
Collectanea Mathematica (2023) 74:415–442
https://doi.org/10.1007/s13348-022-00357-6

Hilbert series of symplectic quotients by the 2-torus

Hans-Christian Herbig1 · Daniel Herden2 · Christopher Seaton3

Received: 8 June 2021 / Accepted: 21 February 2022 / Published online: 16 March 2022
© The Author(s), under exclusive licence to Universitat de Barcelona 2022

Abstract
We compute the Hilbert series of the graded algebra of real regular functions on a linear
symplectic quotient by the 2-torus aswell as the first four coefficients of theLaurent expansion
of this Hilbert series at t = 1. We describe an algorithm to compute the Hilbert series as well
as the Laurent coefficients in explicit examples.
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1 Introduction

Let V be a finite-dimensional unitary representation of a compact Lie group G. The action of
G on the underlying real symplecticmanifold of V is Hamiltonian and admits a homogeneous
quadratic moment map. The symplectic quotient M0 at the zero level of this moment map
is usually singular but has the structure of a symplectic stratified space, i.e., is stratified into
smooth symplectic manifolds; see [30]. The Poisson algebra of smooth functions on M0 has
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an N-graded Poisson subalgebra R[M0] of real regular functions on M0, the polynomial
functions on M0 as a semialgebraic set.

This paper continues a program to compute the Hilbert series ofR[M0] for various choices
of G with particular attention to the first few coefficients of the Laurent expansion of the
Hilbert series around 1, here denoted γ0, γ1, . . .. The case when G = S

1 is the circle was
handled in [21], the case G = SU2 was treated in [14], and analogous computations for
the Hilbert series of the algebras of off-shell (i.e. classical) invariants were given in [8, 9].
Here, we consider the case G = T

2, the first step towards understanding those cases where
rank G > 1.

The Hilbert series and its first two Laurent coefficients have played an important role in
the study of classical invariants. Hilbert first computed γ0 for irreducible representations of
SL2 in [23], and computations of the Hilbert series or its Laurent coefficients in this case
have been considered by several authors; see for example [2–6, 24–26, 32, 33, 36]. When G
is finite, it is well known that the first two Laurent coefficients are determined by the order
of G and the number of pseudoreflections it contains; see [35, Lemma 2.4.4]. The meanings
of the γm more generally have been investigated in [1] and [28, Chapter 3].

For symplectic quotients, the Hilbert series continues to be a valuable tool for understand-
ing the graded algebra of regular functions. Certain properties of a graded algebra, such as
Cohen-Macaulayness and Gorensteinness, can be verified using the Hilbert series [34], and
this has been used to check the Gorenstein property for symplectic quotients in [16, 20].
Additionally, the Hilbert series has been used to distinguish between symplectic quotients
that are not (graded regularly) symplectomorphic [11, 22], and as a heuristic to identify
potentially symplectomorphic symplectic quotients [18].

One stumbling block in the computation of the Hilbert series is the occurrence of degen-
eracies, collections of weights that are not in general position that introduce singularities in
the Molien-Weyl integrand. In the case of G = T

2, these degeneracies occur when certain
triples of vectors associated to the columns of theweightmatrix are collinear; seeDefinition 1.
Such degeneracies complicate attempts to compute theMolien-Weyl integral and the Laurent
coefficients of the Hilbert series for all representations uniformly. In previous computations
[8, 9, 14, 21], the removability of these singularities was handled in a manner specific to each
case. In this paper, we provide a general explanation for the removability of those singulari-
ties which can be used in applications of the Molien-Weyl theorem for any reductive group;
see Lemmas 1 and 2. For the lowest-degree coefficient of the Laurent expansion, we detail
explicit computations to indicate the nature of the cancellations involved in removing these
singularities; see Sect. 4.2.

After reviewing the framework and relevant background information in Sect. 2, we turn
to the computation of the Hilbert series in Sect. 3. The first main result of this paper is
Corollary 1, giving a formula for the Hilbert series of R[M0] corresponding to an arbitrary
T
2-representation in terms of the weight matrix A. This result is stated in terms of the Hilbert

series HilbonA (t) of an algebra that does not always coincide with the regular functionsR[M0]
on the symplectic quotient M0 of the representation with weight matrix A and assumes that A
is in a specific standard form. However, there is no loss of generality; we explain in Sect. 2.1
that the Hilbert series of R[M0] can be computed as HilbonA (t) for some A, and in Sect. 2.2
that A can always be put in standard form with no change to HilbonA (t). This approach greatly
simplifies the computations in Sect. 3.1. The formula for HilbonA (t) takes its simplest form in
Theorem 3 with additional hypotheses on the representation that are described in Sect. 2.2.
The formula suggests a (not particularly fast) algorithm that we describe in Sect. 3.3.

In Sect. 4, we turn to the computation of the first four Laurent coefficients, which are given
in Theorems 4 and 5. These computations require results of Smith [31] on the number of
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Hilbert series of symplectic quotients by the 2-torus 417

solutions of a system of linear congruences, which we recall in Sect. 2.3. After demonstrating
the removability of the singularities in the degenerate cases, we illustrate the cancellations
in the rational expression of the lowest-degree Laurent coefficient in Sect. 4.2. We expect
that the numerators of the resulting rational functions admit combinatorial descriptions in
terms of some sort of generalization of Schur polynomials, and such a description would
yield closed form expressions for the Laurent coefficients in the degenerate case. We hope
that this paper leads to progress in this direction. Finally, in Sect. 4.4, we briefly describe
methods we have used to efficiently compute the first Laurent coefficient in the presence of
these singularities.

2 Background

2.1 Symplectic quotients associated to representations ofT2

In this section, we give a concise summary of the construction and relevant background for
symplectic quotients by the 2-torus. The reader is referred to [21] for more details; see also
[11, 17, 22].

Throughout this paper, we fix the compact Lie group T
2 and consider finite-dimensional

unitary representations V � C
n of T2. Such a representation can be described by a weight

matrix

A =
(
a11 a12 · · · a1n
a21 a22 · · · a2n

)
∈ Z

2×n,

where the action of (z1, z2) ∈ T
2 on (x1, x2, . . . , xn) ∈ C

n is given by

(z1, z2) · (x1, x2, . . . , xn) = (
za111 za212 x1, z

a12
1 za222 x2, . . . , z

a1n
1 za2n2 xn

)
.

We will often use VA to indicate that V is the representation with weight matrix A, or simply
V when A is clear from the context. The representation is faithful if and only if A has rank 2
and the gcd of the 2×2 minors of A is equal to 1; [11, Lemma 1]. Applying to A elementary
row operations that are invertible over Z corresponds to changing the basis of T2 and hence
does not change the representation. Note that the T2-action on V extends to a (C×)2-action
with the same description.

With respect to the underlying real manifold of V and symplectic structure compatible
with the complex structure, the action of T2 is Hamiltonian, and identifying the Lie algebra
g of T2 (and hence its dual) with R

2, the moment map J A : V → g∗ (denoted J when A is
clear from the context) is given by

J A
i (x1, . . . , xn) = 1

2

n∑
j=1

ai j x j x j , i = 1, 2.

The real T2-invariant variety Z = ZA = J−1(0) ⊂ V is called the shell, and the symplectic
quotient is the space M0 = MA

0 = Z/T2. The symplectic quotient has a smooth structure

given by the Poisson algebra C∞(M0) = C∞(V )T
2
/IT

2

Z , where C∞(V )T
2
denotes the T2-

invariant smooth R-valued functions on V , IZ is the ideal of C∞(V ) of functions vanishing
on Z , and IT

2

Z = IZ ∩ C∞(V )T
2
. Equipped with this structure, the symplectic quotient M0

has the structure of a symplectic stratified space, see [30].
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The algebra C∞(M0) contains an N-graded Poisson subalgebra R[M0] of real regular
functions onM0, whose construction we now describe. LetR[V ]T2

denote the graded algebra
ofT2-invariant polynomials overRonV . For emphasis,wewill refer toR[V ]T2

as thealgebra
of off-shell invariants. After tensoring withC,R[V ]T2 ⊗RC is isomorphic toC[V ⊕V ∗]T2 =
C[V ⊕ V ∗](C×)2 , where V ∗ denotes the dual representation; letting (y1, . . . , yn) denote
coordinates for V ∗ dual to the coordinates (x1, . . . , xn), V is the subset of V ⊕ V ∗ given by
yi = xi for each i . The weight matrix of the representation V ⊕ V ∗ is given by (A| − A),
corresponding to the cotangent lift of the original representation. The algebra C[V ⊕ V ∗]T2

is generated by a finite set of monomials which can be computed by the algorithm described
in [35, Section 1.4].

We are interested in the quotient R[V ]T2
/IT

2

J , where IJ is the ideal generated by the

components J1, J2 of the moment map and IT
2

J = IJ ∩R[V ]T2
is the invariant part; note that

the monomials x j x j are invariant so that J1, J2 ∈ R[V ]T2
. The closely related algebra of

real regular functions on M0 is given by R[M0] = R[V ]T2
/IT

2

Z , where IZ is the subalgebra

of polynomials on V that vanish on Z and IT
2

Z = IZ ∩ R[V ]T2
.

For “sufficiently large” representations V , the ideal IZ is generated by the two components
J1, J2 of the moment map, i.e., IJ = IZ , which implies that IT

2

J = IT
2

Z . This is the case,
for example, when the (C×)2-action on V is stable, meaning that the principal isotropy type
consists of closed orbits; see [19, Theorem 3.2 and Corollary 4.3]. When the representation
is not stable, there is a stable (C×)2-subrepresentation V ′ of V that has the same shell,
symplectic quotient, and algebra of real regular functions; see [22, Lemma 3]; see also [11,
page 10] and [37, Lemma 2]. As a brief summary of the results in these references applied
to the situation at hand: IZ is generated by J1 and J2 if and only if there are no coordinates xi
that vanish identically on the shell, equivalently, when A can be put in the form (D|C)where
D is a 2 × 2 diagonal matrix with negative diagonal entries and C has nonnegative entries
and no zero rows. When this condition fails, V ′ is constructed by setting to zero any xi that
vanishes on the shell and hence deleting the corresponding column in A. Note in particular
that R[M0] can always be computed as R[V ′]T2

/IT
2

J |V ′ for a subrepresentation V ′ of V .

The Hilbert series of a finitely generated graded algebra R = ⊕∞
d=0 Rd over a field K is

the generating function of the dimension of Rd ,

HilbR(t) =
∞∑
d=0

td dimK Rd .

The Hilbert series has a radius of convergence of at least 1 and is the power series of a
rational function in t ; see [10, Section 1.4]. For a representation of T2 as above, we let
HilboffA (t) denote the Hilbert series of the algebra R[V ]T2

of off-shell invariants and let

HilbonA (t) denote the Hilbert series of the algebra R[V ]T2
/IT

2

J . By [21, Lemma 2.1], we
have the simple relationship

HilbonA (t) = (1 − t2)2 HilboffA (t). (1)

As a consequence, it follows that HilbonA (t) depends only on the cotangent lift with weight
matrix (A|−A) and not on A. However, it is possible that two representations have isomorphic
cotangent lifts while IT

2

Z = IT
2

J for one and not the other. Hence, the algebra of real regular
functions R[M0] depends on the representation and not merely the cotangent lift.
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Example 1 Let

A =
(−1 0 −1

0 −1 −1

)

and

B =
(−1 0 1

0 −1 1

)
.

Then the cotangent lift of the representation with weight matrix A has weight matrix

(A| − A) =
(−1 0 −1 1 0 1

0 −1 −1 0 1 1

)
,

which is clearly isomorphic to the cotangent lift with weight matrix (B| − B) by simply
permuting columns. The moment map associated to A is

J A
1 (x1, x2, x3) = −1

2

(
x1x1 + x3x3

)

J A
2 (x1, x2, x3) = −1

2

(
x2x2 + x3x3

)
,

so that the corresponding shell ZA is the origin and the symplectic quotient MA
0 is a point.

Because each xi vanishes on the shell, the representation V ′ is the origin, andR[MA
0 ] is given

by R[V ′
A]T2

/IT
2

J A|V ′ = R.

However, the moment map associated to B is

J B
1 (x1, x2, x3) = 1

2

( − x1x1 + x3x3
)

J B
2 (x1, x2, x3) = 1

2

( − x2x2 + x3x3
)
,

and the shell ZB has real dimension 4 and MB
0 has real dimension 2. In this case, each xi

obtains a nonzero value on the shell, and R[MB
0 ] is equal to the algebra R[VB ]T2

/IT
2

J B .

Representations with weight matrices A and B are equivalent if B can be obtained from A
by permuting columns and elementary row operations over Z. For the cotangent lift, because
transposing a column of A with the corresponding column of−A corresponds to multiplying
the column by−1, the representations corresponding to (A|− A) and (B|−B) are equivalent
if B can be obtained from A by permuting columns, elementary row operations over Z, and
multiplying columns by −1. In the sequel, we will take advantage of this fact and put A into
a standard form given in Definition 1. Note that, if we begin with a weight matrix B such
that R[MB

0 ] = R[VB ]T2
/IT

2

J B , replacing B with a matrix A in standard form may break this

relationship; we may have R[MA
0 ] �= R[VA]T2

/IT
2

J A as in Example 1 above. However, as
HilbonB (t) depends only on the cotangent lift, we still have HilbonB (t) = HilbonA (t). That is,
the change to standard form may cause HilbonA (t) to no longer describe R[MA

0 ], but it still
describes the algebra R[MB

0 ] associated to the symplectic quotient associated to B. For this
reason, we state our results in terms of HilbonA (t) in standard form with no loss of generality.

2.2 Standard form and degeneracies

Let A ∈ Z
2×n be theweightmatrix of a linear representation ofT2 onCn . To avoid trivialities,

we assume that there are no trivial subrepresentations, i.e., A has no zero columns. Let di j
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denote the 2× 2 minor associated to columns i and j , i.e., di j = a1i a2 j −a2i a1 j . Recall that
the di j satisfy the Plücker relations [29, page 138]. That is, for any indices i0, i1, i2 and j ,
we have

di1i2di0 j − di0i2di1 j + di0i1di2 j = 0. (2)

Definition 1 We say that a weight matrix A ∈ Z
2×n is:

(i) Faithful if rank A = 2 and the gcd of the set of 2 × 2 minors of A is 1;
(ii) In standard form if a1i > 0 for each i ;
(iii) Generic if it is in standard form, a1i �= a1 j for i �= j , and di j + dik + d jk �= 0 for each

distinct i, j, k;
(iv) Completely generic if it is in standard form, generic, and di j + d jk + dki �= 0 for each

distinct i, j, k; and
(v) Degenerate if it is in standard form and is not generic.

If A is generic, by transposing i and j in the condition di j + dik + d jk �= 0, we also have
that di j − dik − d jk �= 0 for each distinct i, j, k.

The condition that the weight matrix is faithful is equivalent to the representation being
faithful; see Sect. 2.1. The condition di j + dik + d jk = 0 can be interpreted geometrically as
corresponding to the three vectors ai ,−a j , ak ∈ R

2 being collinear, while di j +d jk+dki = 0
corresponds to the three vectors ai , a j , ak being collinear. Hence, if A is generic, then for
any distinct i, j, k, the vectors ai ,−a j , ak are not collinear; if A is completely generic, then
for any choice of i, j, k and any choice of signs, ±ai ,±a j ,±ak are not collinear.

We may assume that A is faithful and in standard form with no loss of generality, i.e.,
without changing HilbonA (t). Specifically, if A is not faithful, we may replace T2 with T2/K
where K is the subgroup acting trivially, yielding a representation of Trank A with the same
symplectic quotient, see [11, Lemma 2]. Similarly, we may ensure that each a1i �= 0 by
adding any but finitely many scalar multiples of the second row to the first and then can
put A in standard form by multiplying columns by −1. Note that if n ≤ 2, then either the
representation is not faithful or there are no nontrivial invariants, so we can assume that
n > 2.

It is clear that multiplying columns by −1 will change whether A is in standard form, and
elementary row operations over Z can change a degenerate weight matrix to a generic one.
Hence, for representations corresponding to weight matrices A and B such that the cotangent
lifts (A| − A) and (B| − B) describe equivalent representations, and hence HilbonA (t) and
HilbonB (t) coincide, it is possible that A is degenerate while B is generic.

Example 2 The weight matrix

A =
(
2 1 4
1 −1 1

)

is degenerate as d12 + d13 + d23 = 0. Adding twice the second row to the first and then
multiplying the second column by −1 yields

B =
(
4 1 6
1 1 1

)
,

which is generic. As (A|−A) and (B|−B) are weight matrices of equivalent representations,
HilbonA (t) = HilbonB (t).
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However, there are degenerate weight matrices that cannot be made generic by these
changes of bases, e.g.,

A =
(
1 1 1
0 1 1

)
.

Finally, observe that the condition di j + dik + d jk �= 0 for all distinct i, j, k is not
invariant under multiplying columns by −1. However, as a consequence of the geometric
characterization described above, the condition that both di j +dik +d jk �= 0 and di j +d jk +
dki �= 0 for all distinct i, j, k is invariant under multiplying columns by −1. Of course, any
of these conditions is invariant under elementary row operations applied to A.

2.3 Counting solutions of systems of linear congruences

In this section, we recall results concerning the number of solutions of a system of linear
congruences due to Smith [31]; see [27] for amodern discussion.We beginwith the following
folklore result; see [31, Art. 14*, p. 314] and [27, p. 369].

Theorem 1 Let A be a nonzero m × n matrix over a PID R. Then A can be decomposed
into A = PSQ, where P is an invertible m × m matrix, Q in an invertible n × n matrix, S
is an m × n matrix with nonzero entries only on the main diagonal, and the main diagonal
entries ai (1 ≤ i ≤ min{m, n}) of S satisfy ai |ai+1 for all i . In particular, there exists an
1 ≤ r ≤ min{m, n} such that the values ai �= 0 for i ≤ r and ai = 0 for i > r .

The elements ai are unique up to multiplication by a unit, and the matrix S is called a
Smith normal form of A. For R = Z, we will assume the canonical choice ai ≥ 0.

Less well-known is the following additional statement; see [31, Art. 14*, p. 314] and [27,
p. 370].

Proposition 1 Let A be a nonzero m × n matrix over a PID R with Smith normal form S.
For 1 ≤ i ≤ min{m, n}, let Δi denote a gcd of the i × i minors of A. Then Δi = ∏i

k=1 ak
up to multiplication by a unit. In particular, setting Δ0 = 1, up to multiplication by a unit
we have ai = Δi/Δi−1 for 1 ≤ i ≤ r + 1.

Proof It is easily verified that the row and column operations used to compute the Smith
normal form S from A do not affect the Δi . Thus, A and S share the same Δi , while
Δi ∼ ∏i

k=1 ak is obvious for S. ��
We then have the following.

Theorem 2 ([31, Art. 17, p. 320 and Art. 18*, p. 324]) Let A be a nonzero m × n matrix
over Z with Smith normal form S and let N > 1 be an integer. Then the number of distinct
solutions x ∈ (Z/NZ)n of the homogeneous system of congruences Ax ≡ 0 mod N is

Nn−r
r∏

i=1

gcd(Δi/Δi−1, N ) = Nn−min{m,n}
min{m,n}∏

i=1

gcd(ai , N ).

Proof Let A = PSQ denote a Smith decomposition of A over Z. We interpret all matrices
over Z/NZ. Then Ax ≡ 0 is equivalent to P−1Ax ≡ SQx ≡ 0, while x �→ Qx defines
an automorphism of (Z/NZ)n . In particular, using the substitution y = Qx, Ax ≡ 0 has
as many distinct solutions as the system of equations Sy ≡ 0. For 1 ≤ i ≤ r , the equation
ai yi ≡ 0 mod N has gcd(ai , N ) distinct solutions with ai = Δi/Δi−1. For r < i ≤ n, yi
is a free variable with N distinct solutions. ��
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With this, we have the following, which will be needed in the sequel.

Proposition 2 Let n > 2, let A ∈ Z
2×n be a weight matrix of rank 2, and let g denote the

gcd of the set of 2× 2 minors di j of A. For each i �= j such that di j �= 0, the number of pairs
(ξ, ζ ) of di j th roots of unity such that ξdik ζ d jk = 1 for each k �= i, j is given by g|di j |. In
particular, if A is faithful, then this number is equal to |di j |.
Proof First assume that A is faithful so that Δ2 = 1. By fixing a primitive di j th root of unity
ξ0, we can identify the set of (ξ, ζ )with (Z/di jZ)2 via (ξ, ζ ) = (ξ x0 , ξ

y
0 ). Then the conditions

ξdik ζ d jk = 1 for each k �= i, j coincide with the system of congruences⎛
⎜⎜⎜⎝
di1 d j1

di2 d j2
...

...

din d jn

⎞
⎟⎟⎟⎠

(
x
y

)
≡ 0 mod di j , (3)

where the rows (dii , d ji ) and (di j , d j j ) are removed so that the coefficient matrix is of size
(n − 2) × 2.

If n = 3, then there is only one k �= i, j , so Eq. (3) is the single congruence xdik +
yd jk ≡ 0 mod di j . By Theorem 2, the number of solutions to this congruence is given by
|di j | gcd(Δ1, di j ) = |di j | gcd(dik, d jk, di j ) = |di j |, as A is faithful.

For n ≥ 4, Theorem 2 implies that the number of solutions to Eq. (3) is
gcd(a2, di j ) gcd(Δ1, di j ), where Δ1 = gcd{dik, d jk : k �= i, j}. As A has rank 2 and
di j �= 0, we have Δ1 �= 0, so that a2 = Δ2/Δ1 where Δ2 is the gcd of the 2 × 2 minors
of the (n − 2) × 2 coefficient matrix of Eq. (3); hence, the number of solutions is equal to
gcd(Δ2/Δ1, di j ) gcd(Δ1, di j ).

Applying the Plücker relations, Eq. (2) with i0 = k2, i1 = i , i2 = k1, we have that the 2×2
submatrix corresponding to rows k1, k2 of the coefficient matrix of Eq. (3) has determinant

dik1d jk2 − d jk1dik2 = di j dk1k2 . (4)

Thus,

Δ2 = gcd{dik1d jk2 − d jk1dik2 : k1, k2 �= i, j}
= gcd{di j dk1k2 : k1, k2 �= i, j}
= di jΔ

′
2,

where Δ′
2 = gcd{dk1k2 : k1, k2 �= i, j}. Then the number of solutions is given by

gcd(Δ2/Δ1, di j ) gcd(Δ1, di j ) = 1

Δ1
gcd(di jΔ

′
2, di jΔ1) gcd(Δ1, di j )

= |di j |
Δ1

gcd(Δ′
2,Δ1) gcd(di j ,Δ1).

Noting that gcd(Δ′
2,Δ1, di j ) = 1 as A is faithful, gcd(Δ′

2,Δ1) and gcd(di j ,Δ1) are rela-
tively prime, and we can write the number of solutions as

|di j |
Δ1

gcd(Δ′
2,Δ1) gcd(di j ,Δ1) = |di j |

Δ1
gcd(di jΔ

′
2,Δ1)

= |di j |
Δ1

gcd(Δ2,Δ1)

= |di j | gcd(Δ2/Δ1, 1) = |di j |.
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If A is not faithful so that g > 1, we may apply the above result to conclude that
there are |di j |/g pairs (η, ν) of |di j |/gth roots of unity such that ηdik/gνd jk/g = 1 for all
k �= i, j . Considering the surjective homomorphism (Z/di jZ)2 → (Z/(di j/g)Z)2 given by
component-wise multiplication by g completes the proof. ��

3 Computation of the Hilbert Series

In this section, we give a formula for the Hilbert series HilbonA (t) of a representation VA of
T
2, analogous to the formula given in [21, Theorem 3.1]. We start with a formula for the

completely generic case in Theorem 3 which we then extend to the generic and degenerate
case in Corollary 1.

3.1 A first formula

Here we have the following.

Theorem 3 Let n > 2 and let A ∈ Z
2×n be a faithful completely generic weight matrix. The

Hilbert series HilbonA (t) is given by

∑ 1

d2i j
∏

k �=i, j

(
1 − ξdik ζ d jk t (di j+dik+d jk )/di j

)(
1 − ξ−dik ζ−d jk t (di j−dik−d jk )/di j

) (5)

where the sum is over all i, j such that di j > 0 and all ξ and ζ such that ξdi j = ζ di j = 1.

Proof For t = 0, the formula holds trivially, as we have HilbonA (0) = dimR R = 1. Thus, we
may assume t �= 0. By the Molien-Weyl Theorem [10, Section 4.6.1], the Hilbert series of
the off-shell invariants is given by the iterated integral over the torus T2

1

(2π
√−1)2

∫

S1

∫

S1

dz1dz2

z1z2
n∏

i=1
(1 − t za1i1 za2i2 )(1 − t z−a1i

1 z−a2i
2 )

. (6)

In order to compute this integral, we define N = ∏n
i=1 a1i and perform the substitution

z2 = wN to yield

1

(2π
√−1)2

∫

S1

∫

S1

dz1dw

z1w
n∏

i=1
(1 − t za1i1 wNa2i )(1 − t z−a1i

1 w−Na2i )

.

Assume |t | < 1 and |w| = 1 and define the integrand

Ft,w(z) = 1

zw
n∏

i=1
(1 − t za1i wNa2i )(1 − t z−a1i w−Na2i )

.

We first consider the integral of Ft,w(z) over z ∈ S
1.

Note that as each a1i > 0, we can express

Ft,w(z) = z−1+∑n
i=1 a1i

w
n∏

i=1
(1 − t za1i wNa2i )(za1i − tw−Na2i )
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to see that Ft,w(z) is holomorphic at z = 0. As |t | < 1 and |w| = 1, each of the factors
(1 − t za1i wNa2i ) is nonzero on the unit disk. Hence, the relevant poles are solutions to
za1i − tw−Na2i = 0, of the form z = ηt1/a1i w−Na2i /a1i where η is a fixed a1i th root of unity.
Note that as |ηt1/a1i w−Na2i /a1i | = |t |1/a1i and A is completely generic, the poles are distinct,
i.e., each i and a1i th root of unity η corresponds to a distinct pole.

Fix an i and express Ft,w(z) as

za1i−1

w(1 − t za1i wNa2i )(za1i − tw−Na2i )
n∏
j=1
j �=i

(1 − t za1 j wNa2 j )(1 − t z−a1 j w−Na2 j )

.

Fix an a1i th root of unity η0, expand the factor

(za1i − tw−Na2i ) = (z − η0t
1/a1i w−Na2i /a1i )

∏
ηa1i =1
η �=η0

(z − ηt1/a1i w−Na2i /a1i ),

and note that∏
ηa1i =1
η �=η0

(η0t
1/a1i w−Na2i /a1i − ηt1/a1i w−Na2i /a1i )

= (
η0t

1/a1i w−Na2i /a1i
)a1i−1 ∏

ηa1i =1
η �=1

(1 − η) = a1i
(
η0t

1/a1i w−Na2i /a1i
)a1i−1

.

Therefore, the residue of Ft,w(z) at z = η0t1/a1i w−Na2i /a1i is given by

(wa1i )−1(1 − t2)−1

∏
j �=i

(1 − η
a1 j
0 t1+a1 j /a1i wN (a2 j−a1 j a2i /a1i ))(1 − η

−a1 j
0 t1−a1 j /a1i w−N (a2 j−a1 j a2i /a1i ))

.

Letting qi = ∏
j �=i a1 j = N/a1i , we can express this residue as

1

wa1i (1 − t2)
∏
j �=i

(1 − η
a1 j
0 t1+a1 j /a1i wqi di j )(1 − η

−a1 j
0 t1−a1 j /a1i w−qi di j )

.

Summing residues over each choice of i and corresponding roots of unity η, the outer integral
is given by

n∑
i=1

∑
ηa1i =1

(2π
√−1)(wa1i )−1(1 − t2)−1∏

j �=i
(1 − ηa1 j t1+a1 j /a1i wqi di j )(1 − η−a1 j t1−a1 j /a1i w−qi di j )

. (7)

Note that formally t1/a1i is well-defined only after fixing a branch of the logarithm. However,
Eq. (7) sums over all the distinct a1i th roots of t and is therefore well-defined independently
of the chosen branch. We set

βi j (η,w) = (1 − ηa1 j t1+a1 j /a1i wqi di j )(1 − η−a1 j t1−a1 j /a1i w−qi di j ) (8)

and then can express Eq. (7) succinctly as

(2π
√−1)

n∑
i=1

∑
ηa1i =1

1

wa1i (1 − t2)
∏
j �=i

βi j (η,w)
.
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Note that for fixed t , this function is rational in w.
Fix a value of i and an a1i th root of unity η. We now proceed with the integral of the

corresponding term of Eq. (7) with respect to w.
For each j , the first factor of βi j (η,w) has a root on the unit disk if and only if di j < 0,

while the second factor has a root if and only if 1− a1 j/a1i and di j have the same sign. Note
also that 1 − a1 j/a1i = 0 is impossible as A is completely generic (and hence in standard
form).

We consider the roots of the first factor ofβi j (η,w). Assume di j < 0. Express 1/
(
wa1i (1−

t2)
∏
j �=i

βi j (η,w)
)
as

w−qi di j−1

a1i (1 − t2)(w−qi di j − ηa1 j t1+a1 j /a1i )(1 − η−a1 j t1−a1 j /a1i w−qi di j )
∏

k �=i, j
βik(η,w)

,

and then the factor (w−qi di j − ηa1 j t1+a1 j /a1i ) in the denominator can be expressed as

(w − ν0η
−a1 j /(qi di j )t−(1+a1 j /a1i )/(qi di j ))

∏
ν

−qi di j =1
ν �=ν0

(w − νη−a1 j /(qi di j )t−(1+a1 j /a1i )/(qi di j ))

where ν0 is a −qidi j th root of unity. Hence, poles corresponding to the vanishing of the first
factor of βi j (η,w) are of the form

τ1(i, j, η, ν0) := ν0η
−a1 j /(qi di j )t−(1+a1 j /a1i )/(qi di j ).

Note that |τ1(i, j, η, ν0)| = |t |−(1+a1 j /a1i )/(qi di j ) = |t |−(a1i+a1 j )/(Ndi j ), and, for j �= k
(and both distinct from i), we have (a1i + a1 j )/di j = (a1i + a1k)/dik if and only if di j −
dik − d jk = 0. That is, the hypothesis that A is completely generic implies that the poles

{τ1(i, j, η, ν0) : j �= i, ν
−qi di j
0 = 1} are distinct.

The residue at τ1 = τ1(i, j, η, ν0) is given by

τ
−qi di j−1
1 a−1

1i (1 − t2)−1

( ∏
k �=i, j

βik(η, τ1)

)−1

∏
ν

−qi di j =1
ν �=ν0

(τ1 − νη−a1 j /(qi di j )t−(1+a1 j /a1i )/(qi di j ))(1 − η−a1 j t1−a1 j /a1i τ
−qi di j
1 )

= −1

Ndi j (1 − t2)2
∏

k �=i, j
βik(η, τ1)

.

Substituting τ1 = ν0η
−a1 j /(qi di j )t−(1+a1 j /a1i )/(qi di j ) into the definition of βik in Eq. (8), we

have

βik(η, τ1) =
(
1 − ν

qi dik
0 ηa1k−a1 j dik/di j t (di j (a1i+a1k )−dik (a1i+a1 j ))/(di j a1i )

)
×(

1 − ν
−qi dik
0 η−a1k+a1 j dik/di j t (di j (a1i−a1k )+dik (a1i+a1 j ))/(di j a1i )

)
.

Simplifying the exponents using the identity a1i d jk + a1 j dki + a1kdi j = 0, we express this
residue R1 as
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−R−1
1 = Ndi j (1 − t2)2

∏
k �=i, j

((
1 − ν

qi dik
0 η−a1i d jk/di j t (di j−dik−d jk )/di j

)×
(
1 − ν

−qi dik
0 ηa1i d jk/di j t (di j+dik+d jk )/di j

))
.

Let ζ = η−a1i /di j and ξ = ν
qi
0 , and then

∑
ηa1i =1

ν
−qi di j
0 =1

R1 =
∑

ζ
−di j =1

ξ
−di j =1

R′
1

where

R′
1 = d−2

i j (1 − t2)−2

∏
k �=i, j

(
1 − ξdik ζ d jk t (di j−dik−d jk )/di j

)(
1 − ξ−dik ζ−d jk t (di j+dik+d jk )/di j

) . (9)

Once again, the formalism of choosing a fixed branch of the logarithm for the substitution
ζ = η−a1i /di j was replaced here by the process of averaging over distinct roots of unity.

We now turn to roots of the second factor of βi j (η,w). We first assume that di j > 0
and 1 − a1 j/a1i > 0, i.e., a1i > a1 j . In this case, we express the integrand 1/

(
wa1i (1 −

t2)
∏
j �=i

βi j (η,w)
)
as

wqi di j−1

a1i (1 − t2)(1 − ηa1 j t1+a1 j /a1i wqi di j )(wqi di j − η−a1 j t1−a1 j /a1i )
∏

k �=i, j
βik(η,w)

,

and factor (wqi di j − η−a1 j t1−a1 j /a1i ) into

(w − ν0η
−a1 j /(qi di j )t (1−a1 j /a1i )/(qi di j ))

∏
ν
qi di j=1

ν �=ν0

(w − νη−a1 j /(qi di j )t (1−a1 j /a1i )/(qi di j )),

where ν0 is a qidi j th root of unity. The corresponding simple poles occur when w is equal
to τ2(i, j, η, ν0) := ν0η

−a1 j /(qi di j )t (1−a1 j /a1i )/(qi di j ). As |τ2(i, j, η, ν0)| = |t |(a1i−a1 j )/(Ndi j ),
(a1i − a1 j )/di j = (a1i − a1k)/dik if and only if di j − dik + d jk = 0, and (a1i − a1 j )/di j =
−(a1i + a1k)/dik if and only if di j + dik − d jk = 0, the fact that A is completely generic
implies that these poles are all distinct, and are distinct from the poles τ1 above.A computation
similar to the previous case expresses the residue R2 as

R−1
2 = Ndi j (1 − t2)2

∏
k �=i, j

((
1 − ν

qi dik
0 η−a1i d jk/di j t (di j+dik−d jk )/di j

)×
(
1 − ν

−qi dik
0 ηa1i d jk/di j t (di j−dik+d jk )/di j

))
.

Applying the same substitutions as in the previous case, we have

∑
ηa1i =1

ν
qi di j
0 =1

R2 =
∑

ζ
di j =1

ξ
di j =1

R′
2
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where R′
2 is given by

d−2
i j (1 − t2)−2

∏
k �=i, j

(
1 − ξdik ζ d jk t (di j+dik−d jk )/di j

)(
1 − ξ−dik ζ−d jk t (di j−dik+d jk )/di j

) . (10)

If di j < 0 and 1− a1 j/a1i < 0, i.e., a1i < a1 j , a practically identical computation identifies
simple poles of the form τ2(i, j, η, ν0) = ν0η

−a1 j /(qi di j )t (1−a1 j /a1i )/(qi di j ) with residue R2,
while our standard substitution results in the slightly modified equation

∑
ηa1i =1

ν
qi di j
0 =1

R2 =
∑

ζ
di j =1

ξ
di j =1

−R′
2.

Combining these computations, it follows that the integral in Eq. (6) is given by

−4π2
n∑

i=1

⎛
⎜⎜⎜⎜⎜⎝

n∑
j=1

j �=i,di j<0

∑
ζ

−di j =1
ξ

−di j =1

R′
1 +

n∑
j=1

j �=i,di j>0
a1i>a1 j

∑
ζ
di j =1

ξ
di j =1

R′
2 +

n∑
j=1

j �=i,di j<0
a1i<a1 j

∑
ζ
di j =1

ξ
di j =1

−R′
2

⎞
⎟⎟⎟⎟⎟⎠

.

Switching the roles of i and j as well as substituting ζ �→ ξ−1 and ξ �→ ζ−1 in the third
sum yields the negative of the second sum, leaving only the first sum. Then switching the
roles of i and j as well as ζ and ξ in the first sum, the off-shell Hilbert series is given by

∑
i �= j,
di j>0

∑
ξ
di j =1

ζ
di j =1

d−2
i j (1 − t2)−2

∏
k �=i, j

(
1 − ξdik ζ d jk t (di j+dik+d jk )/di j

)(
1 − ξ−dik ζ−d jk t (di j−dik−d jk )/di j

) .

Applying Eq. (1) ( [21, Lemma 2.1]), HilbonA (t) is the product of (1 − t2)2 and the off-shell
Hilbert series, completing the proof. ��

3.2 Analytic continuation

Revisiting Theorem 3, there is no particular reason why the final expression in Eq. (5) should
depend on the additional condition di j + d jk + dki �= 0 for every distinct i, j, k. Yet again,
if A is degenerate, then there are distinct i, j, k such that di j − dik − d jk = 0, and Eq. (5)
fails to be well-defined due to division by zero in the case of ξ = ζ = 1. Specifically, as
(a1i + a1 j )/di j = (a1i + a1k)/dik , the poles identified in the computation in the Proof of
Theorem 3 are not distinct and hence are not simple poles. Hence, the computation does not
apply. Nevertheless, the result of Theorem 3 can be extended to the case of general generic
and degenerate A with the help of analytic continuation.

Lemma 1 Let C be a simple closed curve, f (z) be a continuous function on C, and τ be
interior to C. Then

lim
(τ1,...,τm )→(τ,...,τ )

∫
C

f (z) dz
m∏
i=1

(z − τi )

=
∫
C

f (z) dz

(z − τ)m
.
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Proof Let g(z, τ1, . . . , τm) = f (z)/
( ∏m

i=1(z − τi )
)
denote the integrand as a function of z

and the τi . Let D denote a closed ε-ball about τ that is contained in the interior ofC , and then
g(z, τ1, . . . , τm) is continuous on the compact setC ×Dm . It follows that g(z, τ1, . . . , τm) is
bounded by a constant on this set, and the result follows from an application of the dominated
convergence theorem. ��

If f (z) = g(z)/h(z) is a rational function, where h(z) has no zeros on or inside C , then
we can understand the limit in Lemma 1 as follows. Choosing the τi distinct inside C , we
have

1

2π
√−1

∫
C

g(z) dz

h(z)
m∏
i=1

(z − τi )

=
m∑
i=1

g(τi )

h(τi )
m∏
j=1
j �=i

(τi − τ j )

,

which we rewrite as a single rational fraction p(τ1,...,τm )
q(τ1,...,τm )

with common denominator

q(τ1, . . . , τm) =
m∏
i=1

h(τi )
∏

1≤ j<k≤m

(τk − τ j ).

Note that by definition p(τ1,...,τm )
q(τ1,...,τm )

is symmetric in the τi while q(τ1, . . . , τm) is alternating.
Therefore, the numerator p(τ1, . . . , τm) is an alternating polynomial in the τi and hence
divisible by the Vandermonde determinant

∏
1≤ j<k≤m(τk − τ j ), i.e.,

p(τ1, . . . , τm) = s(τ1, . . . , τm)
∏

1≤ j<k≤m

(τk − τ j )

for some symmetric polynomial s in the τi . Therefore, the singularities at τi = τ j are
removable, and we can express the integral as

p(τ1, . . . , τm)

q(τ1, . . . , τm)
= s(τ1, . . . , τm)∏m

i=1 h(τi )
.

In the Proof of Theorem 3, each of the integrands of the iterated integral is a rational
function. Hence, using Lemma 1, we can perturb the poles with multiplicity and apply the
same computation. In more detail, in the integral with respect to z, if multiple poles that are
solutions of factors of the form za1i − tw−Na2i = 0 coincide, we may perturb these factors
by replacing t with a separate variable ti in each, resulting in a rational function in z that has
only simple poles in the unit disk. We then compute the integral of this function and then take
the limit as the ti → t . Similarly, in the second integral with respect to w, we may similarly
perturb t in factors associated to common poles, compute the integral of the resulting rational
function with only simple poles, and then take the limit as these perturbed variables return
to t . In order to state the resulting formula, we express the perturbed variables ti in the form
ti = t pi where pi is near 1 and the exponent is defined using a fixed branch of the logarithm
that is defined on a neighborhood of t . See [21, page 52] for more details on this approach
in a similar computation. Then, taking advantage of the continuity of power functions within
the domain of the fixed branch of log, we have the following.
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Corollary 1 Let n > 2 and let A ∈ Z
2×n be a faithful weight matrix in standard form. The

Hilbert series HilbonA (t) is given by the limit as X → A of

∑ d−2
i j∏

k �=i, j

(
1 − ξdik ζ d jk t (ci j+cik+c jk )/ci j

)(
1 − ξ−dik ζ−d jk t (ci j−cik−c jk )/ci j

) (11)

where the sum is over all i, j such that di j > 0 and all ξ and ζ such that ξdi j = ζ di j = 1,
the xi j are real parameters approximating the ai j , X = (xi j ), ci j = x1i x2 j − x2i x1 j , and the
power functions are computed using a fixed branch of the logarithm. In particular, HilbonA (t)
is given by

∑ d−2
i j∏

k �=i, j

(
1 − ξdik ζ d jk t (di j+dik+d jk )/di j

)(
1 − ξ−dik ζ−d jk t (di j−dik−d jk )/di j

) , (12)

where the sum is as in Eq. (11), for any faithful generic weight matrix A.

Remark 1 Using Eq. (1), Corollary 1 also yields a formula for the Hilbert series HilboffA (t)
of the off-shell invariants of the cotangent lift of the representation associated to A, i.e., the
usual real invariants of the representation with weight matrix A, or equivalently the complex
invariants of the representation with weight matrix (A| − A). Explicitly,

HilboffA (t) = HilbonA (t)

(1 − t2)2
.

3.3 An algorithm to compute the Hilbert series

As in the case of circle quotients treated in [21], Eq. (12) indicates an algorithm to compute
the Hilbert series HilbonA (t) in the case of a generic weight matrix that we now describe. First,
for a ring R containing Q, let R((t)) denote the ring of formal Laurent polynomials in t over
R, and for d ∈ N, define the operator Ud,t : R((t)) → R((t)) by

Ud,t

(∑
m∈Z

Fmt
m

)
=

∑
m∈Z

Fmdt
m . (13)

This operator generalizes that defined in [21, Section 4] and has similar properties. Specifi-
cally, for F(t) = ∑

m∈Z Fmtm ,

Ud,t
(
F(t)

) = 1

d

∑
ζ d=1

F
(
ζ

d
√
t
)
. (14)

The idea behind the algorithm is to interpret Eq. (12) in terms of composing operators of the
form Ud,t . Specifically, we can write

HilbonA (t) =
∑
i �= j,
di j>0

(
Udi j ,s ◦Udi j ,t

)
(Φi j (s, t))

∣∣∣
s=t

where

Φi j (s, t) := 1

d2i j
∏

k �=i, j

(
1 − sdik tdi j+d jk

)(
1 − s−dik tdi j−d jk

) . (15)
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Using Eq. (14), note that if F(s, t) = P(s, t)/Q(s, t) where P and Q are polynomials
in t with coefficients in Q[s, s−1], δ = degt P(s, t) − degt Q(s, t) where degt means the
degree as a polynomial in t , then Ud,t

(
F(s, t)

) = Pd(s, t)/Qd(s, t) where Pd and Qd are
polynomials in t with coefficients in Q[s, s−1] such that

degt Qd(s, t) = degt Q(s, t) and degt Pd(s, t) − degt Qd(s, t) ≤ �δ/d�. (16)

With these observations, the algorithm is as follows.
Given a generic weight matrix A, fix i, j such that di j > 0 and define the function

Φ(s, t) = Φi j (s, t) as in Eq. (15). Then do the following:

1. For each factor (1− s ptq) in the denominator such that q < 0, multiply the numerator
and denominator by the monomial −s−pt−q so that all powers of t in the denom-
inator are nonnegative. Let P(s, t) and Q(s, t) denote the resulting numerator and
denominator, respectively. Define δ = degt P(s, t) − degt Q(s, t).

2. Define the function Q1(s, t) by replacing each of the factors of the form (1− s ptq) in
Q(s, t) via the rule

(1 − s ptq) �−→ (
1 − s pdi j / gcd(di j ,q)tq/ gcd(di j ,q)

)gcd(di j ,q)
.

Then Q1(s, t) is the denominator of Udi j ,t
(
P(s, t)/Q(s, t)

)
.

3. To compute the numerator P1(s, t) of Udi j ,t
(
P(s, t)/Q(s, t)

)
, first compute the Tay-

lor series of P(s, t)/Q(s, t) with respect to t at t = 0 up to degree di j
(�δ/di j� +

degt Q1(s, t)
)
. Apply Udi j ,t to this Taylor series using the description in Eq. (13),

multiply the output series by Q1(s, t), and delete all terms with degt larger than
�δ/di j� + degt Q1(s, t). Call the result P1(s, t), and then Udi j ,t

(
P(s, t)/Q(s, t)

) =
P1(s, t)/Q1(s, t).

4. For each factor (1 − s ptq) in the denominator of P1(s, t)/Q1(s, t) such that p < 0,
multiply the numerator and denominator by the monomial −s−pt−q so that all powers
of s in the denominator are nonnegative. Let P2(s, t) and Q2(s, t) denote the resulting
numerator and denominator, respectively. Define δ′ = degs P2(s, t) − degs Q2(s, t).

5. Define the function Q3(s, t) by replacing each of the factors of the form (1− s ptq) in
Q2(s, t) via the rule

(1 − s ptq) �−→ (
1 − s p/ gcd(di j ,p)tqdi j / gcd(di j ,p)

)gcd(di j ,p).
Then Q3(s, t) is the denominator of Udi j ,s

(
P2(s, t)/Q2(s, t)

)
.

6. To compute the numerator P3(s, t) ofUdi j ,s
(
P2(s, t)/Q2(s, t)

)
, first compute the Tay-

lor series of P2(s, t)/Q2(s, t) with respect to s at s = 0 up to degree di j
(�δ′/di j� +

degs Q3(s, t)
)
. ApplyUdi j ,s to the result using the description in Eq. (13), multiply the

output by Q3(s, t), and delete all terms with degs larger than �δ′/di j�+ degs Q3(s, t).
The result is P3(s, t), and Udi j ,s

(
P2(s, t)/Q2(s, t)

) = P3(s, t)/Q3(s, t).

Apply the above process for each i, j such that di j > 0, sum each of the resulting terms
P3(s, t)/Q3(s, t), and substitute s = t in the sum. The result is HilbonA (t).

This algorithm has been implemented on Mathematica [38] and is available from the
authors upon request. It does not perform particularly well. The largest bottleneck appears to
be the computation of Taylor series expansions; even for 2 × 4 weight matrices with single-
digit entries, the algorithm can require series expansions up to degrees in the hundreds, which
are computationally very expensive. It can handle many 2 × 3 and some 2 × 4 examples.
However, it does not perform better than computing the off-shell invariants using the package
Normaliz [7] forMacaulay2 [13] and using the resulting description to compute the Hilbert
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series, and this latter method has often been more successful. As an example, in the case of
weight matrix

A =
(
1 2 3 4 5
0 1 2 2 1

)
,

the invariants and Hilbert series were computed usingNormaliz andMacaulay2 in under four
hours on a computer with one core and 5GB RAM, while the algorithm described here ran
out of memory on a machine with 16GB RAM. The Hilbert series in this case is given by

1

(1 − t3)(1 − t4)(1 − t9)(1 − t10)(1 − t11)(1 − t15)

(
1 + 3t2 + 3t3 + 7t4 + 11t5

+19t6 + 31t7 + 47t8 + 68t9 + 92t10 + 121t11 + 153t12 + 188t13 + 232t14

+273t15 + 318t16 + 359t17 + 393t18 + 426t19 + 454t20 + 475t21 + 491t22

+496t23 + 491t24 + 475t25 + 454t26 + 426t27 + 393t28 + 359t29 + 318t30

+273t31 + 232t32 + 188t33 + 153t34 + 121t35 + 92t36 + 68t37 + 47t38

+31t39 + 19t40 + 11t41 + 7t42 + 3t43 + 3t44 + t46
)
.

4 Computation of the Laurent coefficients

Let A ∈ Z
2×n be a faithful weightmatrix in standard formwith n > 2. As in Sect. 3, we let di j

denote the 2×2 minor associated to columns i and j . If A is degenerate, we approximate the
ai j with real parameters xi j and let ci j = x1i x2 j − x2i x1 j to assume that ci j + cik + c jk �= 0
for each distinct i, j, k. Let X = (xi j ), define HX ,i, j,ξ,ζ (t) by

1

ci j di j
∏

k �=i, j

(
1 − ξdik ζ d jk t (ci j+cik+c jk )/ci j

)(
1 − ξ−dik ζ−d jk t (ci j−cik−c jk )/ci j

) , (17)

and assume throughout this section that the power functions are defined using a fixed branch
of log t such that log 1 = 0. Let

HX (t) =
∑
i �= j,
di j>0

∑
ξ
di j =1

ζ
di j =1

HX ,i, j,ξ,ζ (t), (18)

so that a minor adaptation of Eq. (11) (by setting one instance of di j equal to ci j in each term)
can be expressed as

HilbonA (t) = lim
X→A

HX (t). (19)

In this section, we consider the Laurent expansion

HilbonA (t) =
∞∑

m=0

γm(A)(1 − t)m−d , (20)

where d = 2(n−2) is the Krull dimension of the algebraR[V ]T2
/IT

2

J , and compute explicit

formulas for γ0 and γ2. By the proof of [16, Theorem 1.3], the algebraR[V ]T2
/IT

2

J is graded
Gorenstein, which in particular implies that γ1 = 0 and γ2 = γ3; see [16, Definition 1.1 and
Corollary 1.8] or [15, Theorem 1.1].
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Our approach is to compute the Laurent coefficients of HX (t) for a choice of X such that
ci j + cik + c jk �= 0 for each distinct i, j, k. Hence, we will need the following result to
extend our computations to the limit as X → A.

Lemma 2 Let fx(t) be a family of meromorphic function depending continuously on finitely
many parameters x = (x1, . . . , xm). Let t0 ∈ C, and assume that there are open neighbor-
hoods O of t0 in C and U of a = (a1, . . . , am) in C

m such that for all x ∈ U, the only pole
of fx(t) in O is at t = t0. Then for each d ∈ Z, the degree d Laurent coefficient of fx(t) at
t = t0 converges to the degree d Laurent coefficient of fa(t) at t = t0 as x → a.

Proof Let P be a simple closed positively-oriented curve in O about t0 and let d ∈ Z. Then
the degree d Laurent coefficient of fx(t) at t0 is given by

1

2π
√−1

∫
P

fx(t) dt

(t − t0)d+1 .

Let D ⊂ U be the closure of a neighborhood of a in C
m , and then as P × D is compact,

the continuous function fx(t) is bounded on P × D. Then by the Dominated Convergence
Theorem, we have

lim
x→a

1

2π
√−1

∫
P

fx(t) dt

(t − t0)d+1 = 1

2π
√−1

∫
P

fa(t) dt

(t − t0)d+1 ,

completing the proof. ��

4.1 The first Laurent coefficient

Here, we consider the coefficient γ0(A) in the expansion in Eq. (20) and prove the following.

Theorem 4 Let n > 2 and A ∈ Z
2×n be a faithful weight matrix in standard form. The pole

order of HilbonA (t) at t = 1 is 2n − 4, and the first nonzero Laurent coefficient γ0(A) of
HilbonA (t) is given by

γ0(A) = lim
X→A

∑
i �= j,
di j>0

c2n−5
i j∏

k �=i, j
(ci j − cik − c jk)(ci j + cik + c jk)

, (21)

where the xi j are real parameters approximating the ai j , X = (xi j ), and ci j = x1i x2 j −
x2i x1 j . In particular, for each i, j, k such that di j > 0, the singularities in Eq. (21) corre-
sponding to di j − dik − d jk = 0 and di j + dik + d jk = 0 are removable.

For the special case of a generic weight matrix A, we have the simplified formula

γ0(A) =
∑
i �= j,
di j>0

d2n−5
i j∏

k �=i, j
(di j − dik − d jk)(di j + dik + d jk)

. (22)

Throughout this section, we fix xi j and corresponding ci j such that each ci j −cik−c jk �= 0
and each ci j + cik + c jk �= 0. For each fixed i �= j such that di j > 0 and di j th roots of unity
ξ and ζ , the pole order of the term HX ,i, j,ξ,ζ (t) given by Eq. (17) is equal to 2(n − s − 2)
where s = s(i, j, ξ, ζ ) is the number of k �= i, j such that ξdik ζ d jk �= 1. The maximum
pole order is 2n − 4, which occurs for instance when ξ = ζ = 1. A term has a pole of order
2n − 4, and hence contributes to γ0, if and only if ξdik ζ d jk = 1 for each k �= i, j .
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Now, fix i �= j with di j > 0. By Proposition 2, the number of pairs (ξ, ζ ) of di j th roots
of unity such that ξdik ζ d jk = 1 for all k �= i, j is equal to di j . For each such (ξ, ζ ), we have

HX ,i, j,ξ,ζ (t) = 1

ci j di j
∏

k �=i, j

(
1 − t (ci j+cik+c jk )/ci j

)(
1 − t (ci j−cik−c jk )/ci j

) ,

implying that

∑
HX ,i, j,ξ,ζ (t) = 1

ci j
∏

k �=i, j

(
1 − t (ci j+cik+c jk )/ci j

)(
1 − t (ci j−cik−c jk )/ci j

) , (23)

where the sum is over all ξ and ζ such that ξdi j = ζ di j = 1, and such that ξdik ζ d jk = 1 for
all k �= i, j . Recalling that we define t y using a fixed branch of log t such that log 1 = 0, we
have the Laurent expansion

1

1 − t y
= 1

y(1 − t)
+ y − 1

2y
+ y2 − 1

12y
(1 − t) + · · · . (24)

Hence, the degree 4 − 2n coefficient of the Laurent series of Eq. (23) at t = 1 is given by

c2n−5
i j∏

k �=i, j
(ci j − cik − c jk)(ci j + cik + c jk)

.

Summing over i �= j such that di j > 0, yields the following.

Lemma 3 Assume ci j + cik + c jk �= 0 for each distinct i, j, k. Then the degree 4 − 2n
coefficient of the Laurent series of the function HX (t) defined in Eq. (18) is given by

∑
i �= j,
di j>0

c2n−5
i j∏

k �=i, j
(ci j − cik − c jk)(ci j + cik + c jk)

. (25)

Observe in Eqs. (17) and (18) that there are finitely many values of ξdik ζ d jk , and hence
that there is an open neighborhood O of t = 1 in C such that when the xi j are sufficiently
close to the ai j , the only pole of HX (t) in O occurs at t = 1. Hence, Theorem 4 follows from
Lemmas 2 and 3 and Eq. (19).

4.2 Cancellations in the first Laurent coefficient

In the case of the one-dimensional torus considered in [21] and [8], the first Laurent coeffi-
cient γ0 is given by an expression similar to Eq. (21). In that case, the removability of the
singularities was understood by interpreting this expression as the quotient of a determinant,
which was therefore divisible by the Vandermonde determinant in the weights. The result
is a description of the numerator after the cancellations as a Schur polynomial, and hence
a closed form expression for γ0. This in particular leads to a quick proof that γ0 is always
positive.

In the case at hand, Theorem 4 guarantees that the singularities in the expression for γ0(A)

in Eq. (21) are removable, just as in the one-dimensional case. However, we have not obtained
a similar combinatorial description of the expression for γ0(A) after the cancellations. In
particular, we conjecture that γ0(A) is always positive for a faithful weight matrix in standard
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form, and such a description would be useful to prove this claim. It could as well lead to
more efficient computation of the γm(A) for specific degenerate A.

In this section, we describe an approach to understanding these cancellations through
brute force computations and end with a discussion of small values of n. See Sect. 4.4 for
a method to compute γ0(A) for specific examples of degenerate weight matrices A without
having to perform the cancellations in general.

First, let us be more explicit about the cancellations in Eq. (25). We combine the sum in
Eq. (25) into a single rational function of the form

∑
i �= j,
di j>0

c2n−5
i j

∏
p,q,r

dpq ,dqr>0
(p,q)�=(i, j)
(q,r)�=(i, j)

(cpq + cpr + cqr )
∏
p,q,r

dpq ,dqr>0
(p,r)�=(i, j)
(q,r)�=(i, j)

(cqr − cpq − cpr )
∏
p,q,r

dpq ,dqr>0
(p,q)�=(i, j)
(p,r)�=(i, j)

(cpq − cpr − cqr )

∏
p,q,r

dpq ,dqr>0

(cpq + cpr + cqr )(cqr − cpq − cpr )(cpq − cpr − cqr )
. (26)

Note that we continue to express the limits of the products and sums in terms of the di j
to emphasize that the signs of the ci j and di j coincide. Note further that if cpq > 0 and
cqr ≥ 0, the hypothesis that A is in standard form so that each a1i > 0 (and hence each
x1i > 0) implies that cpr ≥ 0 as well. That is, the factors of the form (cpq + cpr + cqr ) are
always positive when the xi j approximate a weight matrix in standard form, and only the
other singularities are relevant. Hence, the cancellations amount to the numerator of Eq. (26)
being divisible by the factors of the form (cqr − cpq − cpr ) and (cpq − cpr − cqr ), and the
desired combinatorial description is an expression for the polynomial

∑
i �= j,
di j>0

c2n−5
i j

∏
p,q,r

dpq ,dqr>0
(p,q)�=(i, j)
(q,r)�=(i, j)

(cpq + cpr + cqr )
∏
p,q,r

dpq ,dqr>0
(p,r)�=(i, j)
(q,r)�=(i, j)

(cqr − cpq − cpr )
∏
p,q,r

dpq ,dqr>0
(p,q)�=(i, j)
(p,r)�=(i, j)

(cpq − cpr − cqr )

∏
p,q,r

dpq ,dqr>0

(cqr − cpq − cpr )(cpq − cpr − cqr )
. (27)

The goal of this section is to give an alternate and more explicit demonstration that this is
indeed a polynomial.

It is important to recall that the ci j are not independent variables; due to their dependence
on the xi j they satisfy the Plücker relations, see Eq. (2). In general, the singularities in question
are only removable if Eq. (26) is interpreted as a function in the xi j rather than treating the
ci j as independent variables.

Lemma 4 As a polynomial in the xi j , the numerator of Eq. (26) is divisible by the product of
(cpq − cpr − cqr ) such that dpq , dqr > 0.

Proof Let F denote the numerator of Eq. (26), and let Fi j denote the summand of F
corresponding to i �= j such that di j > 0. Note that for fixed p, q, r , the polynomial
(cpq − cpr − cqr ) as a quadratic polynomial in the xi j has no linear factors, hence is
reducible. It is therefore sufficient to show that F is divisible by each such factor indi-
vidually.

Pick I , J , K such that dI J , dJK > 0. We will demonstrate that F is contained in the
ideal generated by the Plücker relations and (cI J − cI K − cJ K ). First note that each sum-
mand of F contains (cI J − cI K − cJ K ) explicitly as a factor except FI J and FI K so that
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we may restrict our attention to FI J + FI K . Both of these summands contain the fac-
tors ∏

dpq ,dqr>0
(p,q),(q,r)�=
(I ,J ),(I ,K )

(cpq + cpr + cqr )
∏

dpq ,dqr>0
(p,r),(q,r)�=
(I ,J ),(I ,K )

(cqr − cpq − cpr )
∏

dpq ,dqr>0
(p,q),(p,r)�=
(I ,J ),(I ,K )

(cpq − cpr − cqr ),

so that we may express FI J + FI K as a product of the above polynomial and the remaining
factors, where the latter can be expressed as

c2n−5
I J (cJ K − cI J − cI K )

∏
r ,

dKr>0

(cI K + cIr + cKr )(cI K − cIr − cKr )×

∏
p,

dpI>0

(cpI + cpK + cI K )(cI K − cpI − cpK )
∏
q �=J ,

dIq ,dqK>0

(cqK − cIq − cI K )(cIq − cI K − cqK )

+ c2n−5
I K (cI J + cI K + cJ K )

∏
r �=K
dJr>0

(cI J + cIr + cJr )(cI J − cIr − cJr )×

∏
p,

dpI>0

(cpI + cpJ + cI J )(cI J − cpI − cpJ )
∏
q,

dIq ,dq J>0

(cq J − cIq − cI J )(cIq − cI J − cq J ).

In the first summand, it is helpful to think of the indices p, q , and r as ranging over those
columns of A that, as vectors in R

2, lie below (a1I , a2I ) (for p), between the (a1I , a2I )
and (a1K , a2K ) (for q), and above (a1J , a2J ) (for r ), and similarly for the second sum-
mand. Applying the substitution cI J = cI K + cJ K in the factor (cJ K − cI J − cI K )

in the first summand yields −2cI K , and applying cI K = cI J − cJ K in (cI J + cI K +
cJ K ) in the second summand yields 2cI J . Noting that each index value not equal to
I , K , J appears exactly once as a p, q , or r in each of the above summands so that
the total number of three-term factors in each summand is 2n − 6, we express this
as

−2cI J cI K
∏

r ,dKr>0

cI J (cI K + cIr + cKr )cI J (cI K − cIr − cKr )×
∏

p,dpI>0

cI J (cpI + cpK + cI K )cI J (cI K − cpI − cpK )×
∏
q �=J ,

dIq ,dqK>0

cI J (cqK − cIq − cI K )cI J (cIq − cI K − cqK )

+2cI J cI K
∏
r �=K ,
dJr>0

cI K (cI J + cIr + cJr )cI K (cI J − cIr − cJr )×

∏
p,dpI>0

cI K (cpI + cpJ + cI J )cI K (cI J − cpI − cpJ )×
∏

q,dIq ,dq J>0

cI K (cq J − cIq − cI J )cI K (cIq − cI J − cq J ).

We will now rewrite the first summand to see that it is equal to the negative of the second
summand. Distributing a cI J into each three-term factor, we apply the Plücker relations
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of Eq. (2) cI J cKr − cI K cJr + cIr cJ K = 0, cpI cJ K − cpJ cI K + cpK cI J = 0, and
cIqcJ K − cI J cqK + cI K cq J = 0, so the first summand becomes

− 2cI J cI K×∏
r ,dKr>0

(cI J cI K + cI J cIr + cI K cJr − cIr cJ K )(cI J cI K − cI J cIr − cI K cJr + cIr cJ K )×
∏

p,dpI>0

(cI J cpI − cpI cJ K + cpJ cI K + cI J cI K )(cI J cI K − cI J cpI + cpI cJ K − cpJ cI K )×
∏
q �=J

dIq ,dqK>0

(cIqcJ K + cI K cq J − cI J cIq − cI J cI K )(cI J cIq − cI J cI K − cIqcJ K − cI K cq J ).

Applying the relation cI J − cI K − cJ K = 0, we rewrite this as

−2cI J cI K
∏

r ,dKr>0

(cI J cI K + cI K cIr + cI K cJr )(cI J cI K − cI K cIr − cI K cJr )×
∏

p,dpI>0

(cI K cpI + cpJ cI K + cI J cI K )(cI J cI K − cI K cpI − cpJ cI K )×
∏
q �=J ,

dIq ,dqK>0

(cI K cq J − cI K cIq − cI J cI K )(cI K cIq − cI J cI K − cI K cq J ).

Recalling the assumption that cI J , cJ K > 0 and reorganizing factors, this is equal to the
negative of the second summand, completing the proof. ��

An almost identical argument yields the following.

Lemma 5 As a polynomial in the xi j , the numerator of Eq. (26) is divisible by the product of
(cqr − cpq − cpr ) such that dpq , dqr > 0.

Combining Lemmas 4 and 5, it follows that Eq. (26), as a rational function in the xi j , can
be expressed in the form

S∏
p,q,r

dpq ,dqr>0

(cpq + cpr + cqr )
, (28)

where S is a polynomial in the xi j that is equal to the expression in Eq. (27) on its domain.
When n = 3, the cancellations can be dealt with by hand; in this case, they occur even

if the ci j for i < j are treated as independent variables (i.e., without applying the Plücker
relations), and the resulting numerator S = 1 is constant. When n = 4, S has 14 terms in the
ci j ; when n = 5, the cancellations involved a Gröbner basis computation that took five days
on a PC and yielded an S with 1961 terms in the ci j . Of course, when n > 3, the number of
terms is not unique due to the Plücker relations.

4.3 The next three Laurent coefficients

We now turn to the computation of the next Laurent coefficients and prove the following.
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Theorem 5 Let n > 2 and let A ∈ Z
2×n be a faithful weight matrix in standard form. Then

γ1(A) = 0 and

γ2(A) = γ3(A) = lim
X→A

∑
i �= j,
di j>0

−c2n−7
i j

∑
p �=i, j

(cip + c jp)2

12
∏

k �=i, j
(ci j − cik − c jk)(ci j + cik + c jk)

+
n∑

p=1

gp − 1

12
γ0(Ap), (29)

where the xi j are real parameters approximating the ai j , X = (xi j ), ci j = x1i x2 j − x2i x1 j ,
Ap is the weight matrix formed by removing column p from A, and gp is the gcd of the 2× 2
minors of Ap. In particular, for each i, j, k such that di j > 0, the singularities in Eq. (29)
corresponding to di j − dik − d jk = 0 and di j + dik + d jk = 0 are removable.

For the special case of a generic weight matrix A, we have the simplified formula

γ2(A) = γ3(A) =
∑
i �= j,
di j>0

−d2n−7
i j

∑
p �=i, j

(dip + d jp)
2

12
∏

k �=i, j
(di j − dik − d jk)(di j + dik + d jk)

+
n∑

p=1

gp − 1

12
γ0(Ap). (30)

Proof We first compute γ1(A). Note that the fact that γ1(A) = 0 follows from the results
of [16] as noted after Eq. (20) above. We verify this explicitly here on the way towards the
computation of γ2(A).

Based on the observations after the statement of Theorem 4 and continuing to use the same
notation, we need to consider terms HX ,i, j,ξ,ζ (t) of pole order 2(n − s − 2) where s = 0 or
1; recall that s = s(i, j, ξ, ζ ) denotes the number of k such that ξdik ζ d jk �= 1. In particular,
there are no terms with pole order 2n − 3, so only terms where s = 0 contribute to γ1(A).

Using Eq. (24) and the Cauchy product formula, the degree 5 − 2n coefficient of the
Laurent expansion of the term HX ,i, j,ξ,ζ (t) is computed by choosing a p �= i, j , multiplying
the degree 0 coefficient of the expansion of 1/(1−t (ci j+cip+c jp)/ci j ) or 1/(1−t (ci j−cip−c jp)/ci j )

with the degree −1 coefficient of the other factors, and summing over all choices of p and
the factor from the pair. That is, the degree 5 − 2n coefficient of a term HX ,i, j,ξ,ζ (t) such
that s = 0 is given by

∑
p �=i, j

c2n−6
i j

c2i j
∏

k �=i, j,p
(ci j − cik − c jk)(ci j + cik + c jk)

×
((

ci j
ci j + cip + c jp

)
(ci j − cip − c jp)/ci j − 1

2(ci j − cip − c jp)/ci j

+
(

ci j
ci j − cip − c jp

)
(ci j + cip + c jp)/ci j − 1

2(ci j + cip + c jp)/ci j

)
= 0,

confirming that γ1(A) = 0 (which also follows from the results of [15, 16] as described
above).

For the degree 6− 2n coefficient, we first consider the contribution of terms HX ,i, j,ξ,ζ (t)
with s = 0. The contribution is computed similarly to above, except that we consider the
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products of the degree 1 coefficient of a factor corresponding to p �= i, j with the degree −1
coefficients of the other factors, and the degree 0 coefficient of two factors corresponding to
p, q �= i, j with the degree −1 coefficients of the other factors.

In the first case, we have

∑
p �=i, j

c2n−6
i j

c2i j
∏

k �=i, j,p
(ci j − cik − c jk)(ci j + cik + c jk)

×
((

ci j
ci j + cip + c jp

)
(ci j − cip − c jp)2/c2i j − 1

12(ci j − cip − c jp)/ci j

+
(

ci j
ci j − cip − c jp

)
(ci j + cip + c jp)2/c2i j − 1

12(ci j + cip + c jp)/ci j

)

=
c2n−8
i j

∑
p �=i, j

(cip + c jp)2

6
∏

k �=i, j
(ci j − cik − c jk)(ci j + cik + c jk)

.

Summing over all terms HX ,i, j,ξ,ζ (t) and recalling that for each i �= j with di j > 0, there
are by Proposition 2 di j pairs (ξ, ζ ) such that s = 0, we have

∑
i �= j,
di j>0

c2n−7
i j

∑
p �=i, j

(cip + c jp)2

6
∏

k �=i, j
(ci j − cik − c jk)(ci j + cik + c jk)

. (31)

In the second case,wefirst consider the situationwhere both factors 1/(1−t (ci j+cip+c jp)/ci j )

and 1/(1 − t (ci j−cip−c jp)/ci j ) contribute a degree 0 coefficient for some p �= i, j while the
remaining factors corresponding to k �= i, j, p contribute their degree −1 coefficient. Sum-
ming over all relevant terms, a calculation very similar to those above yields the contribution

∑
i �= j,
di j>0

−c2n−7
i j

∑
p �=i, j

(cip + c jp)2

4
∏

k �=i, j
(ci j − cik − c jk)(ci j + cik + c jk)

. (32)

In addition, we need to consider the situation where distinct p, q �= i, j with p < q each con-
tribute the degree 0 coefficient of one of their corresponding factors 1/(1− t (ci j+cir+c jr )/ci j )

and 1/(1 − t (ci j−cir−c jr )/ci j ) where r = p or q . An easy calculation shows that in this case
terms cancel, and the total contribution is zero.

We now consider the contribution of HX ,i, j,ξ,ζ (t) where s = 1, i.e., ξdik ζ d jk = 1 for all
k �= i, j except one, say k = p. Such a term corresponds to a choice of i, j and a solution
(ξ, ζ ) to ξdik ζ d jk = 1, k �= i, j for the weight matrix Ap ∈ Z

2×(n−1) formed by removing
the pth column. If Ap is faithful, then the number of pairs (ξ, ζ ) such that ξdik ζ d jk = 1 for all
k �= i, j, p is di j by Proposition 2, hence each such pair satisfies ξdipζ d jp = 1 by counting.
It follows that there are no HX ,i, j,ξ,ζ (t) with s = 1 corresponding to Ap . Similarly, if Ap

has rank 1, then there are no i, j �= p such that di j > 0 and hence no corresponding terms
HX ,i, j,ξ,ζ (t) in HX (t).

If Ap is not faithful and the 2 × 2 minors of Ap have gcd gp > 1, then there are gpdi j
pairs (ξ, ζ ) to consider such that ξdik ζ d jk = 1 for all k �= i, j, p, again by Proposition 2.
Identifying the set of pairs of di j th roots of unity with (Z/di jZ)2, the set of (ξ, ζ ) such that
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ξdik ζ d jk = 1 for k �= i, j, p forms a subgroup of order gpdi j . As ξdipζ d jp = 1 for di j of these
pairs, (ξ, ζ ) �→ ξdipζ d jp is a homomorphism to Z/di jZ with kernel of order di j . Therefore,
the image of this homomorphism corresponds to a cyclic subgroup of Z/di jZ of size gp ,
which means that the homomorphism (ξ, ζ ) �→ ξdipζ d jp maps onto the group of gpth roots
of unity, and for each gpth root of unity η, there are di j pairs (ξ, ζ ) such that ξdipζ d jp = η.

Fixing i, j, p and (ξ, ζ ) such that ξdipζ d jp = η �= 1, HX ,i, j,ξ,ζ (t) is of the form

HX ,i, j,ξ,ζ (t) =
(
c2i j

(
1 − ηt (ci j+cip+c jp)/ci j

)(
1 − η−1t (ci j−cip−c jp)/ci j

)
∏

k �=i, j,p

(
1 − t (ci j+cik+c jk )/ci j

)(
1 − t (ci j−cik−c jk )/ci j

))−1

and has a pole order of 2n − 6. Using the expansion in Eq. (24) as well as

1

1 − νt y
= 1

1 − ν
− νy

(ν − 1)2
(1 − t) + · · · ,

the coefficient of degree 2n − 6 of HX ,i, j,ξ,ζ (t) is given by

c2n−6
i j

c2i j (1 − η)(1 − η−1)
∏

k �=i, j,p
(ci j + cik + c jk)(ci j − cik − c jk)

= −c2n−8
i j∏

k �=i, j,p
(ci j + cik + c jk)(ci j − cik − c jk)

(
η

(1 − η)2

)
.

Summing over all (ξ, ζ ) corresponding to the fixed i, j, p such that ξdipζ d jp �= 1, we have

∑
ξ
di j =ζ

di j =1
ξ
dip ζ

d jp=η �=1

−c2n−8
i j∏

k �=i, j,p
(ci j + cik + c jk)(ci j − cik − c jk)

(
η

(1 − η)2

)

= −c2n−7
i j∏

k �=i, j,p
(ci j + cik + c jk)(ci j − cik − c jk)

∑
ηgp=1,η �=1

(
η

(1 − η)2

)

= c2n−7
i j (g2p − 1)

12
∏

k �=i, j,p
(ci j + cik + c jk)(ci j − cik − c jk)

,

where the sum over η is computed using [12, Equation (3.11)]. Summing over each p and
i �= j with di j > 0, we obtain

n∑
p=1

g2p − 1

12

∑
i �= j,
di j>0

c2n−7
i j∏

k �=i, j,p
(ci j + cik + c jk)(ci j − cik − c jk)

=
n∑

p=1

g2p − 1

12
γ0(Ap).

Combining this with Eqs. (31) and (32), and applying Lemma 2 identically as in the Proof
of Theorem 4, completes computation of γ2(A). That γ2(A) = γ3(A) follows from [16,
Theorem 1.3 and Corollary 1.8]. ��
Remark 2 As discussed in Sect. 4.2 for γ0(A), a combinatorial description of the expression
for γ2(A) in Theorem 5 after the cancellations is desirable. The cancellations in the second
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sum involving γ0(Ap) are as described in Lemmas 4 and 5, and we have verified that the
cancellations for n = 3, 4 occur analogously in the first sum.

Remark 3 Using Eq. (1), an immediate consequence of Theorems 4 and 5 is an explicit
formula for the first four Laurent coefficients γ

off
m (A) of the off-shell invariants; seeRemark 1.

Specifically, the pole order of HilboffA (t) at t = 1 is 2n − 2, and we have the following

γ
off
0 (A) = γ

off
1 (A) = γ0(A)

4
,

γ
off
2 (A) = 3γ0(A) + 4γ2(A)

16
,

γ
off
3 (A) = γ0(A) + 4γ2(A)

8
.

4.4 Computing the Laurent coefficients

In the case of a generic weight matrix A, Theorems 4 and 5 can be used to compute γ0(A) and
γ2(A) with little difficulty. However, if A has degeneracies, then as was noted in Sect. 4.2,
an expression for γ0(A) with the singularities removed can be very expensive to compute,
even for representations as small as n = 5. Here, we briefly describe a method that has been
successful to more efficiently compute γ0(A) for degenerate A with values of n as large as
10.

Given a weight matrix A ∈ Z
2×n , the algorithm first tests that A is faithful and in standard

form, and terminates if either of these hypotheses does not hold. Let

A(u1, . . . , un) =
(
a11u1 a12u2 · · · a1nun
a21u1 a22u2 · · · a2nun

)

so that A(1, . . . , 1) = A, and let Dpq(u1, . . . , un) = dpqu puq denote the minor of
A(u1, . . . , un) corresponding to columns p and q . For each 1 ≤ i, j ≤ n with di j > 0,
the denominator

∏
k �=i, j (di j − dik − d jk)(di j + dik + d jk) of the corresponding term in

Eq. (21) with the substitution cpq = dpq for each p, q is evaluated. If the denominator is
nonzero, then the term is computed directly from the matrix with the above substitutions. If
the denominator vanishes, then the term is computed by substituting cpq = Dpq(u1, . . . , un)
for each p, q . The sum of the resulting terms is combined into a single rational fraction of
the form in Eq. (26) in the indeterminates u1, . . . , un with many of the singularities in that
expression already removed. The remaining singularities can be removed by factoring and
cancelling or by polynomial division of the numerator by the principal ideal generated by
the product of factors of the denominator that vanish when each ui = 1.

This method has been implemented onMathematica [38] and is available from the authors
upon request. Unlike the algorithm to compute the complete Hilbert series described in
Sect. 3.3, it has the benefit of not being as sensitive to the size of the entries of A. For weight
matrices with no degeneracies, it is simply arithmetic and hence fast, and the computational
expense grows with the number of degeneracies and only slowly with the n and the size of
the weights. It has successfully computed γ0(A) for weight matrices as large as 2× 10 with
multiple degeneracies in a matter of minutes.
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