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Abstract
The depth of squarefree powers of a squarefree monomial ideal is introduced. Let I be 
a squarefree monomial ideal of the polynomial ring S = K[x1,… , xn] . The k-th square-
free power I[k] of I is the ideal of S generated by those squarefree monomials u1 ⋯ uk 
with each ui ∈ G(I) , where G(I) is the unique minimal system of monomial genera-
tors of I. Let dk denote the minimum degree of monomials belonging to G(I[k]) . One has 
depth(S∕I[k]) ≥ dk − 1 . Setting gI(k) = depth(S∕I[k]) − (dk − 1) , one calls gI(k) the normal-
ized depth function of I. The computational experience strongly invites us to propose the 
conjecture that the normalized depth function is nonincreasing. In the present paper, espe-
cially the normalized depth function of the edge ideal of a finite simple graph is deeply 
studied.
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1 Introduction

Let K be a field, and let S = K[x1,… , xn] be the polynomial ring in n indeterminates 
over K. The depth function of a homogeneous ideal I is the integer valued function 
fI(k) = depth(S∕Ik) . While it is known by Brodmann [3] that fI(k) is constant for all k ≫ 0 , 
the initial behaviour of the depth function is not so easy to understand. In [10] it was con-
jectured that any bounded convergent function ℤ≥0 → ℤ

≥0 could be the depth function of a 
suitable ideal. This conjecture has been proved several years later by H.T. Hà, H. Nguyen, 
N. Trung and T. Trung in [9, Theorem 4.1].

For a longer time it was expected that the depth function of a squarefree monomial ideal 
is nonincreasing. Francisco, Hà and Van Tuyl [7] showed that this expected behaviour for 
the powers of unmixed height 2 squarefree monomial ideals would be a consequence of a 
combinatorial statement which says that for every positive integer k and every k-critical 
(i.e., critically k-chromatic) graph, there is a set of vertices whose replication produces a 
(k + 1)-critical graph. However in 2014, Kaiser, Stehlík and Šrekovski [16] gave a coun-
terexample to this and constructed an example of a squarefree monomial ideal I ⊂ S with 
depth(S∕I3) = 0 but depth(S∕I4) = 4 . It is still open whether the depth function of the edge 
ideal of a graph is nonincreasing.

In the present paper, we study squarefree monomial ideals and their squarefree pow-
ers. Several algebraic properties of such powers have been studied in [2, 6] and [5]. Let 
I ⊂ S be a squarefree monomial ideal. The uniquely determined minimal set of generators 
of I is denoted by G(I). We denote by I[k] the kth squarefree power of I. The generators 
of I[k] are the products u1 ⋯ uk with ui ∈ G(I) , which form a squarefree monomial. Thus 
u1 ⋯ uk ∈ G(I[k]) if and only if u1,… , uk is a regular sequence.

A case of special interest is the squarefree powers of the edge ideal of a graph. Let G 
be a finite simple graph on [n] = {1,… , n} , and let as before S = K[x1,… , xn] be the poly-
nomial ring in n variables over a field K. The edge ideal of G is the squarefree monomial 
ideal I(G) of S, which is generated by those xixj for which {i, j} is an edge of G. Now, given 
an integer k > 0 , the kth squarefree power of I(G) is the squarefree monomial ideal I(G)[k] 
of S which is generated by the squarefree monomials

where each {iq, jq} is an edge of G and where {iq, jq} ∩ {ir, jr} = � for q ≠ r . It follows that 
the minimal set of generators of I(G)[k] are in bijection to the vertex sets of k-matchings 
of G. Recall that a set M of edges of G is called a matching, if no distinct two edges of G 
have a common vertex. The matching M is called a k-matching, if |M| = k . The set of all 
matchings forms a simplicial complex, the so-called matching complex of G. The matching 
number �(G) of G is the maximum cardinality of a matching of G. We have I(G)[k] ≠ 0 if 
and only if k > 𝜈(G).

Let again I ⊂ S be an arbitrary squarefree monomial ideal. We denote by �(I) the 
maximum length of a monomial regular sequence in I. Thus if G is a graph, then 
�(I(G)) = �(G) . We are interested in the depth of the squarefree powers of I. Let 
dk = min{deg u u ∈ G(I[k])} . We also set d = d1 . Note that dk+1 ≥ dk + d ≥ (k + 1)d for all 
k < 𝜈(I) . Our first result is Proposition 1.1, where it is shown that depth(S∕I[k]) ≥ dk − 1 for 
k = 1,… , �(I) . In particular, in the important special case that I is generated in the single 
degree d, we have depth(S∕I[k]) ≥ dk − 1 for k = 1,… , �(I) . Thus, in contrast to ordinary 
powers, the depth function of squarefree powers tends to be nondecreasing. The picture 
changes, if we consider the function

xi1xj1xi2xj2 ⋯ xik xjk ,



411The normalized depth function of squarefree powers  

1 3

for k = 1,… , �(I) . We call gI(k) the normalized depth function of I. In all our results and 
the examples we considered, gI(k) is a nonincreasing function. This fact and also Corol-
lary 3.5 leads us to the following

Conjecture Let I be a squarefree monomial ideal. Then gI(k) is a nonincreasing function.

We say that the squarefree powers of I have minimum depth if gI(k) = 0 for all 
k = 1,… , �(I) . In Sect. 2, we give examples of ideals whose squarefree powers have mini-
mum depth. Among them are the edge ideals of complete graphs and complete bipartite 
graphs. More generally, any squarefree Veronese ideal as well as any matroidal ideal has 
minimum depth, see Examples 1.2 and Theorem 1.6.

In the following two sections, we focus on edge ideals and give criteria for minimum 
depth. One of the main results of this paper is

Corollary Let G be a graph with no isolated vertices and matching number �(G) . Then the 
following statements are equivalent: 

(1) Gc is disconnected.
(2) gI(G)(1) = 0.
(3) gI(G)(k) = 0 for all 1 ≤ k ≤ �(G).

For the proof of this result, the concept of well-ordered facet covers, due to Erey and 
Faridi [4], is used to give a non-vanishingness condition for Betti numbers of squarefree 
powers.

A subset D of vertices of a graph G is called a dominating set if every vertex of G which 
is not in D is adjacent to some vertex in D. A complete subgraph Km of G is called a domi-
nating clique if V(Km) is a dominating set. This notion of dominating cliques provides a 
sufficient condition for having minimum depth for a given squarefree power k. Indeed, we 
have

Theorem Let G be a graph and let 2 ≤ k ≤ �(G) . If G has a dominating clique K2k−1 , then 
gI(G)(k) = 0.

We call a k-matching M a dominating k-matching if V(M) is a dominating set. For edge 
ideals with the property that I[k] has linear quotients, we have a criterion for minimum 
depth, see Proposition 3.3. As corollaries we obtain

Corollary Let G be a graph with no isolated vertices and k be an integer with 1 ≤ k ≤ �(G) 
where I(G)[k] has linear quotients. If gI(G)(k) = 0 , then G has a dominating k-matching. In 
particular, the statement holds for any cochordal graph G with no isolated vertices.

Corollary Let G be a graph with no isolated vertices. Then gI(G)(�(G)) = 0.

As a final application for our minimum depth criterion, we discuss the depth of square-
free powers of edge ideals of multiple whiskered complete graphs which are obtained by 
attaching at least one whisker to each vertex of a complete graph Ks with s ≥ 2 . We denote 

gI(k) = depth(S∕I[k]) − (dk − 1)
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such a graph by G = H(a1,… , as) where ai ≥ 0 is the number of whiskers attached to the 
vertex i of Ks . For this family of graphs minimum depth is achieved in the second half of 
the interval [1, �(G)] . The precise result is the following.

Theorem Let G = H(a1,… , as) with ai ≥ 1 for all i = 1,… , s and let k = 1,… , �(G) . Then 
we have: 

(a) �(G) = s;
(b) G is cochordal;
(c) The following statements are equivalent: 

(1) gI(G)(k) = 0.
(2) ⌊s∕2⌋ + 1 ≤ k ≤ s.

Without any doubt, one of the most challenging open questions is to find all possible 
normalized depth functions. Our conjecture implies that if gI(k) = 0 , then gI(k + 1) = 0 for 
all k < 𝜈(I) . Therefore, as a partial answer to the above question, it would be nice to solve 
the following

Problem For given integers 1 ≤ s < m , find a finite simple graph G with �(G) = m and 

(1) gI(G)(k) > 0 for k = 1,… , s;
(2) gI(G)(k) = 0 for k = s + 1,… ,m.

Throughout the paper, unless otherwise stated, S = K[x1,… , xn] is the polynomial ring 
in n variables over a field K, all graphs and simplicial complexes have n vertices corre-
sponding to the n variables of S.

2  A lower bound for the depth of squarefree powers

In this section, we consider squarefree powers of any squarefree monomial ideal and pro-
vide a lower bound for their depth. Besides discussing several examples, we also show that 
the normalized depth function of a matroidal ideal is zero.

For the lower bound of the depth of squarefree powers we have the following result.

Proposition 1.1 Let I ⊂ S be a squarefree monomial ideal. Then 

(a) I[k] = 0 if and only if k > 𝜈(I);
(b) gI(k) ≥ 0 for all k = 1,… , �(I).

Proof (a) Let m = �(I) and v1,… , vm be a maximal regular sequence of monomials in I. 
Then for each i, there exists ui ∈ G(I) which divides vi , and hence u1,… , um is again a 
maximal regular sequence of monomials in I. In particular, gcd(ui, uj) = 1 for all i ≠ j . It 
follows that u1 ⋯ um is squarefree. This implies that I[k] ≠ 0 for any k ≤ �(I) . Any product 
of generators with more than m many factors cannot be squarefree, since these factors can-
not form a regular sequence. This shows that I[k] = 0 for k > m.
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(b) Let k = 1,… , �(I) . By using the Auslander-Buchsbaum formula, it suffices to show 
that proj dim(S∕I[k]) ≤ n − dk + 1 where dk = min{deg u u ∈ G(I[k])} . We observe that for 
any i > 0 for which �i,j(S∕I[k]) ≠ 0 , we have j ≥ dk + i − 1.

It follows from Hochster’s formula that n ≥ j for any j such that �i,j(S∕I[k]) ≠ 0 . There-
fore, n ≥ dk + i − 1 , as desired.   ◻

Let I be a squarefree monomial ideal, and let k be an integer with 1 ≤ k ≤ �(I) . We 
say that S∕I[k] has minimum depth (or simply say that I[k] has minimum depth when the 
polynomial ring is clear from the context) if gI(k) = 0.

Example 1.2 (a) Let � be the graded maximal ideal of S, and let I = �[d] for some d ≤ n . 
By [10, Corollary  3.4], we have depth(S∕I) = d − 1 . Since I[k] = �[kd] , it follows that 
depth(S∕I[k]) = dk − 1 for dk ≤ n.

(b) Consider the polynomial rings S1 = K[x1,… , xn] and S2 = K[y1,… , ym] , and let 
I ⊂ S1 and J ⊂ S2 be graded ideals. Moreover, let S = K[x1,… , xn, y1,… , ym] . Then [15, 
Corollary 3.2] implies that depth(S∕IJ) = depth(S1∕I) + depth(S2∕J) + 1.

In the given situation, assume that I is a monomial ideal generated in degree d1 and J 
is a monomial ideal generated in degree d2 . Then IJ is generated in degree d = d1 + d2 . 
We have (IJ)[k] = I[k]J[k] , since I and J are ideals in different sets of variables. There-
fore, depth(S∕(IJ)[k]) = depth(S1∕I

[k]) + depth(S2∕J
[k]) + 1 . By Proposition  1.1 we have 

depth(S∕(IJ)[k]) ≥ dk − 1 , depth(S1∕I[k]) ≥ d1k − 1 and depth(S2∕J[k]) ≥ d2k − 1 . Thus we 
see that S∕(IJ)[k] has minimum depth if and only if both S1∕I[k] and S2∕J[k] have minimum 
depth.

(c) Let I be the edge ideal of a complete bipartite graph with the vertex set partition 
[m] ∪ [n] . Then I = (x1,… , xm)(y1,… , yn) , and we may apply (a) and (b) to see that I[k] has 
minimum depth for all 1 ≤ k ≤ �(I).

(d) Let G be the graph which is a 3-cycle with two whiskers at each vertex, and let I be 
its edge ideal. It can be checked that depth(S∕I) = 5 and depth(S∕I[2]) = 3 . This shows that 
if I ⊂ S is a squarefree monomial ideal generated in a single degree, then depth(S∕I[k]) is 
not necessarily an increasing function of k. This example, and a related family of graphs 
will be studied in Sect. 3 in more details.

By the squarefree part of a monomial ideal J, we mean the ideal generated by square-
free generators of J. It is clear that for any k, the squarefree part of Jk coincides with J[k].

Let I ⊂ S be a squarefree monomial ideal generated in degree d, and suppose that 
I[k] = �[dk] for some k with dk ≤ n . Then not only S∕I[k] has minimum depth, but we 
also have I[�] = �[d�] for all � ≥ k (which then implies that S∕I[�] has minimum depth 
for � ≥ k with �k ≤ n ). This follows from Example 1.2  (a) and the next slightly more 
general result.

Proposition 1.3 Let I ⊂ J ⊂ S be squarefree monomial ideals, and suppose that I[k] = J[k] 
for some k. Then I[�] = J[�] for all � ≥ k.

Proof It suffices to show that I[k+1] = J[k+1] . For any two monomial ideals L and M we 
define the squarefree product, denoted by L ∗ M , as the squarefree part of LM. Since 
I[k] ⊆ I[k−1] ∗ J ⊆ J[k] = I[k] , it follows that I[k] = I[k−1] ∗ J . Then

I[k+1] = I ∗ I[k] = I ∗ (I[k−1] ∗ J) = (I ∗ I[k−1]) ∗ J = I[k] ∗ J = J[k] ∗ J = J[k+1].
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  ◻

Example 1.4 For n ≥ 4 , let Pn be the path graph with the vertex set [n] = {1,… , n} and 
edges {i, i + 1} for i = 1,… , n − 1 . Let G = Pc

n
 be the complementary graph of Pn with the 

edge ideal I. By Corollary 2.6, depth(S∕I) > 1 . In fact, we will show that depth(S∕I) = 2 . 
It suffices to show that proj dim(S∕I) ≥ n − 2 . Indeed, {1,… , n − 2} is a minimal vertex 
cover of G. By a well-known theorem of Terai [18], proj dim(S∕I) is equal to the regular-
ity of the Alexander dual of I. Since the regularity of the dual ideal cannot be less than the 
maximum degree of its minimal generators, the assertion follows.

We claim that depth(S∕I[k]) = 2k − 1 for 2 ≤ k ≤ �(G) . Indeed, if a, b, c, d are pairwise 
distinct vertices of Pn , then we may assume that {a, b} and {c, d} are non-edges of Pn . Then 
{a, b} and {c, d} are edges of G. This implies that I[2] = �[4] . Then I[k] = �[2k] for all k ≥ 2 
follows from Proposition 1.3. Then, Example 1.2(a) yields the desired conclusion.

Let I ⊂ S be a monomial ideal with linear quotients. In other words, the ele-
ments of G(I) can be ordered as u1,… , us such that for all i = 2,… , s , the colon ideal 
(u1,… , ui−1) ∶ ui is generated by variables. Let ri be the minimum number of variables 
generating this colon ideal. By [11, Corollary 8.2.2] one has

By the support of a monomial u, denoted by supp(u) , we mean the set of all i’s where xi 
divides u, and we put supp(I) = ∪u∈G(I)supp(u).

In the sequel we will use the following lemma.

Lemma 1.5 Let I be a squarefree monomial ideal with G(I) = {u1,… , us} , and let 
J = (u1,… , us−1) ∶ us . If v ∈ G(J) , then vus is squarefree. In particular, v is squarefree and 
supp(v) ∩ supp(us) = �.

Proof Since v ∈ J , it follows that uj|vus for some j = 1,… , s − 1 . It follows that uj 
divides w =

∏
i∈supp(vus)

xi which is a squarefree monomial, because uj is squarefree. 
Since us is squarefree, we have w = v�us where v′ is a squarefree monomial with v′|v and 
supp(v�) ∩ supp(us) = � . Therefore, v� ∈ J . Since v ∈ G(J) , it follows that v� = v .   ◻

Now we use (1) to show the following theorem for matroidal ideals (i.e. squarefree 
polymatroidal ideals). See, for example, [11, Section 12.6] for more properties of poly-
matroidal ideals.

Theorem  1.6 Let I ⊂ S = K[x1,… , xn] be a matroidal ideal with supp(I) = [n] . Then all 
squarefree powers of I have minimum depth.

The proof of Theorem 1.6 will follow immediately from the next two results.

Proposition 1.7 Let I ⊂ S = K[x1,… , xn] be a matroidal ideal with supp(I) = [n] . Suppose 
that I is generated in degree d. Then depth(S∕I) = d − 1.

Proof By [12, Lemma 1.3] we know that I has linear quotients. Let u1,… , us be a lin-
ear quotients order for the elements of G(I). By Lemma 1.5, we have ri ≤ n − d for all i. 
Let A = {i i ∉ supp(us)} . Then |A| = n − d . Let i ∈ A . Then there exists uj such that xi|uj . 

(1)depth(S∕I) = n −max{r2,… , rs} − 1.
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By the exchange property of matroidal ideals, there exists k such that xk|us , xk ∤ uj and 
xi(us∕xk) ∈ I . This implies that xi ∈ (u1,… , us−1) ∶ us . Hence, rs = n − d and (1) implies 
that depth(S∕I) = n − (n − d) − 1 = d − 1 , as desired.   ◻

Proposition 1.8 The squarefree part of a polymatroidal ideal is a matroidal ideal.

Proof Let I be a polymatroidal ideal with G(I) = {u1,… , us} and let I′ be the squarefree 
part of I with G(I�) = {v1,… , vr} . Let vi, vj, xk satisfy xk|vi, xk ∤ vj . Since I is polymatroidal, 
there is x

�
 with x

�
∤ vi, x�|vj for which x

�
(vi∕xk) ∈ G(I) . Since x

�
(vi∕xk) is squarefree, it 

follows that x
�
(vi∕xk) ∈ G(I�) . Thus I′ is a matroidal ideal, as desired.   ◻

Proof (Theorem  1.6) By [10, Theorem  12.6.3], Ik is a polymatroidal ideal generated in 
degree kd. Proposition  1.8 implies that I[k] is a matroidal ideal generated in degree kd. 
Thus, Proposition 1.7 completes the proof.   ◻

3  Minimum depth for squarefree powers of edge ideals

In this section, we give a characterization of squarefree powers of edge ideals which 
have minimum depth with respect to reduced homologies of a certain simplicial com-
plex. In particular, we give a more explicit classification of all edge ideals which have 
minimum depth. We show that all squarefree powers of such ideals have minimum depth 
as well. Moreover, we give a sufficient condition for squarefree powers of edge ideals in 
terms of the so-called dominating cliques to have minimum depth.

Recall that a simplicial complex Δ on a finite vertex set V(Δ) is a set of subsets of 
V(Δ) such that {v} ∈ Δ for every v ∈ V(Δ) and if F ∈ Δ , then G ∈ Δ for every G ⊆ F . An 
element F ∈ Δ is a face of Δ and a facet is a face of Δ which is maximal with respect to 
inclusion. The set of all facets of Δ is denoted by Facets(Δ) . If Facets(Δ) = {F1,… ,Fq} , 
then we write Δ = ⟨F1,… ,Fq⟩.

Now, we define a simplicial complex related to matchings of a graph. Let G be a 
graph and k = 1,… , �(G) . Then, we define

It is easily seen that Γk(G) is a simplicial complex on V(G) whose Stanley-Reisner ideal is 
I(G)[k] . In particular, Γ1(G) is the well-known independence complex of G (or equivalently 
the clique complex of the complementary graph Gc of G) whose Stanley–Reisner ideal is 
the edge ideal of G.

We know from Proposition  1.1 that for any graph G, the depth of S∕I(G)[k] is at 
least 2k − 1 . In the following proposition, we give an equivalent condition for attaining 
this lower bound.

Proposition 2.1 Let G be a graph and k = 1,… , �(G) . Then the following statements are 
equivalent: 

(1) gI(G)(k) = 0.
(2) H̃2k−2(Γk(G);K) ≠ 0.

Γk(G) = {F ⊆ V(G) ∶ V(M) ⊈ F for any k-matching M of G}.
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Proof By the Auslander-Buchsbaum formula, we know that (i) is equivalent to 
proj dim(S∕I(G)[k]) = n − 2k + 1 which holds if and only if �n−2k+1,n(S∕I(G)[k]) ≠ 0 , since 
I(G)[k] is generated in degree 2k. By Hochster’s formula, we know that

Therefore, �n−2k+1,n(S∕I(G)[k]) ≠ 0 if and only if H̃2k−2(Γk(G);K) ≠ 0 , and hence the 
desired result follows.   ◻

The next corollary shows that an edge ideal has minimum depth if and only if the com-
plementary graph of G is disconnected.

Corollary 2.2 Let G be a graph. Then depth(S∕I(G)) = 1 if and only if Gc is disconnected.

Proof Applying Proposition  2.1 for k = 1 , we have depth(S∕I(G)) = 1 if and only if 
H̃0(Γ1(G);K) ≠ 0 which is equivalent to Γ1(G) being disconnected. The latter is also equiv-
alent to Gc being disconnected, since Γ1(G) is the clique complex of Gc . Thus, we get the 
desired conclusion.   ◻

Next, we recall some definitions about simplicial complexes and their facet ideals and 
we fix some notation which will be used in the rest of the section.

A subcollection of a simplicial complex Δ is a simplicial complex Γ such that every 
facet of Γ is also a facet of Δ . If A ⊆ V(Δ) , then the induced subcollection ΔA is the simpli-
cial complex ⟨F ∈ Facets(Δ) ∣ F ⊆ A⟩.

A set D ⊆ Facets(Δ) is called a facet cover of Δ if every vertex v of Δ belongs to some F 
in D. A facet cover is called minimal if no proper subset of it is a facet cover of Δ.

Let Δ be a simplicial complex on the vertices x1,… , xn . Recall that the facet ideal of Δ , 
denoted by F(Δ) , is the squarefree monomial ideal

If u is a squarefree monomial, then Δu denotes the subcollection ΔU where U is the set of 
variables which divide u.

Erey and Faridi in [4] introduced the concept of well-ordered facet cover to give a non-
vanishingness condition for Betti numbers of facet ideals (see [4, Definition 3.1]). Well-
ordered facet covers generalize the concept of strongly disjoint bouquets which was intro-
duced by Kimura [17].

A sequence F1,… ,Fk of facets of a simplicial complex Δ is called a well-ordered facet 
cover if {F1,… ,Fk} is a minimal facet cover of Δ and for every facet H ∉ {F1,… ,Fk} of Δ 
there exists i ≤ k − 1 such that Fi ⊆ H ∪ Fi+1 ∪ Fi+2 ∪⋯ ∪ Fk.

Existence of well-ordered facet covers yields non-zero Betti numbers as follows:

Theorem 2.3 [4, Corollary 3.4] Let Δ be a simplicial complex and let u be a squarefree 
monomial. If Δu has a well-ordered facet cover of cardinality i, then �i,u(S∕F(Δ)) ≠ 0.

We need the following technical lemma which will be useful in the sequel.

Lemma 2.4 Let G be a graph with no isolated vertices and �(G) ≥ 2 . Suppose that G is not 
a complete bipartite graph and Gc is disconnected, and let 2 ≤ k ≤ �(G) . Then there exists 

𝛽n−2k+1,n(S∕I(G)
[k]) = dimK H̃2k−2(Γk(G);K).

F(Δ) = (xi1 ⋯ xik ∣ {xi1 ,… , xik} ∈ Facets(Δ)) ⊂ S.
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two induced subgraphs G1 and G2 on disjoint sets of vertices, a (k − 1)-matching M and a 
vertex v of G such that 

(1) V(G1) ∪ V(G2) = V(G),
(2) {x1, x2} ∈ E(G) for all x1 ∈ V(G1) and x2 ∈ V(G2),
(3) v ∉ e for every e ∈ M,
(4) M ∩ E(G1) ≠ � and
(5) v ∈ V(G2).

Proof Since Gc is disconnected, there exist two induced subgraphs G1 and G2 of G, on dis-
joint sets of vertices, satisfying conditions (1) and (2). By the symmetry, it suffices to con-
sider the following cases:

Case 1: Suppose that there exists a matching {e1,… , ek} of G such that e1 ∈ E(G1) . 
Let v be a vertex of G2 . If there exists t ∈ {2,… , k − 1} with v ∈ et , then let 
M = {e1,… , ek} ⧵ {et} . Otherwise, let M = {e1,… , ek−1} . In both cases, v and M fulfill 
the desired conditions.

Case 2: Suppose that no k-matching of G has an edge contained in G1 or G2 . Let 
{e1,… , ek} be a matching of G with ei = {ai, bi} such that ai ∈ V(G1) and bi ∈ V(G2) . 
Without loss of generality, it is enough to consider the following cases:

Case 2.1: Suppose that there is an edge e of G such that e ⊆ {a1,… , ak} . We may 
assume that e = {ak−1, ak} . Then v = bk and M = {e1,… , ek−2, e} satisfy the required 
conditions.

Case 2.2: Suppose that both A = {a1,… , ak} and B = {b1,… , bk} are independent sets 
of G. Since G is not a complete bipartite graph, we may assume that there exists an edge 
f = {f1, f2} such that f ∈ E(G1) . Since A is independent, we know that at least one ver-
tex of f, say f1 , is not in A. Without loss of generality, we assume that ei ∩ f = � for all 
i = 2,… , k . Observe that for v = bk and M = {f , e2,… , ek−1} , the required conditions are 
satisfied.   ◻

In the next theorem, we give a sufficient condition for existence of a well-ordered 
facet cover of certain cardinality for the simplicial complex whose facet ideal is I(G)[k] 
where G is assumed to have certain properties.

Theorem 2.5 Let G be a graph with no isolated vertices and �(G) ≥ 2 , which is not a com-
plete bipartite graph. Suppose that Gc is disconnected and for any 2 ≤ k ≤ �(G) , let Δ be 
the simplicial complex with facet ideal I(G)[k] . Then Δ has a well-ordered facet cover of 
cardinality n − 2k + 1.

Proof Let 2 ≤ k ≤ �(G) and let G1,G2,M and v be as in Lemma  2.4. Suppose that 
M = {e1,… , ek−1} such that e1 ∈ E(G1) . Let e1 = {y, z} . We set U = e1 ∪⋯ ∪ ek−1 ∪ {v} . 
Let V(G1)⧵U = {x1,… , xi} and V(G2)⧵U = {xi+1,… , xn−2k+1} . We define

for each j = 1,… , n − 2k + 1.
If xj ∈ V(G1) ⧵ U , then Fj is a facet of Δ corresponding to the k-matching {{v, xj}} ∪M . 

On the other hand, if xj ∈ V(G2) ⧵ U , then Fj is a facet corresponding to the k-matching 
{{v, y}, {z, xj}, e2,… , ek−1}.

Fj = e1 ∪⋯ ∪ ek−1 ∪ {v, xj}
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We claim that F1,… ,Fn−2k+1 is a well-ordered facet cover of Δ . Since every ver-
tex of Δ belongs to some Fj , these facets indeed form a cover. Also, since for every 
j = 1,… , n − 2k + 1 we have xj ∈ Ft if and only if j = t , it follows that this cover is minimal. 
To prove the “well-ordered" property, let H be a facet of Δ such that H ∉ {F1,… ,Fn−2k+1} . 
Observe that H ⊈ U , since H has 2k vertices whereas U has 2k − 1 . On the other hand, 
since H ∉ {F1,… ,Fn−2k+1} , there exists at least two indices � < m such that {x

�
, xm} ⊆ H . 

Then the proof follows from the inclusion F
𝓁
⊆ H ∪ F

𝓁+1 ∪⋯ ∪ Fn−2k+1 .   ◻

Next, we show that having minimum depth for the edge ideal itself implies the same 
for all squarefree powers and vice versa.

Corollary 2.6 Let G be a graph with no isolated vertices and matching number �(G) . Then 
the following statements are equivalent: 

(1) Gc is disconnected.
(2) gI(G)(1) = 0.
(3) gI(G)(k) = 0 for all 1 ≤ k ≤ �(G).

Proof Equivalence of (1) and (2) was already proved in Corollary  2.2. It is enough 
to show that (i) implies (iii). Let 2 ≤ k ≤ �(G) . If G is a complete bipartite graph, then 
the result follows from Example  1.2  (c). Otherwise, let Δ be the simplicial complex 
whose facet ideal is I(G)[k] . Then by Theorem  2.5, Δ has a well-ordered facet cover of 
cardinality n − 2k + 1 . Therefore, Theorem  2.3 implies �n−2k+1,n(S∕I(G)[k]) ≠ 0 . Thus, 
proj dim(S∕I(G)[k]) ≥ n − 2k + 1 , and hence the desired result follows from the Auslander-
Buchsbaum formula.   ◻

Let G be a graph. A subset D of V(G) is called a dominating set if every vertex 
v ∈ V(G) − D is adjacent to a vertex in D. A complete subgraph Km of G is called a 
dominating clique if V(Km) is a dominating set.

The final result of this section applies the notion of dominating cliques to provide a 
sufficient condition for having minimum depth for a given squarefree power k.

Theorem 2.7 Let G be a graph and let 2 ≤ k ≤ �(G) . If G has a dominating clique K2k−1 , 
then gI(G)(k) = 0.

Proof Let K2k−1 be a dominating clique with V(K2k−1) = {x1,… , x2k−1} . 
Let V(G) − V(K2k−1) = {x2k, x2k+1,… , xn} . For every j = 2k,… , n , we set 
Fj = {x1,… , x2k−1} ∪ {xj} . Let Δ be the simplicial complex with facet ideal F(Δ) = I(G)[k] . 
Then, each Fj is a facet of Δ . Indeed, without loss of generality, if xj is adjacent to 
x2k−1 , then {{x1, x2},… , {x2k−3, x2k−2}, {xj, x2k−1}} is a k-matching of G. It is clear that 
{F2k,… ,Fn} is a minimal facet cover of Δ . As in the proof of Theorem 2.5 one can show 
that F2k,… ,Fn is a well-ordered facet cover. The proof then follows from Theorem 2.3 and 
the Auslander-Buchsbaum formula.   ◻
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4  Depth of squarefree powers with linear quotients

In this section, we provide a criterion for squarefree powers of edge ideals with lin-
ear quotients to have minimum depth. Applying that criterion, we discuss the depth of 
squarefree powers of the edge ideal of a class of chordal graphs which are obtained by 
adding some whiskers to a complete graph. Indeed, we determine when the depth of 
such ideals is minimum.

In the next lemma, we show that having linear quotients is inherited by the squarefree 
part.

Lemma 3.1 Let I be a monomial ideal with linear quotients. Then the squarefree part of I 
has also linear quotients.

Proof Let G(I) = {u1,… , us} , and assume that u1,… , us is a linear quotients ordering. Let 
I′ be the squarefree part of I and G(I�) = {ui1 ,… , uit} with 1 ≤ i1 < ⋯ < it ≤ s . Let 
Aj = (ui1 ,… , uij−1 ) ∶ uij . We show that Aj is generated by variables. Let v ∈ G(Aj) . Then 
v ∈ (u1,… , uij−1) ∶ uij . Hence there exists t such that xt|v and uk|xtuij for some k ≤ ij − 1 . 
Lemma 1.5 implies that xtuij is squarefree. This implies that uk is squarefree, and hence 
k ∈ {i1,… , ij−1} . Therefore, xt ∈ Aj which implies that v = xt , since v ∈ G(Aj) and xt|v . 
Thus Aj is generated by variables, as desired.   ◻

Recall that a cochordal graph is a graph whose complementary graph is chordal, 
i.e. has no induced cycle of length greater than 3. The next result follows by combin-
ing the well-known Fröberg’s Theorem [F], Lemma 3.1, [11, Theorem 10.1.9] and [11, 
Theorem 10.2.5].

Corollary 3.2 Let G be a cochordal graph. Then I(G)[k] has linear quotients for any 
k = 1,… , �(G).

In Corollary 2.2, we provided an explicit combinatorial characterization of edge ide-
als with the minimum depth. In the next proposition, we provide a combinatorial crite-
rion for all squarefree powers of edge ideals with linear quotients admitting minimum 
depth.

We call a k-matching M a dominating k-matching if V(M) is a dominating set, i.e. any 
vertex v ∈ V(G) − V(M) is adjacent to a vertex in V(M).

Proposition 3.3 Let G be a graph with no isolated vertices and 1 ≤ k ≤ �(G) . If I(G)[k] has 
linear quotients with respect to the ordering u1,… , us of its minimal generators, then the 
following statements are equivalent: 

(1) gI(G)(k) = 0.
(2) There exists a dominating k-matching M and some i = 2,… , s which satisfy the follow-

ing conditions: 

(a) V(M) = supp(ui) , and
(b) for any t ∈ V(G) − V(M) , there exists a k-matching M′ with V(M�) = supp(uj) for 

some j = 1,… , i − 1 such that V(M�) ⊆ V(M) ∪ {t}.
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In particular, if G is a cochordal graph, then statements (1) and (2) are equivalent.
Proof Suppose that V(G) = [n] . Following notation of Sect. 2, for any i = 2,… , r let ri be 
the number of variables in (u1,… , ui−1) ∶ ui . According to (1), depth(S∕I(G)[k]) = 2k − 1 if 
and only if ri = n − 2k for some i = 2,… , r . This is the case if and only if (u1,… , ui−1) ∶ ui 
is generated by n − 2k variables, namely

since |supp(ui)| = 2k.
In other words, for any t ∈ V(G) − supp(ui) , there exists j = 1,… , i − 1 such that uj|xtui , 

or equivalently supp(uj) ⊆ {t} ∪ supp(ui).
Let M be a k-matching with V(M) = supp(ui) and M′ be a k-matching with 

V(M�) = supp(uj) . The inclusion V(M�) ⊆ V(M) ∪ {t} for any t ∈ V(G) − V(M) implies that 
t is adjacent to some vertices of M, and hence M is a dominating k-matching of G. Thus, 
the statements (1) and (2) are equivalent, as desired.

In particular, if G is cochordal, then the result follows from Corollary 3.2.   ◻

As it was mentioned at the end of the proof of Proposition 3.3, the condition that M is 
a “dominating" matching follows from other conditions. Therefore, we can drop the word 
“dominating" from the statement of the proposition. However, to emphasize on this com-
binatorial condition, we keep it in the statement, especially that this provides us a nice 
necessary condition for having minimum depth. Indeed, as an immediate consequence of 
Proposition 3.3, we get the following necessary condition to have minimum depth.

Corollary 3.4 Let G be a graph with no isolated vertices and k be an integer with 
1 ≤ k ≤ �(G) where I(G)[k] has linear quotients. If gI(G)(k) = 0 , then G has a dominating 
k-matching. In particular, the statement holds for any cochordal graph G with no isolated 
vertices.

As another consequence of Proposition 3.3, we show that the highest non-zero square-
free power of the edge ideal of any graph has the minimum depth.

Corollary 3.5 Let G be a graph with no isolated vertices. Then gI(G)(�(G)) = 0.

Proof Let k = �(G) . It was proved in [2, Theorem  5.1] that I(G)[k] has linear quotients 
with respect to lexicographic order on the generators where the vertices can have any fixed 
labelling. Let u1,… , us be a linear quotients order on the minimal monomial generators 
of I(G)[k] . Let M be a k-matching with V(M) = supp(us) . It suffices to show that M is a 
k-matching which satisfies condition (2) of Proposition 3.3. Let v ∈ V(G) − V(M) . Since 
G has no isolated vertices, v is adjacent to at least one vertex of G, say w. Observe that if 
w ∉ V(M) , then M together with the edge {v,w} is a matching of G of size greater than k, 
which is a contradiction. Therefore, we may assume that w ∈ e for some e ∈ M . Then it 
suffices to put M� = (M − {e}) ∪ {e�} with e� = {v,w} , which completes the proof.   ◻

The corollary above does not generalize to squarefree monomial ideals. Indeed, there 
are examples of squarefree monomial ideals whose highest non-zero squarefree powers do 
not have minimum depth. For example, the monomial ideal

(u1,… , ui−1) ∶ ui = (xt ∶ t ∈ V(G) − supp(ui)),

I = (x1x3x5, x2x4x6, x5x7x9, x4x6x8, x4x7x10, x9x10x11, x5x8x11)
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in S = K[x1,… , x11] satisfies �(I) = 3 with gI(3) = 1 ≠ 0.
As an application of Proposition  3.3, we discuss the depth of squarefree pow-

ers of edge ideals of multiple whiskered complete graphs which are obtained by attach-
ing some whiskers to each vertex of a complete graph Ks with s ≥ 2 . We denote such a 
graph by H(a1,… , as) where ai ≥ 0 is the number of whiskers attached to the vertex i of 
Ks . Here the vertex set of Ks is assumed to be [s] = {1,… , s} . The case G = H(a1,… , as) 
with a1 = ⋯ = as = s − 1 came up in [8] where edge ideals of minimum projective 
dimension were considered. In the same article, besides other results, it was shown that 
proj dim(S∕I(G)) = s − 2 which means that depth(S∕I(G)) = s2 − 2s + 2 is not minimum.

Theorem 3.6 Let G = H(a1,… , as) with ai ≥ 1 for all i = 1,… , s and let k = 1,… , �(G) . 
Then we have: 

(a) �(G) = s;
(b) G is cochordal;
(c) The following statements are equivalent: 

(1) gI(G)(k) = 0;
(2) ⌊s∕2⌋ + 1 ≤ k ≤ s.

Proof (a) and (b) can be easily proved. We prove (c). By Corollary 3.2, I(G)[k] has linear 
quotients. Let u1,… , ur be a linear quotients ordering for the minimal generators of I(G)[k] . 
We consider two cases:

Case 1: Suppose that s = 2k . To prove the equivalence of (1) and (2), we must show that 
gI(G)(k) ≠ 0. To this end, we apply the criterion in Proposition 3.3. Assume on the contrary 
that there is a dominating k-matching which satisfies condition (2) of Proposition 3.3. Let 
um be the generator corresponding to such matching. Since s = 2k , we have um = x1 … xs . 
Let W be the set of all leaves of G. By assumption, for every v ∈ W , there exists j < m such 
that uj|umxv . For each v ∈ W , let uv̄ be the smallest generator in the linear quotients order-
ing whose support contains v but no other leaves. In other words, we define

Note that we have v̄ < m for every leaf v ∈ W by the initial assumption on um . We set 
𝛼 = max{v̄ ∶ v ∈ W} . The support of u� has exactly one leaf, say w. Without loss of gen-
erality, we assume that w is adjacent to 1. Since u� is of degree 2k, there is exactly one 
vertex of Ks that is missing in the support of u� , say j ≠ 1 . Let z be a leaf adjacent to j. By 
definition of � , we have z̄ < 𝛼 < m . Observe that uz̄∕ gcd(uz̄, u𝛼) = xjxz . Now we consider 
the ideal

Since J is generated by variables, either xj or xz must be a generator of J. Since z is a leaf 
adjacent to j, any minimal generator of I(G)[k] which is divisible by xz is also divisible by 
xj . On the other hand, since xj does not divide u� , we see that xz cannot be a generator of J. 
Therefore, xj is a generator of J.

Then there exists 𝛽 < 𝛼 such that u�∕ gcd(u� , u�) = xj . If the support of u� has no leaves, 
then � = m which is a contradiction as 𝛽 < 𝛼 < m . On the other hand, since the support 
of u� cannot contain multiple leaves, w must be the only leaf in it. In that case, 𝛽 < 𝛼 = w̄ 
contradicts the definition (2) of w̄.

(2)v̄ = min{t ∶ supp(ut) ∩W = {v}}.

J = (u1,… , u�−1) ∶ u� .
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Case 2: Suppose that s ≠ 2k . Let Wi = {v
(i)

1
, v

(i)

2
,… , v(i)

ai
} denote the set of leaves attached 

to the vertex i of Ks.
(1) ⇒ (2): If either s is odd with 1 ≤ k ≤ ⌊s∕2⌋ or s is even with 1 ≤ k < s∕2 , then for 

each k-matching M of G one has [s] ⊈ V(M) . Since each ai ≥ 1 , it follows that M can not be 
a dominating k-matching of G. Hence, depth(S∕I(G)[k]) > 2k − 1 , by Corollary 3.4.

(2) ⇒ (1): If k = s , then the result follows from Corollary  3.5. Assume that 
⌊s∕2⌋ + 1 ≤ k < s . Then there is a k-matching N of G with [s] ⊊ V(N) . Let M1,… ,Mq be 
those k-matchings of G on distinct sets of vertices with [s] ⊊ V(Mt) for each t.

We may assume that V(Mi) = supp(u
�i
) with 1 ≤ 𝓁1 < ⋯ < 𝓁q ≤ r . Letting M = Mq , 

we claim that M is a k-matching which satisfies condition (2) of Proposition 3.3. To this 
end, let v ∈ V(G) − V(M) , say v = v

(i)

j
 . Now we consider the following two cases to con-

clude the proof.
First suppose that ai ≥ 2 and {i, v(i)

j�
} ∈ M where j ≠ j′ . Then

is a k-matching of G and M� = Mq� with q′ < q and V(M�) ⊆ V(M) ∪ {v}.
Next suppose that {i, v(i)

j�
} ∉ M for all 1 ≤ j′ ≤ ai . Then there is some i′ ≠ i with 

1 ≤ i′ ≤ s such that {i, i�} ∈ M . Also, there is some i′′ ≠ i, i′ with 1 ≤ i′′ ≤ s such that 
{i��, v

(i��)

j��
} ∈ M for some j′′ . Then

is a k-matching of G and M�� = Mq�� with q′′ < q and V(M��) ⊆ V(M) ∪ {v} .   ◻

Besides the given characterization in Theorem  3.6, it would be also interesting to 
find the exact values of the normalized depth function for 1 ≤ k ≤ ⌊s∕2⌋ . In the next 
example, we give a few computed cases.

Example 3.7 Our computations with CoCoA [1] shows the following for the square-
free powers of edge ideals of multiple whiskered complete graphs G with ai = 1 for all 
i = 1,… , s which do not have minimum depth: 

(1) If s = 4 , then gI(G)(1) = 3 and gI(G)(2) = 1.
(2) If s = 5 , then gI(G)(1) = 4 and gI(G)(2) = 2.
(3) If s = 6 , then gI(G)(1) = 5 , gI(G)(2) = 3 and gI(G)(3) = 1.

Finally, we would like to remark that in the proof of Theorem 3.6, we used the fact 
that ai ≥ 1 , for all i = 1,… , s . If we also allow some ai ’s to be equal to zero, then, using 
Theorem 2.7, we can guarantee for a specific squarefree power to have minimum depth. 
More precisely, let G be a multiple whiskered graph with ai = 0 for at least one i and let 
k ≥ 2 . If either s = 2k or s = 2k − 1 , then G has a dominating K2k−1 clique. Therefore, by 
Theorem 2.7, it follows that S∕I(G)[k] has minimum depth.

Acknowledgements Jürgen Herzog and Sara Saeedi Madani was supported by TÜBİTAK (2221-Fellow-
ships for Visiting Scientists and Scientists on Sabbatical Leave) to visit Nursel Erey at Gebze Technical 
University. Takayuki Hibi was partially supported by JSPS KAKENHI 19H00637. Sara Saeedi Madani was 
in part supported by a grant from IPM (No. 1401130112). We thank the referee for his/her careful reading 
and useful suggestions.

M� = (M − {{i, v
(i)

j�
}}) ∪ {{i, v

(i)

j
}}

M�� = (M − {{i, i�}, {i��, v
(i��)

j��
}}) ∪ {{i�, i��}, {i, v

(i)

j
}}



423The normalized depth function of squarefree powers  

1 3

References

 1. Abbott, J. , Bigatti, A. M., Robbiano, L.: CoCoA: a system for doing computations in commutative 
algebra. Available at http:// cocoa. dima. unige. it

 2. Bigdeli, M., Herzog, J., Zaare-Nahandi, R.: On the index of powers of edge ideals. Commun. Algebra 
46, 1080–1095 (2018)

 3. Brodmann, M.: The asymptotic nature of the analytic spread. Math. Proc. Cambridge Philos. Soc. 86, 
35–39 (1979)

 4. Erey, N., Faridi, S.: Betti numbers of monomial ideals via facet covers. J. Pure Appl. Algebra 220(5), 
1990–2000 (2016)

 5. Erey, N., Hibi, T.: Squarefree powers of edge ideals of forests. Electron. J. Combin. 28(2), P2.32 
(2021)

 6. Erey, N., Hibi, T., Herzog, J., Saeedi Madani, S.: Matchings and squarefree powers of edge ideals. J. 
Comb. Theory Ser. A 188, 105585 (2022)

 7. Francisco, C.A., Hà, H.T., Van Tuyl, A.: A conjecture on critical graphs and connections to the persis-
tence of associated primes. Discrete Math. 310, 2176–2182 (2010)

 8. Hà, H.T., Hibi, T.: Max Min vertex cover and the size of Betti tables. Ann Comb. 25, 115–132 (2021)
 9. Hà, H.T., Nguyen, H., Trung, N., Trung, T.: Depth functions of powers of homogeneous ideals. Proc. 

AMS 149, 1837–1844 (2021)
 10. Herzog, J., Hibi, T.: The depth of powers of an ideal. J. Algebra 291, 534–550 (2005)
 11. Herzog, J., Hibi, T.: Monomial Ideals, Graduate Text in Mathematics. Springer, Berlin (2011)
 12. Herzog, J., Takayama, Y.: Resolutions by mapping cones. Homol. Homotopy Appl. 4(2), part 2, 277-

294 (2002)
 13. Herzog, J., Hibi, T., Zheng, X.: Dirac’s theorem on chordal graphs and Alexander duality. Eur. J. 

Comb. 25, 949–960 (2004)
 14. Herzog, J., Hibi, T., Zheng, X.: Monomial ideals whose powers have a linear resolution. Math. Scand. 

95, 23–32 (2004)
 15. Herzog, J., Rahimbeigi, M., Römer, T.: Classes of cut ideals and their Betti numbers. São Paulo J. 

Math. Sci. 1, 1–16 (2022)
 16. Kaiser, T., Stehlík, M., Šrekovski, R.: Replication in critical graphs and the persistence of monomial 

ideals. J. Comb. Theory Ser. A 123, 239–251 (2014)
 17. Kimura, K.: Non-vanishingness of Betti numbers of edge ideals, Harmony of Gröbner bases and the 

modern industrial society, pp. 153–168. World Science Publication, Hackensack (2012)
 18. Terai, N.: Alexander duality theorem and Stanley-Reisner rings, Free resolutions of coordinate rings of 

projective varieties and related topics (Japanese) (Kyoto, 1998) No. 1078(1999), 174–184 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

http://cocoa.dima.unige.it

	The normalized depth function of squarefree powers
	Abstract
	1 Introduction
	2 A lower bound for the depth of squarefree powers
	3 Minimum depth for squarefree powers of edge ideals
	4 Depth of squarefree powers with linear quotients
	Acknowledgements 
	References




