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Abstract
In this paper, we generalize some halfspace type theorems for self-shrinkers of codimension
1 to the case of arbitrary codimension.
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1 Introduction

The halfspace theorem says that “There is no non-planar, complete, minimal surface properly
immersed in a halfspace of R3.” The theorem is due to Hoffman and Meeks. In fact they
proved a stronger version, the strong halfspace theorem, “Two disjoint complete properly
immersed minimal surfaces in R

3 are planes” (see [14]).
The halfspace theorem is essentially a three-dimensional one. InRn, n > 3, the halfspace

theorem is false because there are minimal Catenoids with bounded height.
Many generalizations of the theorem have been made by several authors, see [8, 9, 19, 20,

22, 23] and references therein.
The first halfspace theorem for self-shrinker in codimension 1 was proved in [21] based

on the weighted parabolicity of self-shrinkers. A similar result in a more general setting was
proved recently in [15].

Theorem 1 [Theorem 3 in [21]; Theorem 1.1 in [2]] Let P be a hyperplane passing through
the origin. The only properly immersed self-shrinker contained in one of the closed halfspace
determined by P is � = P.

In contrast with the case of minimal surfaces, the halfspace theorem for self-shrinkers holds
true in any dimension. Moreover, one can consider a type of halfspace theorems for self-
shrinker containing inside or outside a hypercylinder.
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In 2016, Cavalcante and Espinar [2] showed some halfspace type theorems for self-
shrinkers of codimension 1 including Theorem 1 with a different proof.

Theorem 2 [Theorem 1.2 in [2]] The only complete self-shrinker properly immersed in a
closed cylinder Bk+1(R) × R

n−k ⊂ R
n+1, for some k ∈ {1, 2, . . . , n} and radius R, R ≤√

2k, is the cylinder Sk(
√
2k) × R

n−k .

Theorem 3 [Theorem 1.3 in [2]] The only complete self-shrinker properly immersed in an
exterior closed cylinder Ek+1(R) × R

n−k ⊂ R
n+1, for some k ∈ {1, 2, . . . , n} and radius

R, R ≥ √
2k, is the cylinder Sk(

√
2k) × R

n−k . Here Ek+1(R) = Rk+1 − Bk+1(R).

In 2018, Vieira and Zhou [26] proved similar results, where spheres or balls center at the
origin are replaced by ones with arbitrary centers and suitable radii. Recently, Impera, Pigola
and Rimoldi [18] recovered Cavalcante and Espinar’s results with short proofs by using
potential theoretic arguments.

The aim of this paper is to generalize the above hasflpace type results to the case of
arbitrary codimension. The first step in our approach is somewhat similar to the one in [18]
for codimension 1 but the use of maximal principle for weighted superharmonic functions
together with the weighted parabolicity of self-shrinkers is replaced by an application of
a divergence type theorem (Theorem 6). In fact our proofs recovered some key formulas
originally proved byColding andMinicozzi [7] for codimension 1 self-shrinkers and extended
for higher codimension by Arezzo and Sun [1].

We would like to thank Vieire, Rimoldi, Rosales for introducing us to their interesting
works and the others for helpful comments and suggestions.

2 Preliminaries

In this paper, we use the following notations:

1. Bk(a, R), the k-ball with center a and radius R;
2. Ek(a, R) = R

k − Bk(a, R), the complement of Bk(a, R);
3. Sk(a, R), the k-sphere with center a and radius R.

When the center of spheres or balls is the origin we simply write Bk(R), Ek(R), Sk(R).

2.1 Self-shrinkers

An n-dimensional submanifold � immersed in Rm,m > n, is called a self-shrinker, if

H = −1

2
XN , (1)

where H is the mean curvature vector of �, X is the position vector, and XN denotes the
normal part of X .

Self-shrinkers are self-similar solutions to the mean curvature flow and play an important
role in the study of its singularities. For more information about self-shrinkers as well as
singularities, we refer the readers to [5, 6, 16, 17].

A complete manifold �n in R
m is said to have polynomial volume growth if there exist

constants C and d such that for all R ≥ 1, there holds

Vol(Bm(R) ∩ �) ≤ CRd . (2)
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In [10], Ding-Xin proved that:

Theorem 4 [Theorem 1.1 in [10]] A complete non-compact properly immersed self-shrinker
�n in R

m,m > n, has Euclidean volume growth at most, i.e.

Vol(Bm(R) ∩ �) ≤ CRn

for R ≥ 1.

This result was previously proved by Cheng and Zhou [4] in the codimension one case.

2.2 Some typical examples

It is not hard to verify all of the followings are n-dimensional complete self-shrinkers in Rm .

1. An n-plane passing through the origin.
2. Sn(

√
2n) ⊂ R

n+1.

3. The cylinder Sk(
√
2k) × R

n−k ⊂ R
n+1, 0 < k < n.

4. Sn1(
√
2n1) × Sn2(

√
2n2) × . . . × Snk (

√
2nk) ⊂ R

n+1, n1 + n2 + . . . + nk = n.

5. Sn1(
√
2n1)× Sn2(

√
2n2)× . . .× Snk (

√
2nk)×R

p ⊂ R
n+1, p ≥ 1 and n1 + n2 + . . .+

nk + p = n.

6. n-dimensional complete minimal submanifolds of the sphere Sm−1(
√
2n) (see Theorem

4.1 in [1] or subsection 1.4 in [25]).

For some more well-known results about complete self-shrinkers, we refer the readers to
[7, 17, 21] for the case of codimension 1 and [3, 24] for the case of arbitrary codimension.

2.3 Some basic formulas

In this subsection, we calculate the surface divergence of some vector fields that will be used
in the proofs of the main results. The calculations are straightforward, but for the sake of
completeness we present them here.

Let e1, e2, . . . , em be the coordinate vector fields for Rm, �n be a complete self-shrinker
in R

m, {E1, E2, . . . , En} be an orthonormal basis for TX�, X = ∑m
i=1 xi ei be the position

vector field and u = ∑k+1
i=1 xi ei , k ≤ m − 1. We have the following lemma.

Lemma 5 1.

div� XT = n − 1

2
|XN |2. (3)

2.

div� eTl = −1

2
〈X , eNl 〉, l = 1, 2, . . . ,m. (4)

3.

div� xle
T
l = |eTl |2 − 1

2
xl〈X , eNl 〉, l = 1, 2, . . . ,m. (5)

4.

div� uT = (k + 1) − 1

2
|uN |2 −

k+1∑

i=1

|eNi |2. (6)
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5.

div�

1

|u|u
T = 1

|u|

[

k − 1

2
|uN |2 −

k+1∑

i=1

|eNi |2 + |uN |2
|u|2

]

. (7)

Proof We use the summation convention.

1. We have

div� X = n,

and

div� XN = 〈Ei ,∇Ei X
N 〉 = ∇Ei 〈Ei , X

N 〉 − 〈∇Ei Ei , X
N 〉

= ∇Ei (0) − 〈(∇Ei Ei )
N , X〉 = −〈H, X〉 = 1

2
|XN |2.

Therefore,

div� XT = n − 1

2
|XN |2.

2.

div� eTl = div� el − div� eNl = 0 − 〈Ei ,∇Ei e
N
l 〉

= 〈∇Ei Ei , e
N
l 〉 = 〈(∇Ei Ei )

N , el〉 = 〈H, el〉
= −1

2
〈X , eNl 〉.

3.

div� xle
T
l = div� xlel − div� xle

N
l = |eTl |2 − 〈Ei ,∇Ei xle

N
k 〉

= |eTl |2 + 〈(∇Ei Ei )
N , xlel〉 = |eTl |2 + 〈H, xlel〉

= |eTl |2 − 1

2
xl〈X , eNl 〉.

4. For v ∈ Tp�,

∇vu = π1(v) = 〈v, e1〉e1 + 〈v, e2〉e2 + . . . + 〈v, ek+1〉ek+1.

We have

div�(u) = 〈Ei ,∇Ei u〉 =
k+1∑

j=1

n∑

i=1

〈Ei , e j 〉2

=
k+1∑

j=1

|eTj |2 = (k + 1) −
k+1∑

j=1

|eNj |2,

and

div� uN = 〈Ei ,∇Ei u
N 〉 = ∇Ei 〈Ei , u

N 〉 − 〈∇Ei Ei , u
N 〉

= ∇Ei (0) − 〈(∇Ei Ei )
N , u〉 = −〈H, u〉 = 1

2
|uN |2.
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Therefore,

div� uT = (k + 1) − 1

2
|uN |2 −

k+1∑

i=1

|eNi |2.

5.

div�

1

|u|u
T =

〈

∇�

1

|u| , u
T
〉

+ 1

|u| div u
T

= −|uT |2
|u|3 + 1

|u| [(k + 1) − 1

2
|uN |2 −

k+1∑

i=1

|eNi |2]

= 1

|u|

[

k − 1

2
|uN |2 −

k+1∑

i=1

|eNi |2 + |uN |2
|u|2

]

.

��

3 A divergence type theorem

In this section, � is assumed to be an n-dimensional complete (without boundary) self-
shrinker properly immersed in Rm,m > n.

The condition of polynomial volume growth is essential for using an integral formula
that is similar to the generalized divergence theorem for compact manifolds. We have the
following theorem.

Theorem 6 Let F be a smooth tangent vector field on �. Assume that there exist positive
constants C and d such that | div� F(X)| ≤ C |X |d . Then

∫

�

div�(e− |X |2
4 F(X))dV = 0. (8)

Proof Suppose that � is inside a ball, since it is proper it must be compact and the theorem
holds true by divergence theorem.Now suppose that� is not inside any ball, i.e. ∂(BR∩�) =
∅ when R is large enough. Since F is tangent to �, the generalized divergence theorem for

e− |X |2
4 F yields

∫

BR∩�

div�(e− |X |2
4 F(X))dV = e− R2

4

∫

∂(BR∩�)

〈F(X), ν〉 d A.

Taking the limit when R → ∞, the theorem is proved because

lim
R→∞ e− R2

4

∣
∣
∣
∣

∫

∂(BR∩�)

〈F(X), ν〉 d A
∣
∣
∣
∣ = lim

R→∞ e− R2
4

∣
∣
∣
∣

∫

BR∩�

div� F(X)dV

∣
∣
∣
∣

≤ lim
R→∞ e− R2

4 CRd
∫

BR∩�

dV

≤ lim
R→∞ e− R2

4 C1CRd+n = 0.

The first and the second inequalities hold true because of the assumption and Theorem 4,
respectively. ��
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Applying Theorem 6 with suitable choices of tangent vector fields F, we obtain the main
results of the paper.

3.1 Halfspace type result w.r.t. hyperplanes

The following theorem says that � intersects every hyperplane passing through the origin.

Theorem 7 Let P be a hyperplane passing through the origin. If� lies in a closed halfspace
determined by P, then � ⊂ P.

Proof Without loss of generality, we can suppose that P is the hyperplane xm = 0 and � is
in the closed halfspace {(x1, x2, . . . , xm) : xm ≥ 0}.

By (4),

div�(e− |X |2
4 eTm) = e− |X |2

4 div� eTm − e− |X |2
4

1

2
〈X , eTm〉

= −1

2
e− |X |2

4

[
〈X , eNm 〉 + 〈X , eTm〉

]

= −1

2
e− |X |2

4 xm .

Then Theorem 6 applying for F = eTm yields (see [7] for the case of codimension 1, also see
[1])

∫

�

e− |X |2
4 xmdV = 0. (9)

Therefore, xm = 0, i.e. � ⊂ P.

��

Remark 8 If n = m − 1, then � = P ([21], Theorem 3; [2], Theorem 1.1).

Corollary 9 If there exist m − n orthonormal vectors v1, v2, . . . , vm−n such that for i =
1, 2, . . . ,m − n, 〈X , vi 〉 does not change sign, then � is an n-plane passing through the
origin.

Proof Without loss of generality,we can assume thatvi = en+i if 〈X , vi 〉 ≥ 0 andvi = −en+i

if 〈X , vi 〉 ≤ 0.The assumption guarantees that� is in the closed halfspace {(x1, x2, . . . , xm) :
xn+i ≥ 0, i = 1, 2, . . . ,m − n}. The proof is then followed by applying Theorem 7 in turn
for v1, v2, . . . , vm−n . ��

Based on the Bernstein result for self-shrinkers of codimension 1, “An entire graphic self-
shrinker must be a hyperplane passing through the origin” (see [11, 13, 27]), and with the
same argument as in the proof of Corollary 9, we have the following.

Corollary 10 [A Bernstein type theorem] Let F : R
n → R

m−n, F(x) = ( f1(x),
f2(x), . . . , fm−n(x)) be a smooth function and � = {(x, F(x)) : x ∈ R

n} be its graph.
If there exist at least (m − n − 1) functions fi that do not change sign, then � is an n-plane
passing through the origin.
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3.2 Self-shrinkers inside or outside a ball

The following theorem says that a complete properly immersed self-shrinker �n and
Sm−1(

√
2n) must be intersected.

Theorem 11 If� ⊂ Em(
√
2n) or� ⊂ Bm(

√
2n), then� is compact and� ⊂ Sm−1(

√
2n),

i.e.� is a minimal submanifold of Sm−1(
√
2n).Moreover, if n = m−1, then� = Sn(

√
2n).

Proof By (3),

div�(e− |X |2
4 XT ) = e− |X |2

4 div� XT − e− |X |2
4

〈
1

2
X , XT

〉

= e− |X |2
4

(

n − 1

2
|XN |2

)

− e− |X |2
4

1

2
|XT |2

= e− |X |2
4

(

n − 1

2
|X |2

)

.

Applying Theorem 6 with F = XT (see [7] for the case of codimension 1, also see [1]),
∫

�

e− |X |2
4

(

n − 1

2
|X |2

)

dV = 0. (10)

If � ⊂ Em(
√
2n) (� ⊂ Bm(

√
2n)), then 2n − |X |2 ≤ 0 (2n − |X |2 ≥ 0). By (10), it

follows that 2n − |X |2 = 0, i.e. � ⊂ Sm−1(
√
2n). Since � is proper, it must be compact.

The case of n = m − 1 is obvious. ��
The following theorem can be seen as an arbitrary codimension version of Theorem 1 in [26].
Here the proof is also applied to the case of self-shrinkers that are outside of spheres.

Theorem 12 1. Any complete self-shrinker�n properly immersed inRm,m > n, intersects
all members of the collection C given by

C := {Sm−1(a,
√
2n + |a|2) : a is a vector in Rm}.

2. If the � lies in Bm(a,
√
2n + |a|2) or in R

m − Bm(a,
√
2n + |a|2) then � ⊂

Sm−1(a,
√
2n + |a|2). Moreover, if n = m − 1, then � is the sphere Sn(

√
2n).

Proof From (9), it follows that
∫

�

e− |X |2
4 〈X , a〉dV = 0. (11)

Therefore, (10) and (11) yields
∫

�

e− |X |2
4 (|X − a|2 − (2n + |a|2))dV = 0. (12)

The theorem is proved easily by some arguments as in the proof of Theorem 11. Note that,
for codimension 1 case, the sphere Sn(a,

√
2n + |a|2) is a self-shrinker if and only if a = 0.

��
Remark 13 Theorem 5.1 in [12] shows another version of Theorem 11, where self-shrinkers
are assumed to be parabolic instead of proper. And a different proof of Theorem 11, stated
in terms of λ-self-shrinkers, was also done in [12] (Theorem 6.3).
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3.3 Halfspace type results w. r. t. cylinders

Theorem 14 [Self-shrinker inside a hypercylinder] Let k ∈ {m − n,m − n + 1, . . . ,m −
2}, p = m − k − 1 and R = √

2(n − p). If � is inside the closed cylinder Bk+1(R) × R
p,

then � ⊂ Sk(R) × R
p.

Proof By (5)

div�

(

e− |X |2
4 xi e

T
i

)

= e− |X |2
4

[

div�

(
xi e

T
i

)
− 1

2

〈
X , xi e

T
i

〉]

= e− |X |2
4

[

|eTi |2 − 1

2
xi

〈
X , eNi

〉
− 1

2
xi 〈X , eTi 〉

]

= e− |X |2
4

[

|eTi |2 − 1

2
x2i

]

.

Applying Theorem 6 with F = xi eTi ,we have (see [7] for the case of codimension 1, also
see [1])

∫

�

e− |X |2
4 x2i dV = 2

∫

�

e− |X |2
4 |eTi |2dV . (13)

Let {e1, e2, . . . , em} be the standard basis in R
m, where {e1, e2, . . . , ek+1} ⊂ R

k+1 and
{ek+2, ek+3, . . . , em} ⊂ R

p. Denote X = (u, v), where u ∈ R
k+1, v ∈ R

p.

By (10) and (13), we get
∫

�

e− |X |2
4

[

|X |2 − 2n −
m∑

i=k+2

x2i

]

dV =
∫

�

e− |X |2
4 [|u|2 − 2n]dV

= −2
∫

�

e− |X |2
4

m∑

i=k+2

|eTi |2dV .

Since |eTi |2 = 1 − |eNi |2, it follows that
∫

�

e− |X |2
4

[|u|2 − R2] dV = 2
∫

�

e− |X |2
4

m∑

i=k+2

|eNi |2dV ≥ 0.

The assumption that � is inside the closed cylinder Bk+1(R) × R
p, means

|u|2 − R2 ≤ 0.

Therefore,

|u|2 − R2 = 0,

i.e. � ⊂ Sk(R) × R
p. ��

Remark 15 1. We see in the above proof that eNi = 0, i.e. ei = eTi , i = k + 2, . . . ,m.

Therefore, � = � × R
p, where � ⊂ Sk is an (n − p)-dimensional self-shrinker, i.e. an

(n − p)-dimensional minimal submanifold of Sk .
2. If n = m − 1, then � = Sk(

√
2k) × R

n−k ( [2], Theorem 1.2).

Theorem 16 [Self-shrinker outside a hypercylinder] Let k ∈ {1, 2, ..., n}. If � is contained

in Ek+1(
√
2k) × R

m−k−1, then � ⊂ Sk(
√
2k) × R

m−k−1.
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Proof Let u = ∑k+1
i=1 xi ei . By (7)

div�

(

e− |X |2
4

1

|u|u
T
)

=
[

e− |X |2
4 div�

(
1

|u|u
T
)

− 1

2

〈

X ,
uT

|u|
〉]

= e− |X |2
4

1

|u|

[

k − 1

2
|u|2 −

k+1∑

i=1

|eNi |2 + |uN |2
|u|2

]

.

It is not hard to check that
k+1∑

i=1

|eNi |2 ≥ |uN |2
|u|2 .

Indeed, we have

|uN |2 =
∣
∣
∣
∣
∣

k+1∑

i=1

xi e
N
i

∣
∣
∣
∣
∣

2

=
k+1∑

i=1

x2i |eNi |2 + 2
∑

i = j

xi x j 〈eNi , eNj 〉

≤
k+1∑

i=1

x2i |eNi |2 +
∑

i = j

x2i |eNj |2

≤
(
k+1∑

i=1

x2i

) (
k+1∑

i=1

|eNi |2
)

= |u|2
(
k+1∑

i=1

|eNi |2
)

.

Applying Theorem 6 with F = 1

|u|u
T ,

∫

�

e− |X |2
4

1

|u|
(
2k − |u|2) dV ≥ 0. (14)

But the assumption that � is in Ek+1(
√
2k) × R

m−k−1 means

|u|2 − 2k ≥ 0

Therefore, |u|2 − 2k = 0, i.e. � ⊂ Sk(
√
2k) × R

m−k−1. ��
Remark 17 If n = m − 1, then � = Sk(

√
2k) × R

n−k ( [2], Theorem 1.3).

With the same arguments as in the proof of Theorem 12, we have the following theorem (see
Colollary 1, [26] for the case of codimension 1).

Theorem 18 1. If the self-shrinker �n lies inside the closed cylinder

Bk+1(a,

√

2(n − p) + |a|2) × R
p,

where a ∈ R
k+1, then � ⊂ Sk(a,

√
2(n − p) + |a|2) × R

p. Moreover, if n = m − 1,
then � = Sk(

√
2k) × R

n−k .

2. The self-shrinker cannot lie outside the closed cylinder

Bk+1(a,
√
2(k + 1) + |a|2) × R

p,

for any vector a in Rk+1.
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