lifting positive Ricci curvature, as we
shall see, is completely characterized by the isotropy representation action, parametrizing
the so-called fake horizontal vectors. The equivalent definition of fixed axes, provided in
Definition 5.1, regarding S̃X , provides that only the infinitesimal aspect of the isotropy
group plays some role, namely, only its Lie algebra. This justifies why we restrict the
definition of fixed axes only at the identity connected component of each isotropy sub-
group.

Proposition 5.2 Let X ∈ Hq be a fixed axis. Then for every Y ∈ Hq one has that

zt (X , Y ) = 0, ∀t . (33)

In particular, lim
t→∞Ricgt (X) = RicHg (X).

Proof According to Eq. (14) it suffices to prove that dwZ (X , Y ) = 0 for every Z ∈ g. To
do so, we use the definition of the exterior derivative also recalling that the isometric action
field Z∗ is a Killing vector field:

2dwZ (X , Y ) = Xg(Z∗, Y )− Y g(Z∗, X)− g([X , Y ], Z∗)
= g(∇X Z∗, Y )+ g(Z∗,∇X Y )− g(∇Y Z∗, X)− g(Z∗,∇Y X)− g([X , Y ], Z∗)
= 2g(∇X Z∗, Y )+ g(Z∗, [X , Y ])− g([X , Y ], Z∗)
= 2g(S̃X Z , Y )

= 0.

To conclude the limit, given V ∈ g, extend X and V ∗ by the respective derivatives of
ϕ(t, s) = etV expp(s X), so that X is a horizontal field and [X , V ∗] = 0. We have,

2dωZ (X , V ∗) = Xg(V ∗, Z∗)− V ∗g(X , Z∗)− g([X , V ∗], Z∗)
= g(∇X V ∗, Z∗)+ g(V ∗,∇X Z∗)
= −2g(X ,∇V ∗ Z∗)− g(X , [V ∗, Z∗])
= −2g(X , σ (V ∗, Z∗)),

where σ is the second fundamental form of the orbit. The limit now follows from Lemma
2.6 since both Rg and σ are bounded and Ct |V → 0. ��

Combining Proposition 5.2, Lemma 4.2 and Theorem 4.1 we get:

Corollary 5.3 Let (M, g) and G satisfy the hypotheses (SW1)-(SW2) of Theorem 1.1. Then
(M, gt ) has positive Ricci curvature for every sufficiently large t > 0 if, and only if,
RicHg (X) > 0 for every X ∈ H \ {0}.

The proof of Theorem A follows from Corollary 5.3. We shall use it to produce the
mentioned examples ofRiemannianmanifolds satisfying the hypotheses of Searle–Wilhelm’s
Theorem1.1 butwhichdonot developpositiveRicci curvature after anyCheeger deformation.
However, to proceed we need to furnish some algebraic description of the horizontal Ricci
curvature on fixed axes, which justifies the forthcoming discussion.

So let X ∈ Hq be a fixed axis and consider the operator RX := Rg(·, X)X . Given
Y ∈ Tq M , we recall that

ρ̃(r)RX (Y ) = Rg(ρ̃(r)Y , ρ̃(r)X)ρ̃(r)X = Rg(ρ̃(r)Y , X)X = RX (ρ̃(r)Y ), (34)
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for all r ∈ Gq , where ρ̃ : Gq → O(Tq M) is the full isotropy representation (not its restriction
to the horizontal space). Schur’s Lemma ( [30, p. 13, Proposition 4]) then implies that RX is
block diagonal on each irreducible subspace of ρ̃. We state this as a lemma:

Lemma 5.4 Let V ⊂ Tq M be ρ̃-irreducible. Then RX |V is a multiple of the identity.

Now since Hq is ρ̃-invariant one gets that RX (Hq) ⊆ Hq . Moreover, once RX (X) = 0
it follows that Hq ∩ span{X}⊥ is RX -invariant. From now on, unless otherwise stated, we
abuse notation and denote by RX the restriction RX : Hq ∩ span{X}⊥ → Hq ∩ span{X}⊥.
In this notation, we benefit from the useful expression RicHg (X) = tr RX .

Although Corollary 5.3 guarantees that g fails to develop positive Ricci curvature after
any finite Cheeger deformation if there exists a fixed axis X such that RicHg (X) < 0, and it is

reasonably simple to produce an arbitrary metric such that RicHg (X) < 0, condition (SW3)
does impose restrictions to RX .

More precisely: let l be the codimension of a regular orbit. Recalling that q ∈ M \ Mreg ,
one has that dimHq > l. Now, since limt→∞ Ricgt (X ′) ≥ 1 for every X ′ ∈ H in the regular
part (see Lemma 5.5), whenever W ⊆ Hq is a l-dimensional subspace which is the limit of
horizontal subspaces on the regular stratum, one gets

RicWg (X) :=
l−1∑

i=1
Rg(X , ei , ei , X) = lim

t→∞

l−1∑

i=1
Rgt (X , ei , ei , X) ≥ 1, (35)

where {e0 = X , e1, ..., el−1} is an orthonormal basis for W . The last equality follows since
zt (X , ei ) = 0 for all i (Proposition 5.2). On the other hand, the set of such W’s can be
restricted enough so that both (35) and RicHg (X) < 0 hold together.

To understand the former constrained relations, let c(s) be a smooth curve with c(0) = q
such that c(s) ∈ Mreg for s > 0. For every s, Hc(s) defines a curve in Grl(T M). Moreover,
any limit subspaceW of the curveHc(s) ∈ Grl(T M) as s → 0must satisfy (35).We conclude
that every limit of a sequence Hpi , pi ∈ Mreg , arises as the limit of the horizontal space
along a curve and we call it as a limit horizontal space.

Denote the set of all limit horizontal spaces at q as W̃q . In the next result, we give an
algebraic description of such spaces.

Lemma 5.5 Let W ∈ W̃q . Then there is Y ∈ Hq such that W = (S̃Y gq)⊥ = (dρ(gq)Y )⊥.

Proof Let c(s) be a smooth curve, c(0, ε) ⊆ Mreg , such that W is the limit of Hc(s). If
ε > 0 is sufficiently small, according to Lemma 3.2, a basis for Hc(s) can be taken as
{ 1s v∗1 , . . . ,

1
s v∗d , v∗d+1, . . . , v∗k }, where {v1, . . . , vk} is a basis formc(ε), v∗1 , . . . , v∗d ∈ gq and

v∗d+1, . . . , v∗k are Q-orthogonal vectors to gp. Since v∗i (c(s)) → 0 for all i ≤ d , it follows
that

lim
s→0+

1

s
v∗i (c(s)) = ∇c′(0)v

∗
i = S̃c′(0)v

∗
i .

The result then follows since the set {v1, . . . , vd} must span pX . ��
Lemma5.5 and its proofmotivates the following definition, needed to understandTheorem

5.9.

Definition 5.6 A non-zero vector Y ∈ Hq which generates a subspaceW such as in Lemma
5.5 is named a regular vector with respect to the isotropy representation ρ. We denote the
set of these vectors by R.
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Lemma 5.5 implies that, since X is a fixed axis (and hence dρ(gq)X = 0), it holds
that X ∈ W for all W ∈ W̃q . Gathering all the previous discussion, to prove Theorem A,
and hence, better understanding when Cheeger deformations are the only tool needed to lift
positive Ricci curvature from orbit spaces, we are interested in sets of vectors fulfilling the
following requirements:

(a) RicHg (X) < 0;
(b) RicWg (X) ≥ 1 for all W ∈ W̃q .

Indeed, condition (a) obstructs the lift of positive Ricci while (b) is necessary to fulfill
condition (SW3) in Theorem 1.1.

Now, observe that if Hq ∩ span{X}⊥ is ρ-irreducible, then RX is diagonal and hence,
condition (b) implies that RicHq (X) > 0. This verifies item 2. of Theorem B. For this
reason, the next subsection is solely devoted to understanding the Ricci tensor evaluated in
fixed axes based at points where the isotropy representation is reducible.

5.1 An algebraic description of the Ricci curvature

Here we present a combinatorial description of conditions (a) and (b). Specifically, we search
for algebraic conditions for the existence of a symmetric operator RX satisfying (a) and (b).
A metric realizing RX is then constructed a posteriori. For clarity sake, we first assume that
Hq = span{X} ⊕H1 ⊕H2, where theHi are ρ-irreducible subspaces. Lemma 5.7 provides
an easily computable condition for RX with exactly two distinct eigenvalues λ1, λ2.

Remark • Although the space Hq is metric dependent, the linear action of Gq in Hq is
equivalent to the classical isotropic representation of Gq in the quotient Tq M/Tq Gq .
Therefore, all calculations can be done using a fixed complement of Tq Gq .
• Aswe shall see, the irreducibility ofHi is not needed to produce the examples in Theorem

A.

Start by considering the complementary projections

pi : Hq → Hi .

Then for any G-invariant metric g and Y ∈ H1 ⊕H2,

RX (Y ) = λ1‖p1Y‖2g + λ2‖p2Y‖2g.
In particular, RicH(X) = λ1 dimH1 + λ2 dimH2 and for each W ∈ W̃q one has

RicW (X)g =
l∑

i=1

(
λ1‖p1ei‖2g + λ2‖p2ei‖2g

)
= λ1 tr(p1|W )+ λ2 tr(p2|W ). (36)

Remark Although the definition of W = (dρ(gq)Y )⊥ is metric dependent, the quantity

tr(p1|W ) = tr(p1)− tr(p1|dρ(gq )Y )

is not, as a direct computation shows.

The existence of λ1, λ2 satisfying (a) and (b) can be totally translated as properties of the
set

A = {(tr(p1|W ), tr(p2|W )) ∈ R
2 | W ∈ W̃q} :
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Problem 1 Let A ⊂ R
2 be a given collection of pairs of real numbers satisfying a + b =

l − 1 ∀(a, b) ∈ A. Find λ1, λ2 ∈ R such that

aλ1 + bλ2 ≥ 1, ∀(a, b) ∈ A (37)

and

λ1 dimH1 + λ2 dimH2 < 0. (38)

Lemma 5.7 gives necessary and sufficient conditions to solve Problem 1.

Lemma 5.7 Denote by A := dimH1 and B := dimH2. Problem 1 has an affirmative answer
if, and only if, either

inf
(a,b)∈A{a} >

A(l − 1)

A + B
, (39)

or

inf
(a,b)∈A{b} >

B(l − 1)

A + B
, (40)

Proof From conditions (37),(38) it is clear that λ1λ2 < 0.Moreover, if λ1, λ2 gives a solution
to Problem 1 then−λ1,−λ2 also gives a solution after interchanging the roles ofH1 andH2.
Since the two conditions stated in Lemma 5.7 only differ by the sign of λ1, we can assume
without loss of generality that λ1 > 0 and prove (39).

To see that (39) is necessary, suppose that Problem 1 has an affirmative answer for λ1 > 0.
Let (a, b) ∈ A. Equation (37) gives a > − λ2

λ1
b + ε

λ1
for some 0 < ε < 1. Hence, since

a + b = l − 1, we have a > (a − (l − 1)) λ2
λ1
+ ε

λ1
. Therefore,

a > (l − 1)
− λ2

λ1

(1− λ2
λ1

)
+ ε

λ1 − λ2
.

On the other hand, Eq. (38) gives A
B < − λ2

λ1
. Since the function f (x) = x

x+1 is increasing in
]0,∞[ we conclude that

a > (l − 1)
A
B

( A
B + 1)

+ ε

λ1 − λ2
= (l − 1)A

A + B
+ ε

λ1 − λ2
,

for every (a, b) ∈ A, proving condition (39).
Conversely, suppose that there is ε > 0 such that

a ≥ A(l − 1)+ 2εB

A + B

for every (a, b) ∈ A. Since a + b = l − 1, we have a(A + B) − 2εB ≥ A(a + b). Thus
a−2ε

b ≥ A
B whenever b �= 0. Choose λ1, λ2 such that λ1 > 0 and a−ε

b ≥ − λ2
λ1

> A
B . We

obtain 0 > λ1A + λ2B and λ1a + λ2b ≥ ε for every (a, b) ∈ A, b �= 0. The result then
follows a rescaling of λ1, λ2 since whenever λ1 > 0 Eq. (37) is automatically satisfied for
b = 0. ��

Having understood necessary and sufficient pointwise conditions to produce the needed
counterexamples to Theorem A, we now construct a local Riemannian metric that fails to
develop positive Ricci curvature after any finite Cheeger deformation:
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Proposition 5.8 Suppose that Hq admits a ρ-invariant subspace H1 and let X /∈ H1 be such
that

inf
W∈W̃q

{tr(p1|W )} > (l − 1) dimH1

dimHq − 1
. (41)

Then there is a G-invariant metric g on a neighborhood U of q satisfying

1. RicUreg/G ≥ 1,
2. Ricgt (X) < 0 for every Cheeger deformation gt of g.

Proof Since (41) is assumed, a direct application of Lemma 5.7 gives λ1, λ2 such that RX =
λ1 p1+λ2 p2 satisfies 1 and 2.Now, classical theory should give aG-invariantmetricwith such
prescribed curvature and this would complete the proof: In Riemannian normal coordinates
(using the exponential map as chart), the Taylor expansion of the metric at 0 has identity
as constant part, vanishing linear part (Christoffel’s symbols vanish at 0), and the quadratic
part is the curvature. Nevertheless, it is worth pointing it out that a double warped product
provides an explicit metric.

Consider a biinvariant metric Q on G and recall that there is a G-invariant neighborhood
of q equivariantly diffeomorphic to G ×ρ Hq . It suffices to define a ρ(Gq)-invariant metric
on Hq such that RX = λ1 p1 + λ2 p2 and RicW ≥ c for all W ∈ W̃q for some c > 0.

Write Hq ∼= R × R
n1 × R

n2 where R corresponds to the subspace spanned by the fixed
axis and R

n1 ,Rn2 correspond to the two ρ(Gq)-invariant subspaces H1,H2, respectively.
Now consider the metric:

ḡ = dt2 + φ2 (t) ds2
R

n1 + ψ2 (t) ds2
R

n2 , (42)

where ds2
R

ni is the standard flat metric of Rni and

φ(t) = 1√
λ1

sin
(√

λ1t
)
, (43)

ψ(t) = 1√−λ2
exp

(√−λ2t − b
)
, (44)

for some b > 0 to be fixed later. Following the notation of [25, p. 71], given V , V ′ ∈
TR

n1 , W , W ′ ∈ TR
n2 we have

Rḡ(X , V ) = λ1X ∧ V , (45)

Rḡ(X , W ) = λ2X ∧W , (46)

Rḡ(V , V ′) = λ1V ∧ V ′, (47)

Rḡ(W , W ′) = −λ2

(
exp(b −√−λ2t)2 − 1

)
W ∧W ′, (48)

Rḡ(V , W ) = −√−λ1λ2 cot(
√

λ1t)V ∧W , (49)

where X ∧ Y (v) = g(Y , v)X − g(X , v)Y . In particular, RX = λ1 p1 + λ2 p2. To verify that
RicWḡ ≥ c at q , identify R× R

n1 × R
n2 with Hq so that q is the point (t0, 0, 0), where

−√−λ1λ2 cot(
√

λ1t0) ≥ max

{
λ1, (1− λ2)

dimHq − 1

(l − 1) dimH1

}
. (50)

Choose b >
√−λ2t0. Using (45)-(49) we conclude that

RicW (αX + V +W ) = α2 RicW (X)+ RicW (V )+ RicW (W ),
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for all α ∈ R. Using λ1, λ2 given in Lemma 5.7, we guarantee that RicWḡ (X) ≥ 1 and

RicWḡ (V ) ≥ λ1‖V ‖2 (this follows from Eqs. (45),(47) and (49)). Finally. RicWḡ (W ) satisfies

RicWḡ (W ) ≥ K (X , W )+ tr(p1|W )(−√−λ1λ2 cot(
√

λ1t0))‖W‖2 ≥ λ1‖W‖2,

where the last inequality follows from (50) since tr(p1|W ) ≥ (l−1) dimH1
dimHq−1 .A suitable rescaling

of (42) completes the proof. ��
We now use the explicit local description given in Proposition 5.8 to prove Theorem A,

by providing the following family of examples:

5.1.1 A family of counterexamples

Here we prove TheoremA. To do so, we present a family of examples of manifolds satisfying
the hypotheses of Theorem 1.1, but that do not develop positive Ricci curvature after any
Cheeger deformation. The main idea consists of combining the algebraic description given
by the solution of Problem 1 with the local construction obtained in Proposition 5.8. Our
model example consists of a doubly warped metric on the sphere S

5 ⊂ R
6 with the usual

mono-axial SO(3)-action on it.
Consider S5 ⊂ R

6 endowed with the standard linear SO(3)-action given by the inclu-
sion SO(3) � A → diag(1, 1, 1, A) ∈ SO(6). Take q = (1, 0, 0, 0, 0, 0) and X =
(0, 1, 0, 0, 0, 0). Note that Gq = G X = SO(3). Moreover, the regular orbits are diffeomor-
phic to 2-spheres. Therefore, the dimension l of the horizontal space at points in a regular
orbit is 3.

Write Hq = span{X} ⊕ H1 ⊕ H2 where H1 is the ρ-invariant subspace spanned by
{(0, 0, 1, 0, 0, 0)} andH2 the ρ-invariant space spanned by the last three coordinates. In this
way, A = 1 and B = 3 in Lemma 5.7. Let us show that tr(p1|W ) > 1

2 for all W ∈ W̃q :
Given Y ∈ H1 ⊕ H2 one has that dρ(so(3))Y ⊂ H2. Therefore, (0, 0, 1, 0, 0, 0) ∈

(dρ(so(3))Y )⊥ for every Y . Using Lemma 5.5 we conclude that tr(p1|W ) = 1 for all W .
Moreover, Lemma 5.7 guarantees that there are λ1, λ2 such that if g satisfies RX |Hi = λi id
then Ricgt (X) < 0 for all sufficiently large t . To construct a global explicit Riemannian
metric with such a prescribed RX we consider the doubly warped metric

g = dt2 + φ2 (t) ds2
S2
+ ψ2 (t) ds2

S2
(51)

where t ∈
(

π

2
√

λ1
, π√

λ1

)
; φ is as in (43); and ψ(t) = 1√−λ2

sinh(
√−λ2t) for t ∈

(
π

2
√

λ1
, π

2
√

λ1
+ ε

)
smoothly extended so that (51) defines a smooth metric on S

5. Here,

the first ds2
S2

appearing in Eq. (51) corresponds to the first three coordinates in S
5 and the

second to the last three coordinates on it. The fixed points correspond to t = π/2
√

λ1, which
by the continuity of the metric are such that RX = λ1 p1 + λ2 p2. Moreover, the action is
polar and transitive in the second S2. Thus, its quotient space is a disc with the warped metric

g̃ = dt2 + 1
λ1

sin(
√

λ1t)2ds2
S2

,

which has positive constant curvature.
The sphere S5 with (a rescaling of) (51) is our first global example of a manifold satisfying

the hypotheses of Searle–Wilhelm’s theorem that does not develop positive Ricci curvature
after any Cheeger deformation.
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In higher dimensions, consider Sn with the standard mono-axial SO(n − 2)-action fix-
ing the first three coordinates. Take q = (1, 0, 0, ..., 0), X = (0, 1, 0, ..., 0), H1 =
span{(0, 0, 1, 0, ..., 0)} and H2 as the H1-orthogonal complement (in the standard metric
in R

n+1). Note that regular orbits have dimension n − 3. Similarly to the previous case one
proves that

tr(p1|W ) = 1 >
(l − 1) dimH1

dimHp − 1
= 2

n − 1

for every W ∈ W̃q . The analogous doubly warped metric has all the desired properties.

5.2 The algebraic characterization in geometric terms

On the one hand, we have decoupled geometric data from Ricci tensors on fixed axes to
algebraic terms (Problem 1) to accomplish the proof of Theorem A. On the other hand, it
is natural to try to understand if such algebraic conditions could be re-translated on other
geometric obstructions. With this aim, to provide a complete description of the “failure”
or not of Cheeger deformations for providing positive Ricci curvature, we proceed proving
Theorem 5.9 below.

Theorem 5.9 Let (M, g) be a compact Riemannian manifold with an effective isometric
action by a compact Lie group G satisfying the hypotheses (SW1)-(SW3) in Theorem 1.1.
Suppose that for every t > 0 there exists a unit vector X ∈ Tp M such that Ricgt (X) < 0. Let
q ∈ M \ Mreg such that X ∈ Hq is a non-zero vector fixed by the isotropy representation at
q, which when restricted to {X}⊥ ∩Hq is reducible.

If Hq ∩ span{X}⊥ has exactly m ρ-irreducible summands, namely Hq ∩ span{X}⊥ =
H1 +H2 + · · · +Hm, then (up to changing the order of the summands), for every regular
vector Y = Y1 + Y2 + · · · + Ym ∈ H1 +H2 + · · · +Hm there exist j0 �= i0 ∈ {1, . . . , m}
such that

dimH j0 − dim ρ(G0
q)Y j0 >

(l − 1) dim
∑

j �=i0 H j

dimHq − 1
,

where l is the codimension of a principal orbit.

Before proving Theorem 5.9, we briefly describe the corresponding analogue of Problem
1 in the case of an arbitrary number of ρ-invariant subspaces.

Let q ∈ M \ Mreg and X ∈ Hq be a fixed axis. If there exists a decomposition of
Hq ∩ span{X}⊥ into m ρ-invariant subspaces H ∩ span{X}⊥ = H1 ⊕ H2 ⊕ · · · ⊕ Hm , a
similar formulation to the existence of a metric satisfying (a) and (b) can be given.

Problem 2 Let A ⊂ R
m be a given collection of m-tuples of real numbers satisfying a1 +

a2 + · · · + am = l − 1, ∀(a1, . . . , am) ∈ A. Find λ1, λ2, . . . , λm ∈ R such that

n∑

i=1
aiλi ≥ 1, ∀(a1, . . . , am) ∈ A (52)

and
n∑

i=1
λi dimHi < 0. (53)
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Since the geometric data plays no role in the proof of Lemma 5.7, we can solve Problem
2 in a similar way:

Lemma 5.10 Let A1, . . . , Am be positive real numbers corresponding todimH1, . . . , dimHm.
Then Problem 2 has an affirmative answer if, and only if, there exist i0 �= j0 ∈ {1, . . . , m}
such that

inf
(a1,...,am )∈A{a j0} >

(l − 1)
∑

j �=i0 A j
∑m

k=1 Ak
, (54)

Proof If Problem2has an affirmative answerwith solutionλ1, . . . , λn , defineλi0 = maxi {λi }
and λ j0 = min j {λ j }. Inequality (54) then follows from Lemma 5.7 applied to the problem

⎛

⎝
∑

i �= j0

ai

⎞

⎠ λi0 + a j0λ j0 ≥ 1, (55)

Ai0λi0 +
⎛

⎝
∑

j �=i0

A j

⎞

⎠ λ j0 < 0, (56)

where (a1, . . . , an) ∈ Ã =
{
(
∑

i �= j0 ai , a j0) : (a1, . . . , am) ∈ A
}
⊂ R

2.

The converse is a straightforward consequence of Lemma 5.7 since we can choose i0 �= j0
arbitrarily and set λ = λ j = λi for all j, i �= j0. ��

We finally pass to the proof of Theorem 5.9 by recognizing inf{tr(p1|W )} as an invariant
quantity associated to the G-action. To this aim, fix a ρ-invariant inner product on Hq and
let R be the regular part of Hq with respect to ρ (recall Definition 5.6). Then:

Proposition 5.11 Suppose dρ(gq)X = 0 and Hq = span{X} ⊕ H1 ⊕ H2 is a ρ-invariant
decomposition. For every Y ∈ R, write Yi as its Hi -component. Then

inf
W∈W̃q

{tr(p1|W )} = inf
Y∈R{dimH1 − dim ρ(G0

q)Y1}.

Proof Let us fix Y = Y1+Y2 ∈ R and, for every α > 0, defineWα= (
dρ(gq)(αY1 + Y2)

)⊥.
It suffices to show that

inf
α>0
{tr(p1|Wα )} = dimH1 − dim ρ(Gq)Y1. (57)

Write Wα =W1 ⊕W2 ⊕Wα
12 where

W1 := ker p2 ∩Wα, (58)

W2 := ker p1 ∩Wα, (59)

Wα
12 :=Wα ∩ (W1 ⊕W2)

⊥ , (60)

where pi is the Hi -projection. Note that W1,W2 do not depend on α, since Wi = {Zi ∈
Hi | Zi ⊥ dρ(gq)Yi }. Observe also that the dimension of Wα

12 does not depend on α.
Moreover:

Lemma 5.12 There are constants c, C > 0, not depending on α, such that

1

1+ cα2 ≤
‖p1(vα)‖2
‖vα‖2 ≤ 1

1+ Cα2

for every vα ∈Wα
12.
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Proof LetM = dρ(gq)Y1⊕ dρ(gq)Y2 and note thatWα
12 ∈M. LetMα

12 be the orthogonal
complement of Wα

12 in M and note that both p1|Mα
12

, p2|Mα
12
are isomorphisms onto their

images: an element in ker p1|Mα
12
lies inH2 and is orthogonal to bothW2 andWα

12, however
p2(W2 +Wα

12) = H2 for every α > 0. Analogously, ker p2|Mα
12
= {0}. Moreover, given

Z1 + Z2 ∈M1
12, we have αZ1 + Z2 ∈Mα

12. In particular, there is an invertible linear map
T : p1(M)→ p2(M) such that

Z ∈Mα
12 ⇐⇒ Z = αZ1 + T (Z1), for some Z1 ∈ p1(M).

We conclude that:

W ∈Wα
12 ⇐⇒ W = W1 − α(T ∗)−1W1, for some W1 ∈ p1(M).

Using that ‖T ‖−1 ≤ ‖T−1‖ and ‖T ∗‖ = ‖T ‖, we have
‖W1‖2 + α2‖T ‖−2‖W1‖2 ≤ ‖W‖2 ≤ ‖W1‖2 + α2‖(T−1)‖2‖W1‖2.

��
Now we estimate tr(p1|Wα ). SinceW2 ⊂ ker p1, we take orthonormal bases {e1, ..., ed1}

and {eα
1 , ..., eα

d } for W1 and Wα
12, respectively, and consider:

tr(p1|Wα ) =
d1∑

j

〈p1e j , e j 〉 +
d∑

k

〈p1eα
k , eα

k 〉 = dimW1 +
d∑

k

‖p1eα
k ‖2.

Lemma 5.12 gives:

dimW1 + 1

1+ cα
dimWα

12 ≤ tr(p1|Wα ) ≤ dimW1 + 1

1+ Cα
dimWα

12. (61)

By taking α →∞ we conclude that infα{tr(p1|Wα )} = dimW1. On the other hand, H1 =
W1+dρ(gq)Y1. So it follows that dimW1 = dimH1−dim ρ(Gq)Y1, completing the proof.

��
The proof of Proposition 5.11 can be adapted when Hq ∩ span{X}⊥ is decomposed into

m ρ-invariant components:

Proposition 5.13 Suppose that dρ(gq)X = 0 and that Hq ∩ span{X}⊥ = span{X} ⊕H1 ⊕
H2⊕· · ·⊕Hm is a ρ-invariant decomposition. For every Y ∈ R, write Yi as itsHi -component.
Then there exists j0 ∈ {1, 2, . . . , m} for which

inf
W∈W̃q

{tr(p j0 |W )} = inf
Y∈R{dimH j0 − dim ρ(G0

q)Y j0}.

Proof Following the proof of Proposition 5.11, fix Y = Y1+· · ·+Ym ∈ R. For every α > 0,
define Wα= (

dρ(gq)(αY1 + Y2 + · · · + Ym)
)⊥, where Yi ∈ Hi .

Take j0 given by Lemma 5.7 and let Wα =W1 ⊕W2 ⊕Wα
12, where

W1 := (
⋂

i �= j0

ker pi ) ∩Wα, (62)

W2 := ker p j0 ∩Wα, (63)

Wα
12 :=Wα ∩ (W1 ⊕W2)

⊥ , (64)

where pi is the Hi projection. As in Proposition 5.11, W1,W2 and the dimension of Wα
12

do not depend on α. Moreover, Lemma 5.12 remains valid in this case and we can estimate
tr(p j0 |Wα ) as well.
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The same calculation performed in Proposition 5.11 yields

inf
α
{tr(p j0 |Wα )} = dimW1.

Since these dimensions are finite, it is clear thatW1=H j0 ∩
(
dρ(gq)Y j0

)⊥, which completes
the proof. ��

Now Theorem 5.9 follows by combining Theorem 4.1, Propositions 5.11 and 5.13 and
Lemma 5.10.
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