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Abstract
In this paper, we introduce a weak form of amenability on topological semigroups that we
call ϕ-amenability, where ϕ is a character on a topological semigroup. Some basic properties
of this new notion are obtained and by giving some examples, we show that this definition is
weaker than the amenability of semigroups.As anoticeable result, for a topological semigroup
S, it is shown that if S is ϕ-amenable, then S is amenable. Moreover, ϕ-ergodicity for a
topological semigroup S is introduced and it is proved that under some conditions on S and a
Banach space X , ϕ-amenability and ϕ-ergodicity of any antirepresntation defined by a right
action S on X , are equivalent. A relation between ϕ-amenability of topological semigroups
and the existence of a common fixed point is investigated and by this relation, Hahn-Banach
property of topological semigroups in the sense of ϕ-amenability defined and studied.
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1 Introduction

Let S be a semigroup. A character (semi-character) on S is a nonzero map ϕ : S −→ T

(S −→ D) such that ϕ(st) = ϕ(s)ϕ(t), for all s, t ∈ S. We denote the space of characters
(semi-characters) on S by �S(S) (�S) and �S(S) ⊂ �S .

For every ϕ ∈ �S , the map ϕ̂ : �1(S) −→ C defined by ϕ̂( f ) = ∑

s∈S ϕ(s) f (s) (s ∈ S,
f ∈ �1(S)), is the character on �1(S), and indeed all of characters on �1(S) constructed by
this method, see [6,22] for more details.

Let ϕMS be the class of Banach S-bimodules such as X for which the left module action
of S on X is given by s · x = ϕ(s)x , for all s ∈ S and x ∈ X . Similarly, MS

ϕ is the class of
Banach S-bimodules X for which the right module action of S on X is given by x ·s = ϕ(s)x ,
for all s ∈ S and x ∈ X .

Let C(S) be the Banach algebra of complex valued continuous bounded functions on S.
We can consider C(S) as a member of ϕMS and MS

ϕ , because ϕ is continuous. A function
f ∈ C(S) is called left uniformly continuous if limα ‖sα · f − s · f ‖∞ = 0, whenever
sα −→ s. We denote the Banach algebra of all right (left) uniformly continuous functions on
S by RUC(S) (LUC(S)). Let E be a linear subspace of C(S) which contains the constant
function 1S . A mean on E is a functional m ∈ E∗ such that m(1S) = ‖m‖ = 1. If E is
closed under module actions, then the mean m is called left (right) invariant if s · m = m
(m · s = m), for all s ∈ S.

Let S be a topological semigroup, for s ∈ S, the left translation ls of C(S) by s is defined
by ls f (s′) = f (ss′), for all f ∈ C(S) and s′ ∈ S and the right one denoted by rs such that
rs f (s′) = f (s′s).

A semigroup S is called left (right) amenable if there is a left (right) invariant mean on
RUC(S) (LUC(S)), i.e., there is a linear functional m in RUC(S)∗ (LUC(S)∗) such that
m(ls f ) = m( f ) (m(rs f ) = m( f ), for all f ∈ RUC(S) (LUC(S)) and s ∈ S. Moreover, S
is called amenable if it is both left and right amenable.

Let S be a topological semigroup and let X be a Banach S-bimodule. A bounded derivation
is a weak∗-continuous map D : S −→ X∗, such that D(st) = s · D(t) + D(s) · t , for all
s, t ∈ S, and sups∈S ‖D(s)‖ < ∞. The bounded derivation D is called principle, if there is
an element f ∈ X∗ such that D(s) = s · f − f · s = ad f (s), for all s ∈ S. If every derivation
on semigroup S is principle, then S is called Johnson amenable. The Johnson amenability of
semigroups and groups studied in [15].

The amenability of (topological) semigroups and topological groups have close con-
nections with the amenability of Banach algebras defined on semigroups and groups. A
well-known result related to these connections is the Johnson Theorem [11]: the locally
compact group G is amenable if and only if L1(G) is amenable. A Banach algebra A is said
to be amenable if, for any BanachA-bimodule X , every continuous derivation D : A −→ X∗
is inner.

Let A be a Banach algebra and σ(A) is the carrier space of A, and ϕ ∈ σ(A) is a
homomorphism from A onto C. Assume that ϕ ∈ σ(A) ∪ {0} and X is an arbitrary Banach
space, then X can be viewed as Banach left or right A-module by the following actions

a · x = ϕ(a)x and x · a = ϕ(a)x (a ∈ A, x ∈ X).
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TheBanach algebraA is said to be left character amenable (LCA), if for all ϕ ∈ σ(A)∪{0}
and BanachA-bimodules such as X for which the left module action is given by a ·x = ϕ(a)x
(a ∈ A, x ∈ X ), every continuous derivation D : A −→ X∗ is inner. Right character
amenability (RCA) is defined similarly by considering Banach A-bimodules such as X for
which the left module action is given by x · a = ϕ(a)x , and A is called character amenable
(CA) if it is both left and right character amenable. The notion of character amenability of
Banach algebras was defined by Sangani Monfared in [17] and the concept of ϕ-amenability
of Banach algebras was introduced by Kaniuth and et al. in [12].

Let S be a topological semigroup and 0 
= ϕ ∈ �S(S). This paper considers the concept of
left (right) ϕ-amenability of topological semigroup S and some notions that have connections
with it.

In Sect. 2, we introduce the left (right) ϕ-amenability of topological semigroups and show
that this new notion is different from the amenability of semigroups (groups). Moreover,
some results about relations between ϕ-amenability of semigroups (groups) and character
amenability of semigroup algebras (group algebras) are obtained.

In Sect. 3, we consider some hereditary properties ofϕ-amenability and define the strongly
left (right) ϕ-amenability on subsemigroups of semigroups where with this definition, we
show that strongly left (right) ϕ-amenability of a left (right) thick subsemigroup implies that
the left (right) ϕ-amenability of a semigroup and vice versa.

Section 4 deals with left ϕ-ergodicity that we introduce it in that section and investigate
some relations between left ϕ-amenability of S and left ϕ-ergodicity. Moreover, we obtain
a characterization of ϕ-amenability of S in terms of antirepresentations of S on a Banach
space.

Finally, in Sect. 5, we study the existence of a common Fixed point in compact convex sets
that S has continuous affine actions on. Moreover, we define Hahn-Banach Property related
to 0 
= ϕ ∈ �S(S) and as an interesting result, we characterize ϕ-amenability of topological
semigroups.

2 '-amenability

Let S be a topological semigroup and ϕ ∈ �S(S). In this section, we study left (right) ϕ-
amenability of the semigroup S and obtain some necessary and sufficient related to left (right)
ϕ-amenability of S such as Theorem 2.12. We start this section with the new definition as
follows

Definition 2.1 Let S be a topological semigroup and 0 
= ϕ ∈ �S(S). We say that

(i) S is leftϕ-amenable if, for eachBanach S-bimodule X ∈ϕ MS , every bounded derivation
D : S −→ X∗ is principle.

(ii) S is rightϕ-amenable if, for eachBanach S-bimodule X ∈ MS
ϕ , every bounded derivation

D : S −→ X∗ is principle.
(iii) S is ϕ-amenable if it is both left and right ϕ-amenable.

In this paper, we suppose that 0 
= ϕ ∈ �S(S). The following result is one of the main results
of this paper, indeed, this paper results are dependent on.

Theorem 2.2 Let S be a topological semigroup and ϕ ∈ �S(S). Then the following state-
ments are equivalent

(i) S is left (right) ϕ-amenable;
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(ii) there is a bounded linear functional m in RUC(S)∗ (LUC(S)∗), such that m(ϕ) = 1
and m( f · s) = ϕ(s)m( f ) (m(s · f ) = ϕ(s)m( f )), for all s ∈ S and f ∈ RUC(S)

( f ∈ LUC(S)).

Proof (i) �⇒ (ii) Let S be left ϕ-amenable. Continuity of ϕ implies that the Banach algebra
RUC(S) is a Banach S-bimodule via

(s · f )(t) = ϕ(s) f (t) and ( f · s)(t) = f (st),

for all s, t ∈ S and f ∈ RUC(S). Clearly, every ϕ belongs to RUC(S). It follows that
ϕ · s = ϕ(s)ϕ, for all s ∈ S. Moreover,

(ϕ · s)(t) = ϕ(s)ϕ(t) = ϕ(t)ϕ(s) = ϕ(ts)

= ϕ(s)ϕ(t),

for all s, t ∈ S. Therefore, for every s ∈ S,

s · ϕ = ϕ · s = ϕ(s)ϕ. (2.1)

ThusCϕ is a closed S-subbimodule of RUC(S). Consider the quotientBanach S-bimodule
X = RUC(S)/Cϕ. Then put Y = X∗ ∼= { f ∈ RUC(S)∗ : f (ϕ) = 0} ⊆ RUC(S)∗. Let
�0 ∈ RUC(S)∗ \ Y such that �0(ϕ) = 1 and let δ�0 : S −→ Y be as follows

δ�0(s) = s · �0 − �0 · s = s · �0 − ϕ(s)�0.

Clearly, δ�0 is a bounded derivation. On the other hand, S is left ϕ-amenable, then there
is an element x in Y such that

s · �0 − ϕ(s)�0 = δ�0(s) = s · x − ϕ(s)x, (2.2)

for all s ∈ S. Let m = �0 − x. Clearly m ∈ RUC(S)∗, m(ϕ) = 1 and (2.2) implies
m( f · s) = ϕ(s)m( f ), for all s ∈ S and f ∈ RUC(S). Similarly, we can prove right
ϕ-amenability.

(ii)�⇒(i) Let X ∈ ϕMS and D : S −→ X∗ be a bounded derivation. For any x ∈ X ,
we define ωx : S −→ C by ωx (s) = (D(s))(x). Since D is bounded, ωx is bounded and
continuous. Let tα −→ t in S. Then

‖ωx · tα − ωx · t‖∞ = sup
s∈S

|ωx (tαs) − ωx (ts)| = sup
s∈S

|(D(tαs))(x) − (D(ts))(x)|
≤ sup

s∈S
|ϕ(s)(D(tα) − D(t))(x)| + sup

s∈S
|(D(s))(x · tα − x · t)|

−→ 0. (2.3)

Therefore, (2.3) follows that ωx ∈ RUC(S). Let m be a linear functional in RUC(S)∗
which satisfies (ii). Define a linear functional f ∈ X∗ by m(ωx ) = f (x), for all x ∈ X .
Since D is a derivation, we have

ωx ·s(t) = (D(t))(x · s) = (s · D(t))(x) = (D(st))(x) − (ϕ(t)D(s))(x)

= ωx (st) − (D(s))(x)ϕ(t) = (ωx · s − (D(s))(x)ϕ)(t), (2.4)

for all s, t ∈ S and x ∈ X . Thus (2.4) implies that ωx ·s = ωx · s − (D(s))(x)ϕ. Then

(ϕ(s) f − s · f )(x) = ϕ(s) f (x) − f (x · s) = ϕ(s)m(ωx ) − m(ωx ·s)
= ϕ(s)m(ωx ) − m(ωx · s − (D(s))(x)ϕ)

= ϕ(s)m(ωx ) − m(ωx · s) + (D(s))(x)m(ϕ)

= (D(s))(x), (2.5)
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for all s ∈ S and x ∈ X . Hence, D(s) = s · (− f ) − ϕ(s)(− f ), for all s ∈ S. This means
that D is principle and S is left ϕ-amenable. ��

The following example shows that a semigroup S may be ϕ-amenable (ϕ ∈ �S(S)) but
it is not amenable, and thereby, we show that the space of ϕ-amenable semigroups is wider
than amenable semigroups.

Example 2.3 (i) Let S be a left or a right cancellative semigroup with the identity element
e such that, for each s 
= e, st = ϕ(t)s, where ϕ ∈ �S(S) and let dim �1(S) ≥ 2.
Let {Vα} be a collection of neighborhood basis for e. We construct a net (vα)α from
{Vα} such that vα ∈ Vα and limα ϕ(vα) = 1. By passing into a suitable bounded subnet
(ηα)α ⊆ (vα)α , we can find an element μ ∈ βS (Stone − Čech compactification of S)

such that μ = limα ηα . The space βS is homeomorphic to the character space of �∞(S).
Without loss of generality, we can suppose that μ belongs to character space of �∞(S)

and hence it belongs to RUC(S)∗. It is easy to check that μ satisfies condition (ii) of
Theorem 2.2. Thus S is left ϕ-amenable, but S is not right amenable because �1(S) is not
amenable [10, Theorem 2.3].

(ii) Let S and T be semigroups. Suppose that S acts on T on the left; i.e., assume that there
is a semigroup homomorphism τ from T to End(S), the set of endomorphisms on S,
such that, for each t ∈ T there exists τt : S −→ S such that τt1(τt2(s)) = τt1t2(s), for all
t1, t2 ∈ T . Then S �τ T is called the semidirect product of S and T with respect to τ .
If S �τ T is the semigroup consisting of elements of the form (s, t), where s ∈ S and
t ∈ T equipped with multiplication given by

(s1, t1)(s2, t2) = (s1τt1(s2), t1t2),

for all (s1, t1), (s2, t2) ∈ S�τ T . The amenability of semidirect product of two semigroups
is investigated by Klawe [13].
Let S be a left amenable unital semigroup with the identity element e such that consists
of at least two elements, mS be a left invariant mean for S and T be a semigroup. Define
τ from T into End(S) by τt (s) = e, for all s ∈ S and t ∈ T . Thus, (s1, t1)(s2, t2) =
(s1, t1t2), for all (s1, t1), (s2, t2) ∈ S �τ T . Let ϕ ∈ �T (T ), then ϕ̃(s, t) = ϕ(t) is a
character on S �τ T . Assume that T is ϕ-amenable. According to [13, Remark 3.6],
S �τ T is not left amenable (even T is left amenable). For every f ∈ RUC(S �τ T ),
define ft (s) = f (s, t), for all s ∈ S and t ∈ T . Clearly, ft ∈ RUC(S) and define g(t) =
mS( ft ), for every t ∈ T . Thus, according to definition, we have g ∈ RUC(T ). Since T
is left ϕ-amenable, Theorem 2.2 implies that there existsmϕ on RUC(T ) that satisfies in
the stated conditions. Now definem( f ) = mϕ(g), for every f ∈ RUC(S �τ T ). Then

m( f · (s, t)) = mϕ[mS(( f · (s, t))(x, y))] = mϕ[mS( f (s, t y))]
= mϕ[mS( fty(s))] = mϕ[g(t y)] = mϕ[(g · t)(y)]
= ϕ(t)mϕ(g) = ϕ(t)m( f )

= ϕ̃(s, t)m( f ),

for all f ∈ RUC(S�τ T ) and (s, t) ∈ S�τ T . The above obtained equalities imply that
m(ϕ̃) = 1. This means that S �τ T is left ϕ̃-amenable.

For a semigroup S, by 1S we mean the constant function that 1S(s) = 1, for every s ∈ S.
Clearly, 1S ∈ �S(S) and we have the following result that gives a relationship between left
(right) 1S-amenability and left (right) amenability of S.
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Theorem 2.4 Let S be a topological semigroup, then S is right (left) 1S-amenable if and only
if S is left (right) amenable.

Proof Let S be right 1S-amenable and let RUC(S) ∈ 1SMS . Let X = RUC(S)/C1S , then
X ∈ 1SMS and X∗ is canonically isometrically isomorphic with the submodule (C1S)⊥ =
{ f ∈ RUC(S)∗ : f (1S) = 0}. For f ∈ RUC(S)∗ \ (C1S)⊥, define D : S −→ RUC(S)∗
by D(s) = s · f − f · s. It is easy to check that D is a derivation. Since RUC(S) ∈ 1SMS ,
D(s) = s · f − 1S(s) f = s · f − f , for every s ∈ S. Right 1S-amenability of S implies
that there is an element g ∈ (C1S)⊥ such that D(s) = s · g − g, for all s ∈ S. Now, define
h = g− f . Obviously, h 
= 0 and s ·h = h. This means that h is left S-invariant on RUC(S).
The Banach algebra RUC(S) is a C∗-subalgebra of �∞(S), and Gelfand’s Theorem implies
that there is a compact Hausdorff space  such that RUC(S) is isometrically ∗-isomorphic
to C() as C∗-algebras and S-bimodules. Hence, we can suppose that h as an S-invariant
complex Borel regular measure on. Let |h| be the total variation measure of h. Now, define
m = |h|/|h|(), which m is a left S-invariant mean on RUC(S). In the other words, S is
left amenable.

Conversely, suppose that S is left amenable. Let m be a left invariant mean for S. Let ωx

and f ∈ X∗ be as in the proof of Theorem 2.2. By (2.4) we have

ωx ·s(t) = (ωx · s − (D(s))(x))ϕS(t) = (ωx · s − (D(s))(x)1S)(t) (2.6)

for all s, t ∈ S and x ∈ X . Thus (2.6) implies that ωx ·s = ωx · s − (D(s))(x)1S . Then by a
similar argument in (2.5), we conclude that D is principle. ��
Definition 2.5 Let S be a topological semigroup and �S(S) be the character space of S. We
say that

(i) S is left character amenable if, for each ϕ ∈ �S(S) and Banach S-bimodule X ∈ MS
ϕ ,

every bounded derivation D : S −→ X∗ is principle.
(ii) S is right character amenable if, for each ϕ ∈ �S(S) and Banach S-bimodule

X ∈ ϕMS , every bounded derivation D : S −→ X∗ is principle.
(iii) S is character amenable if it is both left and right character amenable.

In the above statements, if ϕ ∈ �S , then we say that S is left (right) semi-character amenable.
Now, we consider the character amenability of topological semigroups and we obtain the
following result by Theorem 2.4.

Corollary 2.6 Let S be a topological semigroup. If S is right (left) character amenable, then
S is left (right) amenable.

Corollary 2.7 Let S be a topological semigroup. If S is character amenable then S is
amenable.

Corollary 2.8 Let S be a unital and left or right cancellative semigroup. If S is character
amenable then �1(S) is amenable.

Proof Corollary 2.7 implies that S is amenable and [10, Theorem 2.3] completes the proof. ��
Now, this question arises that:when character amenability of a semigroup S and character

amenability of �1(S) are equivalent? At this time we do not know in the general case, but we
have the following result for discrete semigroups.

Theorem 2.9 Let S be a discrete semigroup. Then S is ϕ-amenable if and only if �1(S) is
ϕ̂-amenable.
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Proof Let ϕ ∈ �S(S) and S be right ϕ-amenable. Then ϕ̂ : �1(S) −→ C defined by
ϕ̂( f ) = ∑

s∈S ϕ(s) f (s) is a character on �1(S). Let X ∈ ϕ̂M�1(S), and let D : �1(S) −→ X∗
be a bounded derivation. By the following actions we can see X ∈ ϕMS :

s · x = δs · x = ϕ̂(δs)x =
∑

t∈S
ϕ(t)δs(t)x = ϕ(s)x, and x · s = x · δs,

for all s ∈ S and x ∈ X . Consider the mapping d : S −→ X∗ by d(s) = D(δs). Clearly,
d is a bounded derivation, and since S is right ϕ-amenable, there exists x ∈ X∗ such that
d(s) = s · x−ϕ(s)x. This implies that D( f ) = f · x− ϕ̂( f )x, for all f ∈ �1(S). Hence �1(S)

is right ϕ̂-amenable. We obtain �1(S) is left ϕ̂-amenable in a similar way.
Conversely, let �1(S) be right ϕ̂-amenable. Suppose that X ∈ ϕMS , and d : S −→ X∗

is a bounded derivation. We can consider X as a Banach �1(S)-bimodule via

f · x =
∑

s∈S
f (s)(s · x) =

∑

s∈S
ϕ(s) f (s)x = ϕ̂( f )x, and x · f =

∑

s∈S
f (s)(x · s),

for all f ∈ �1(S) and x ∈ X . The derivation d can be extended to a bounded derivation
D : �1(S) −→ X∗ with d(s) = D(δS) (for more details see [5], pp. 737). Since �1(S) is
right ϕ̂-amenable, there exists x ∈ X∗ such that D( f ) = f · x − ϕ̂( f )x, for all f ∈ �1(S).
Then d(s) = s · x − ϕ(s)x, for all s ∈ S. The proof for the left case is similar. ��

In the above Theorem, if ϕ ∈ �S and we replace semi-character amenability instead of
character amenability, we can prove the following result.

Corollary 2.10 Let S be a discrete semigroup. Then S is semi-character amenable if and only
if �1(S) is character amenable.

By the following Theorem, we characterize Johnson’s Theorem as follows:

Theorem 2.11 Let G be a locally compact topological group. Then the following statements
are equivalent

(i) G is amenable;
(ii) G is character amenable;
(iii) L1(G) is amenable;
(iv) L1(G) is character amenable.

Proof (i)�⇒(ii) follows from [15,Theorem3.7].Corollary 2.7, implies (ii)�⇒(i). (i)⇐⇒(iii)
is Johnson’s Theorem, and by [17, Corollary 2.4], we have (iii)⇐⇒(iv). ��

Let S be a topological semigroup and f ∈ �1(S) is said to be a finite mean, if f (s) ≥ 0,
for every s ∈ S, {s : f (s) > 0} is finite and ‖ f ‖ = ∑

s∈S f (s) = 1. Day proved that
a semigroup S is left amenable if and only if there is a net ( fγ )γ of finite means such
that ‖s · fγ − fγ ‖1 −→ 0 [8,18]. By a similar argument, we have the following result for
ϕ-amenability of S, where ϕ ∈ �S(S).

Theorem 2.12 Let S be a topological semigroup and ϕ ∈ �S(S). Then S is left ϕ-amenable
if and only if there is a bounded net ( fα)α∈I ⊆ �1(S) such that ‖s · fα − ϕ(s) fα‖1 −→ 0
and its w∗-limit on ϕ is 1.

Proof Assume that S is left ϕ-amenable andm is a bounded linear functional that is obtained
in the Theorem 2.2. Thus there is a net ( fα)α∈I ⊆ �1(S) such that w∗-converges to m and
‖ fα‖1 ≤ ‖m‖∞. Then

f (s · fα − ϕ(s) fα) = fα( f · s) − ϕ(s) fα( f ) −→ m( f · s) − ϕ(s)m( f ) = 0, (2.7)
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for all f ∈ RUC(S) and s ∈ S. Consider the product space �1(S)S that is a locally convex
linear topological space with the product of the norm topologies. Now define a linear map
T : �1(S) −→ �1(S)S by T (g) = (s · g − ϕ(s)g)s∈S . Thus if S is left ϕ-amenable, then 0
is in the weak closure of T on the set of finite means such as f ∈ �1(S). Since the set of
finite means is convex in �1(S) and �1(S)S is locally convex, T on this set is convex. This
implies that the weak closure of T on the set of finite means equals the closure of it in the
given topology on �1(S)S , that is, the product of the norm topologies. Thus, there is a net

( fα)α∈I ⊆ �1(S) such that ‖s · fα − ϕ(s) fα‖1 −→ 0 and fα
w∗−→ m.

Conversely, let there is a net ( fα)α∈I ⊆ �1(S) such that w∗-converges to an element of
RUC(S)∗ namely m such that m(ϕ) = 1 and ‖s · fα − ϕ(s) fα‖1 −→ 0, for every s ∈ S.
This means that s · fα − ϕ(s) fα −→ 0 in the weak topology. Thus, similar to (2.7), we have
m( f · s) = ϕ(s)m( f ), for all f ∈ RUC(S) and s ∈ S. This shows that S is ϕ-amenable. ��

3 Some hereditary properties

This section deals with the stability properties of ϕ-amenability of topological semigroups
and groups. We prove these properties via Theorem 2.2.

Proposition 3.1 Let S, T be semigroups, θ : S −→ T be a continuous and onto semigroups
homomorphism. Let ψ ∈ �T (T ), and let S be left (right) (ψ ◦ θ)-amenable. Then T is left
(right) ψ-amenable.

Proof Let X ∈ ψMT and D : T −→ X∗ be a bounded derivation. Then we can see X as
an element of ψ◦θMS by the following actions

s · x = θ(s) · x = ψ(θ(s))x, and x · s = x · θ(s),

for all s ∈ S and x ∈ X . Define D ◦ θ : S −→ X∗. Obviously, D ◦ θ is a bounded derivation.
Thus, there exists x ∈ X∗ such that

(D ◦ θ)(s) = s · x − ψ(θ(s))x,

for all s ∈ S. Since θ is onto, we have

D(t) = t · x − ψ(t)x,

for all t ∈ T . Similarly, we can prove if S is left ψ ◦ θ -amenable, then T is left ψ-amenable.
��

Corollary 3.2 Let S be a topological semigroup, L be a closed ideal in S and ϕ ∈ �S(S)

such that ϕ|L 
= 0. If S is ϕ-amenable, then L is ϕ|L-amenable.
Corollary 3.3 Let G be a locally compact group, H be a closed normal subgroup of G and
ϕ ∈ �G/H (G/H). If G is (ϕ ◦ θ)-amenable, where θ : G −→ G/H is the canonical
homomorphism, then G/H is ϕ-amenable.

It is well-known that the quotient group of an amenable group G by a closed normal
subgroup H is amenable and moreover H is amenable as a group. By these facts, Theorem
2.11 and Proposition 3.1, we have the following result:

Corollary 3.4 Let G be a locally compact group and H be a closed normal subgroup of G.
Then G is character amenable if and only if H and G/H are character amenable.
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Let S and T be semigroups. Then S × T is a semigroup with the operation

(s1, t1)(s2, t2) = (s1s2, t1t2),

for all s1, s2 ∈ S and t1, t2 ∈ T . Define πS : S × T −→ S and πT : S × T −→ T by
πS(s, t) = s and πT (s, t) = t , respectively, for all s ∈ S and t ∈ T . Clearly, both πS and πT

are continuous and onto semigroups homomorphisms.

Theorem 3.5 Let S and T be two topological semigroups. If S × T is left (right) character
amenable, then S and T are left (right) character amenable.

Proof Let S × T be left (right) character amenable. Let ϕ ∈ �S(S) be an arbitrary and πS

be as above. Then ϕ ◦ πS ∈ �S×T (S × T ) and Proposition 3.1 implies that S is left (right)
ϕ-amenable. This shows that S is character amenable, because ϕ was arbitrary. Similarly one
can see that T is character amenable. ��

We consider the converse of the above Theorem in the special case as follows:

Theorem 3.6 Let S, T be two topological semigroups, ϕ ∈ �S(s) and ψ ∈ �T (T ). If
S is left (right) ϕ-amenable and T is left (right) ψ-amenable, then S × T is left (right)
(ϕ, ψ)-amenable.

Proof Suppose that S is left ϕ-amenable, T is left ψ-amenable, mS and mT are the bounded
functionals obtained from Theorem 2.2. For each f ∈ RUC(S × T ) and (s, t) ∈ S × T , we
can define fs ∈ RUC(T ) and g ∈ RUC(S) as follows

fs(t) = f (s, t) and g(s) = mT ( fs(t)).

Now, define m on RUC(S × T ) by m( f ) = mS(g), for all f ∈ RUC(S × T ). Then

m( f · (s, t)) = mS[mT (( f · (s, t))(x, y))] = mS[mT ( f (sx, t y))]
= mS[mT ( fsx (t y))] = mS[mT (( fsx · t)(y))]
= mS[ψ(t)mT ( fsx (y))] = ψ(t)mS[g(sx)]
= ψ(t)mS[(g · s)(x)] = ϕ(s)ψ(t)mS[g(x)]
= ϕ(s)ψ(t)mS[mT ( f (x, y))]
= ϕ(s)ψ(t)m( f )

for all f ∈ RUC(S × T ) and (s, t) ∈ S × T . Clearly, (ϕ, ψ) ∈ RUC(S × T ) and the above
obtained result follows that m ((ϕ, ψ)) = 1. Thus, Theorem 2.2 implies that S × T is left
(ϕ, ψ)-amenable. ��

An involution on a topological semigroup S is a map ∗ from S into S such that, the images
of s, t ∈ S are denoted by s∗ and t∗, respectively, s = (s∗)∗, (st)∗ = t∗s∗ and ∗ is a
continuous map; see [2,3] for more results related to topological semigroups with involution
and characters on them. Let f ∈ LUC(S) or RUC(S), we set ˜f (s) = f (s∗), for all s ∈ S.

Theorem 3.7 Let S be a discrete semigroups with involution ∗ and ϕ ∈ �S(S). If S is left
(right) ϕ̃-amenable, then S is right (left) ϕ-amenable.

Proof Suppose that S is left (right) ϕ̃-amenable. Then Theorem 2.2 implies that there is a
bounded linear functional m in �∞(S)∗ such m(ϕ̃) = 1 and m( f · s∗) = ϕ̃(s∗)m( f ), for
all f ∈ �∞(S). Let f ∈ �∞(S) and define m′( f ) = m( ˜f ). Since the mapping f �−→ ˜f is
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linear, m′ is linear and bounded. Furthermore, m′(ϕ) = m(ϕ̃) = 1 and m′( f ) ≥ 0, for all
f ∈ �∞(S).
Moreover, for all f ∈ �∞(S) and s, t ∈ S, we have

(s · ˜f )(t) = (s · f )(t∗) = f (t∗s) = f
(

(s∗t)∗
)

= ˜f (s∗t) = ( ˜f · s∗)(t).

This shows that s · ˜f = ˜f · s∗ for all f ∈ �∞(S) and s ∈ S. Then

m′(s · f ) = m(s · ˜f ) = m( ˜f · s∗) = ϕ̃(s∗)m( ˜f )

= ϕ(s)m′( f ),

for all f ∈ �∞(S) and s ∈ S. Thus, S is right ϕ-amenable. ��
Assume that S is a semigroup and ϕ ∈ �S(S). Let T be a subsemigroup of S and S is

left (right) ϕ-amenable. We denote ϕ by ϕ|T on T , clearly, it is a character on T , but, maybe
T is not left (right) ϕT -amenable. In other words, there is a subsemigroup of a ϕ-amenable
semigroup that is not ϕ-amenable. Moreover, there is a subsemigroup T of semigroup S and
ϕ ∈ �T (T ) such that T is ϕ-amenable and ϕ̃-amenability of S does not sense, where ϕ̃ is
the extension of ϕ on S. The following example shows the above statements are true.

Example 3.8 (i) Let S be a semigroup without zero element o. Following [6], we denote
the semigroup formed by adjoining o to S by So and S becomes a subsemigroup of So.
Then the only character on So is 1So ∈ �So(So). Let S be not left 1S-amenable. Define
m( f ) = f (o), for all f ∈ RUC(So). Thus, So is left 1So -amenable.

(ii) Let S be a semigroup without zero element o and ϕ ∈ �S(S) such that 1S 
= ϕ. If S is
ϕ-amenable, then according to (i) and by this fact that ϕ has not any extension such as ϕ̃

on So, So is not ϕ̃-amenable.

Definition 3.9 Let S be a topological semigroup, T be a right thick susbemigroup of S
and ϕ ∈ �S(S). We say that T is strongly left ϕ|T -amenable if there is a bounded linear
functional m on LUC(T ) such that (i) m(ϕ|T ) = 1 and (ii) m(s · f ) = ϕ(s)m( f ), for all
f ∈ LUC(T ), s ∈ S. Similarly, one can define the strongly right ϕ|T -amenability for the
left thick susbemigroup T of S.

Theorem 3.10 Let S be a topological semigroup, T be a left (right) thick susbemigroup of S
and ϕ ∈ �S(S). Then T is strongly right (left) ϕT -amenable if and only if S is right (left)
ϕ-amenable.

Proof We prove the right case and the left case is similar. Assume that T is strongly right
ϕ|T -amenable. Define� : LUC(S) −→ LUC(T ) by�( f ) = f |T . Clearly,� is a bounded
linear map and consider�∗ : LUC(T )∗ −→ LUC(S)∗. By Theorem 2.2, there is a bounded
linear functional m in LUC(T )∗ such that m(ϕ|T ) = 1 and m(t · f ) = ϕ|T (t)m( f ), for all
f ∈ LUC(T ) and t ∈ T . We claim that m = �∗(m) is a bounded linear functional for S
that satisfies the condition (ii) of Theorem 2.2. Since T is left thick, for all f ∈ LUC(S),
s ∈ S and t ∈ T , we have

�(s · f )(t) = (s · f )|T (t) = f |T (ts) = (s · �( f ))(t).

This implies that �(s · f ) = s · �( f ), for all f ∈ LUC(S) and s ∈ S. Then

m(s · f ) = �∗(m)(s · f ) = m(�(s · f )) = m(s · �( f )) = ϕ(s)m(�( f ))

= ϕ(s)m( f ), (3.1)
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for all f ∈ LUC(S) and s ∈ S. Moreover,

m(ϕ) = �∗(m)(ϕ) = m(�(ϕ)) = m(ϕT ) = 1. (3.2)

The relations (3.1) and (3.2) follow that S is right ϕ-amenable.
Consider the canonical bounded linear map � : LUC(T ) −→ LUC(S) such that

�( f )|S\T = 0, for all ϕT 
= f ∈ LUC(T ) and �(ϕT ) = ϕ. Let m be a linear func-
tional defined on LUC(S) that satisfies Theorem 2.2. We now show that m = �∗(m) is a
ϕ-mean for T .

For an arbitrary f ∈ LUC(T ), s ∈ S and t ∈ T ,

(�(s · f ) − s · �( f )) (t) = (s · f )(t) − �( f )(ts) = f (ts) − f (ts) = 0.

Hence, (�(s · f ) − s · �( f )) |T = 0, and

|(s · f )(t) − s · �( f )(t)| ≤ ‖�(s · f ) − s · �( f )‖∞χS\T ,

where χS\T is the characteristic function on S \ T . Thus,

m(�(s · f )) = m(s · �( f )) ( f ∈ LUC(T ), s ∈ S). (3.3)

Therefore,

m(s · f ) = �∗(m)(s · f ) = m(�(s · f )) = m(s · �( f )) = ϕ(s)m(�( f ))

= ϕ(s)m( f ), (3.4)

and

m(ϕT ) = �∗(m)(ϕT ) = m(�(ϕT )) = m(ϕ) = 1, (3.5)

for all f ∈ LUC(T ) and s ∈ S. Thus, T is strongly right ϕT -amenable. ��
We finish this section with the following result:

Proposition 3.11 Let {Sα}α∈I be a family of closed subsemigroups of topological semigroup
S such that Sα is left (right) ϕα-amenable, for each α ∈ I , where ϕα ∈ �Sα (Sα). Let the
following conditions hold:

(i) for every Sα , Sβ that are left (right) ϕα-amenable and ϕβ -amenable, respectively, there
is a Sγ such that Sα ∪ Sβ ⊆ Sγ and Sγ is ϕγ -amenable.

(ii) S = ⋃

α∈I Sα .

Let ϕ be a function on S such that

ϕ(st) =
{

ϕα(st) if s, t ∈ Sα

ϕγ (st) if s ∈ Sα, t ∈ Sβ and Sα ∪ Sβ ⊆ Sγ

Then ϕ is a character on S and S is left (right) ϕ-amenable.

Proof Clearly, ϕ is a character on S. Let mα be a bounded linear functional on RUC(Sα),
for every α ∈ I , that satisfies Theorem 2.2. Define

m′
α( f ) = mα( f |Sα ),

for every f ∈ RUC(S). Let Mα be the w∗-closed set of all bounded linear functionals on
RUC(S) such as m such that m(ϕα) = 1 and m( f · s) = ϕα(s)m( f ), for all f ∈ RUC(S)

and s ∈ Sα . According to the definition of m′
α , it belongs to Mα . This means that Mα is
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not empty and it is obvious that the augmentation character 1S is in RUC(S). These imply
that

⋂

α∈I Mα is not empty. Now, let m ∈ ⋂

α∈I Mα . Then the case (i) and definition of ϕ

together imply thatm(ϕ) = 1. Moreover, the cases (i), (ii) and definition of ϕ together imply
that for all f ∈ RUC(S) and s ∈ ⋃

α∈I Sα , there exists γ ∈ I such that s ∈ Sγ and

m( f · s) = ϕγ (s)mγ ( f |Sγ ) = ϕ(s)m( f ). (3.6)

Since f ∈ RUC(S), for every s ∈ S and ε > 0, there is a net (tβ)β ⊆ ⋃

α∈I Sα such that
‖( f · s) − ( f · tβ)‖∞ < ε/2‖m‖ and |ϕ(tβ) − ϕ(s)| < ε/2‖m‖. Then (3.6) implies that

|m( f · s) − ϕ(s)m( f )| = |m( f · s) − m( f · tβ) + m( f · tβ) − ϕ(s)m( f )|
= |m( f · s) − m( f · tβ) + ϕ(tβ)m( f ) − ϕ(s)m( f )|
≤ |m( f · s) − m( f · tβ)| + |ϕ(tβ) − ϕ(s)||m( f )|
≤ ‖m‖‖( f · s) − ( f · tβ)‖∞ + |ϕ(tβ) − ϕ(s)|‖m‖
< ε.

Since ε was arbitrary,m( f · s) = ϕ(s)m( f ), for all f ∈ RUC(S) and s ∈ S. This means
that S is left ϕ-amenable. ��

4 '-Ergodic properties

Let S be a topological semigroup, X be a Banach space and B(X) be the Banach space of all
bounded operators on X . An antirepresentation of S on X is a function F : s �−→ Fs such
that Fst = Ft Fs , for each s, t ∈ S. For each s ∈ S, define L = �(s) = �s in B(C(S)) by
L f (t) = f (st), for all t ∈ S and f ∈ C(S). The function � is the antirepresentation of S on
X .

Let ϕ ∈ �S(S), Similar to [7], we define the following sets that we work on them in this
section:

P(ϕ) = {s ∈ S : ϕ(s) = 1},
Mϕ

0 (�) = {x ∈ X : (�s − I )x = 0, s ∈ P(ϕ)},
Mϕ

1 (�) = closed linear hull of {(�s − I )x : x ∈ X , s ∈ P(ϕ)},
Mϕ(�) = Mϕ

0 (�s) + Mϕ
1 (�s),

Nϕ
x (�) = the closure of {�s(x) : s ∈ P(ϕ)}, for every x ∈ X .

Now, we generalize the ergodicity of the antirepresentation �s of S into X as follows:

Definition 4.1 Let S be a topological semigroup, X be a Banach space and ϕ ∈ �S(S). We
say that the antirepresentation � from S into X is left ϕ-ergodic if there is a bounded net
(Bδ)δ∈I in B(X) such that

(E1) limδ Bδ(�s − I ) = 0 in strong operator topology of B(X), for every s ∈ P(ϕ).
(E2) Bδ(x) ∈ Nϕ

x (�s), for each x ∈ X and δ ∈ I .

Similarly, we call the antirepresentation � from S into X is right ϕ-ergodic if there is a
bounded net (Bδ)δ∈I in B(X) such that satisfies (E2) and the following condition:

(E3) limδ(�s − I )Bδ = 0 in strong operator topology of B(X), for every s ∈ P(ϕ).

If the antirepresentation � from S into X is right and left ϕ-ergodic, we call it ϕ-ergodic.

The following result is the generalization of the obtained results by Eberlein in [4] where
the proof is similar and we give it proof for clearness:
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Theorem 4.2 Let S be a topological semigroup, X be a Banach space and ϕ ∈ �S(S).
Assume that the antirepresentation � from S into X is left ϕ-ergodic with (Bδ)δ∈I in B(X)

that satisfies the cases (E1) and (E2). Then

(i) Bδ(x) = x, for all x ∈ Mϕ
0 (�) and δ ∈ I .

(ii) Bδ(x) −→ 0, for every x ∈ Mϕ
1 (�).

(iii) (Bδ(x))δ∈I is norm convergent to an element of Mϕ
0 (�) ∩ Nϕ

x (�).
(iv) Mϕ(�) = Mϕ

0 (�) ⊕ Mϕ
1 (�).

(v) �s(Mϕ(�)) ⊆ Mϕ(�) and Nϕ
x (�) ⊆ Mϕ(�), for all s ∈ P(ϕ) and x ∈ Mϕ(�).

(vi) Bδ(Mϕ(�)) ⊆ Mϕ(�) for all δ ∈ I .
(vii) suppose that π : Mϕ(�) −→ Mϕ

0 (�) is a projection associated with the direct sum
decomposition (iv), then Bδ(x) −→ π(x) and Mϕ

0 (�) ∩ Nϕ
x (�) = {πx}, for all x ∈

Mϕ(�).

Proof (i) If x ∈ Mϕ
0 (�), then �s x = I x = x . This implies that Nϕ

x (�) = {x} and consequently,
E2 leads Bδ(x) = x , for every δ ∈ I .

(ii) Assume that x ∈ Mϕ
1 (�). Then the case (E1) together with (Bδ)δ∈I is bounded, we

have Bδ(x) −→ 0.
(iii) The cases (i) and (ii) together imply this case.
(iv) The cases (i) and (ii) together imply Mϕ

0 (�) ∩ Mϕ
1 (�) = {0} and this means that

Mϕ(�) = Mϕ
0 (�) ⊕ Mϕ

1 (�).
(v) For all s, t ∈ P(ϕ) and x ∈ X , we have

�s(�t − I )(x) = (�ts − �s)(x) = (�ts − I )(x) − (�s − I )(x) ∈ Mϕ
1 (�),

because ts ∈ P(ϕ). This means that �s(M
ϕ
1 (�)) ⊆ Mϕ

1 (�). Then by applying (i) and (iv), we
have �s(Mϕ(�)) ⊆ Mϕ(�).

For showing that Nϕ
x (�) ⊆ Mϕ(�), for every x ∈ Mϕ(�), pick x ∈ Mϕ(�) and let

y ∈ Nϕ
x (�). According to the definition of Nϕ

x (�), there is a net (sα)α∈J in P(ϕ) such
that �sα (x) −→ y. Then (iv) implies that there exist e ∈ Mϕ

0 (�) and k ∈ Mϕ
1 (�) such that

x = e + k. Since �s(M
ϕ
1 (�)) ⊆ Mϕ

1 (�) and Mϕ
1 (�) is closed, by (i) we have

y − e = lim
α

�sα (x − e) = lim
α

�sα (k) ∈ Mϕ
1 (�).

Again by (iv), we conclude that Nϕ
x (�) ⊆ Mϕ(�), for every x ∈ Mϕ(�).

(vi) Apply (v) and (E1).
(vii) The parts (i) and (ii) imply that Bδ(x) −→ π(x), for all x ∈ Mϕ(�). Let x ∈ Mϕ(�)

be arbitrary. Then by the parts (i) and (ii) we have

π(x) ∈ Mϕ
0 (�) ∩ Nϕ

x (�). (4.1)

Now, assume that y ∈ Mϕ
0 (�) ∩ Nϕ

x (�). Since y ∈ Nϕ
x (�), there is a net (sα)α∈J in P(ϕ)

such that �sα (x) −→ y. Then

y − x = lim
α

(�sα − I )(x) ∈ Mϕ
1 (�).

This shows that π(y − x) = 0. Thus, π(x) = y and this completes the proof. ��
The above Theorem immediately follows the following result that is a generalization of

the obtained results in [7].

Proposition 4.3 Let S be a topological semigroup, X be a Banach space and ϕ ∈ �S(S).
Assume that the antirepresentation � from S into X is ϕ-ergodic with (Bδ)δ∈I in B(X) that
satisfies (E1), (E2) and (E3). Then the following statements hold.
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(i) Mϕ(�) is closed in X.
(ii) If Nϕ

x (�) is weakly compact, for every x ∈ X, then Mϕ(�) = X.

Proof (i) Theorem 4.2(iii) implies that (Bδ)δ∈I is norm convergent to an element of Mϕ
0 (�)∩

Nϕ
x (�), for every x ∈ Mϕ(�). This follows that (Bδ)δ∈I is weakly convergent to an element

of Mϕ
0 (�) ∩ Nϕ

x (�), for every x ∈ Mϕ(�).
Let x ∈ X and Bδx −→ y weakly in X , for some y ∈ X . We shall show that y ∈ Mϕ(�).

For any s ∈ P(ϕ) and T ∈ X∗, we have

T (�s)(y) = lim
δ

T (�s)(Bδ(x)) = lim
δ

[T (�s − I )(Bδ(x)) + T (Bδ(x))]
= T (y).

This means that �s(y) = y and consequently, y ∈ Mϕ
0 (�). Moreover, for every x ∈ X ,

Nϕ
x (�) is convex and norm closed in X , so, it is weakly closed and y ∈ Nϕ

x (�). Thus,
y ∈ Mϕ

0 (�) ∩ Nϕ
x (�). Then

x = y + (x − y) ∈ Mϕ
0 (�) + Mϕ

1 (�) = Mϕ(�).

Hence, Mϕ(�) is closed in X .
(ii) Assume that Nϕ

x (�) is weakly compact, for every x ∈ X . Let y ∈ X be an arbitrary
element. The fact (Bδ)δ∈I ∈ Nϕ

x (�) implies that there is a subnet (Bδγ ) of (Bδ)δ∈I such that
Bδγ (y) is weakly convergent in Nϕ

x (�). Now, if we replace (Bδ)δ∈I by (Bδγ ) in the proof of
the part (i), then y ∈ Mϕ(�). Thus, X = Mϕ(�). ��

Let S be a locally compact topological semigroup and X be a right Banach S-module.
Then we can see X as a right Banach �1(S)-module as follows:

x f =
∫

S
xs d f (s),

for all x ∈ X and f ∈ �1(S); see [21, Proposition 5.6] for more details. Furthermore, for
every T ∈ X∗, we define

T (x f ) = f (T x),

for all x ∈ X and f ∈ �1(S). We now give a relation between left ϕ amenability and left
ϕ-ergodicity of an antirepresentions as follows:

Theorem 4.4 Let S be a locally compact topological semigroup, X be a Banach space,
ϕ ∈ �S(S) and � be the right action of S on X i.e. �s(x) = xs. If Nϕ

x (�) is weakly compact,
for every x ∈ X, then the following statements are equivalent:

(i) S is left ϕ-amenable.
(ii) the antirepresention � is left ϕ-ergodic.

Proof (i)�⇒ (ii) Assume that � is an antirepresentaion from S into X . Theorem 2.12 implies
that there is a bounded net ( fα)α∈I ⊆ �1(S) such that ‖s · fα − ϕ(s) fα‖1 −→ 0 and its
w∗ − lim on ϕ is 1. Put Bα = � fα , for all α ∈ I . Clearly, Bα is bounded in B(X). Moreover,
by noting that for s ∈ S and x ∈ X , xδs = xs, then

‖Bα(�s − I )‖ = ‖Bα(�δs − I )‖ = ‖� fα �δs − � fα‖ = ‖�δs∗ fα − � fα‖ = ‖�s· fα− fα‖
≤ ‖�‖‖s · fα − fα‖1. (4.2)
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Therefore, (4.2) implies that

‖Bα(�s − I )‖ ≤ ‖�‖‖s · fα − ϕ(s) fα‖1 −→ 0, (4.3)

for all s ∈ P(ϕ). Now, we must show that Bα satisfies (E2) i.e., Bα ∈ Nϕ
x (�), for all x ∈ X

and α ∈ I . Note that

Nϕ
x (�) ⊆ {� f (x) : f ∈ �1(S) such that f is a finite mean} = K .

We claim that ⊆ must be equality in the case that Nϕ
x (�) is weakly compact, for every

x ∈ X . Assume towards a contradiction that there esists f ∈ �1(S) such that � f /∈ Nϕ
x (�).

Thus, there exist T ∈ X∗ and r ∈ R such that

Re T (�s(x)) < r < Re T (� f (x)) (4.4)

for every s ∈ S. On the other hand,

Re T (� f (x)) = Re T
(∫

S
xs d f (s)

)

=
∫

S
Re T (�s(x)) d f (s)

< Re T (�s(x)). (4.5)

A contradiction. Thus, Nϕ
x (�) = K . This means that Bα satisfies (E2).

(ii)�⇒ (i) Let X = RUC(S), ϕ ∈ �S(S), and let � be an antirepresntation from S into
LUC(S) such that

�s( f ) = f · s = ϕ(s) f ,

for every s ∈ S and

�s( f ) = f · s = ϕ(s) f = f ,

for every s ∈ P(ϕ). Then,

(�s − I )(ϕ) = �s(ϕ) − ϕ = ϕ · s − ϕ = ϕ(s)ϕ − ϕ = 0,

for every s ∈ P(ϕ). This means that ϕ ∈ Mϕ
0 (�) ⊆ RUC(S) and Theorem 4.2(iv) follows

that ϕ /∈ Mϕ
1 (�) ⊆ RUC(S). Thus, the Hahn-Banach Theorem implies that there exists

m ∈ RUC(S)∗ such that m(ϕ) = 1 and m|Mϕ
1 (�) = 0. Moreover, we have

m( f · s) = ϕ(s)m( f ),

for all s ∈ S and f ∈ LUC(S). Thus S is left ϕ-amenable. ��

5 '-amenability and fixed point property

Let S be a topological semigroup, Cr (S) be the space of all bounded real-valued functions
on S with supremum norm, X be a translation-invariant closed subalgebra of Cr (S) that
contains the constant functions, Y be a compact Hausdorff space and Cr (Y ) be the space of
all bounded real-valued continuous functions on Y , where Cr (Y ) has the supremum norm.
Assume that s �−→ λs is a representation of S by continuous self-maps of Y . For every y ∈ Y ,
we define Ty : Cr (Y ) −→ Cr (S) by Ty(h)(s) = h(λs y), for all s ∈ S and h ∈ Cr (Y ). The
representation λ is called D-representation of S, X on Y if {y ∈ Y : Ty(Cr (Y )) ⊆ X} is
dense in Y . If s �−→ λs is a representation of S by continuous affine self-maps of Y , then it is
called D-representation of S, X on Y by continuous affine maps if {y ∈ Y : Ty(A(Y )) ⊆ X}
is dense in Y .
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The existence of a common fixed point of the family λS , whenever X has a left invariant
mean is considered by Argabright in [1] and Mitchell in [16]. Indeed, Day’s fixed point
Theorem for topological semigroups is explained and investigated byArgabright andMitchell
works. Namioka in [19] showed that LUC(S) is a translation-invariant subspace of Cr (S)

[19, Lemma 2] and similarly, one can see that RUC(S) is a translation-invariant subspace
of Cr (S). We recall the following result:

Theorem 5.1 [16, Theorem 1] Let S be a topological semigroup. Then the following asser-
tions equivalent:

(i) RUC(S) has a multiplicative left invariant mean.
(ii) whenever S acts on a compact Hausdorg space Y , where the map S×Y −→ Y is jointly

continuous, then Y contains a common fixed point of S.

Let S be a topological semigroup, ϕ ∈ �S(S) and P(ϕ) be as defined in the previous
section. Clearly, P(ϕ) is a topological subsemigroup of S such ϕ|P(ϕ) = 1. Then by replacing
S by P(ϕ) in Theorem 5.1, we have the following result that we give its proof because we
use some of the obtained results in the proof, for the last result of this paper:

Corollary 5.2 Let S be a topological semigroup andϕ ∈ �S(S). Then the following assertions
equivalent:

(i) There is a bounded linear functional m ∈ RUC(P(ϕ))∗ such that m(ϕ) = 1 and
m( f · s) = m( f ), for all f ∈ RUC(P(ϕ)) and s ∈ P(ϕ).

(ii) Y contains a common fixed point of P(ϕ) for continuous affine actions of P(ϕ) on
compact convex sets of a locally convex linear topological space.

Proof (i)�⇒(ii) LetY be compact convex set of locally convex linear topological space X . For
each y ∈ Y , we define Ty : Cr (Y ) −→ Cr (P(ϕ)) and Ry : S −→ Y by (Tyh)(s) = h(ys)
and Ry(s) = ys, for all h ∈ Cr (Y ) and s ∈ P(ϕ). Then

(Tyh)(s) = h(ys) = (hRy)(s),

for all h ∈ Cr (Y ) and s ∈ P(ϕ). Thus, Tyh ∈ C(S), because Ry(s) is continuous. Now, set
Tyh = f , then

rs f (t) = f (ts) = (Tyh)(ts) = h(yts),

for all s, t ∈ P(ϕ). We claim that f ∈ RUC(P(ϕ)). Assume towards a contradiction that
f /∈ RUC(S) i.e., there exist s ∈ P(ϕ) and a net (sα)α∈I ⊆ P(ϕ) such that sα −→ s but
rsα f does not convergent uniformly to rs f . This means that there is a positive number β and
a net (tα)α∈I ⊆ P(ϕ) such that

|h(ytαsα) − h(y(tαs))| ≥ β,

for all α ∈ I . Denote ytα by yα . Since Y is compact, (yα)α∈I has a subnet such as (yγ )γ∈I
such that converges to some y′ ∈ Y . By continuity of h and joint continuity of action of P(ϕ)

on Y , we have

0 < β ≤ lim
γ

|h(yγ sγ ) − h(yγ s)| = |h(y′s) − h(y′s)| = 0.

This is a contradiction and so, f ∈ RUC(P(ϕ)). This leads to that TyC(Y ) ⊆
RUC(P(ϕ)) and consequently, Ty A(Y ) ⊆ RUC(P(ϕ)). Let m ∈ RUC(S)∗ such that
m(ϕ) = 1 and m( f · s) = ϕ(s)m( f ), for all f ∈ RUC(S) and s ∈ S. Now; with-
out loss of generality, consider Ty : A(Y ) −→ RUC(P(ϕ)). Then the adjoint of Ty is
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T ∗
y : RUC(P(ϕ))∗ −→ A(Y )∗. Thus, there exists y′ ∈ Y such that T ∗

y m(h) = h(y′), for
every h ∈ A(Y ).

For s ∈ P(ϕ), define �s : A(Y ) −→ A(Y ) by �sh(y) = h(sy), for every h ∈ A(Y ).
Then

(Ty�sh)(t) = h(yst) = Tyh(st)

= (Tyh · s)(t), (5.1)

for all h ∈ A(Y ) and t ∈ P(ϕ). Moreover, by (5.1) we have

h(sy′) = �sh(y′) = �s(T
∗
y m(h)) = m(Ty(�sh)) = m(Tyh · s)

= ϕ(s)m(Tyh) = m(Tyh) = T ∗
y m(h)

= h(y′), (5.2)

for all h ∈ A(Y ) and s ∈ P(ϕ). This shows that sy′ = y′.
(ii)�⇒(i) Set X = RUC(P(ϕ))∗ with w∗-topology and suppose that Y is the compact

convex set of all bounded linear functionals on RUC(P(ϕ)) such that, for each m ∈ Y ,
m(ϕ) = 1. Define the affine action T : P(ϕ) × Y −→ Y by Tsμ = l∗s μ, for all s ∈ P(ϕ)

and μ ∈ Y , where l∗s is the adjoint of ls . It is easy to check that T is a uniformly continuous
affine action on Y . Thus, (ii) implies that there exists m ∈ Y that is fixed under the affine
action T of P(ϕ) such that l∗s m = s ·m = m. This means that s ·m( f ) = m( f · s) = m( f ).
Thus, (ii) implies (i). ��
Remark 5.3 Note that if a topological semigroup S is ϕ-amenable, where ϕ ∈ �S(S), then
the condition (ii) holds for the same reasons in the proof of the above Corollary, but, we do
not know the converse part holds or not?

Similar to Corollary 5.2, one can consider the conditions weakly right uniformly continuous
functions on S instead of right uniformly continuous functions, we do not consider this case
in this paper.

Suppose that E is a separated locally convex space and X is a subset of E containing
an n-dimensional subspace. Let S be a topological semigroup and T = {Ts : s ∈ S} be a
representation of S as continuous linear transformations from E into E such that Ts(L) is an
n-dimensional subspace contained in X whenever L is an n-dimensional subspace contained
in X , and there exists a closed T -invariant subspace H in E of codimension n with the
property that x + H ∩ X is compact and convex, for each x ∈ E . If S is left amenable,
then exists an n-dimensional subspace L0, contained in X such that Ts(L0) = L0, for all
s ∈ S [9]. Lau generalized the above result and introduced theP(n) condition for topological
semigroups and proved that the condition P(1) implies the left amenability of topological
semigroups [14]. Let X ⊆ E , following [14] byLn(X)wemean all n-dimensional subspaces
of E contained in X . We now write P(n) condition as follows:

P(n): Let S be a topological semigroup and T = {Ts : s ∈ P(ϕ)} be a representation
of P(ϕ) as linear operators from E into E jointly continuous on compact convex subsets
of E . Let X be a subset of E such that there is a closed T -invariant subspace H in E of
codimension n with the property that x + H ∩ X is compact and convex, for each x ∈ E . If
Ln(X) is non-empty and T -invariant, then there exists L0 ∈ Ln(X) such that Ts(L0) = L0,
for each s ∈ P(ϕ).

Similar to proof of [14, Theorem 1] and by Corollary 5.2, we have the following result:

Corollary 5.4 Let S be a topological semigroup and ϕ ∈ �S(S).
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(i) If S is left ϕ-amenable, then S satisfies P(n), for each positive integer n.
(ii) If S satisfies P(1), then S is left ϕ-amenable.

Let S be a topological semigroup and � : S × RUC(S)∗ −→ RUC(S)∗ be the left action
of S on RUC(S)∗ defined by (s,m) �−→ �sm, for all m ∈ RUC(S)∗ and s ∈ S such that
�s I = I and �s�s′ = �s′s , for all s, s′ ∈ P(ϕ), where I is the identity element of RUC(S)∗.
Thus, � on P(ϕ) is an antirepresentation. Suppose that X ⊆ RUC(S)∗ is a subspace that
contains I and all elements of RUC(S)∗ such as m such that m(ϕ) = 1. A mean μ on X
is called P(ϕ)-invariant under � if μ�s = μ, for every s ∈ P(ϕ) and we say that μ on X
is Sϕ-invariant under � if μ�s = ϕ(s)μ, for every s ∈ S. Clearly, every Sϕ-invariant mean
under � is P(ϕ)-invariant.

Definition 5.5 Let S be a topological semigroup.We say that S has theHahn-BanachTheorem
Property if, for each continuous left action � : S×RUC(S)∗ −→ RUC(S)∗ and every P(ϕ)-
invariant subspace X of RUC(S)∗ that contains I and all elements of RUC(S)∗ such as m
such that m(ϕ) = 1, every P(ϕ)-invariant mean μ on X can be extended to a Sϕ-invariant
mean μ̃ on RUC(S)∗.

The Hahn-Banach Property of semigroups is studied by Silverman [23] and for a special
semigroups namely adjoint semigroups studied by van Neerven [20]. By the following, we
characterize left ϕ-amenability of S:

Theorem 5.6 Let S be a topological semigroup and ϕ ∈ �S(S), the following assertions are
equivalent:

(i) S is left ϕ-amenable.
(ii) S has the Hahn-Banach Theorem Property.
(iii) for any Banach S-submodule Y of X, each linear functional in

⋂

s∈S{y∗ ∈ Y ∗ : s ·y∗ =
ϕ(s)y∗} has an extension to a linear functional in

⋂

s∈S{x∗ ∈ X∗ : s · x∗ = ϕ(s)x∗};
(iv) there is a bounded projection from X∗ onto

⋂

s∈S{x∗ ∈ X∗ : s · x∗ = ϕ(s)x∗} which
commuteswith any bounded linear operator from X∗ into X∗ commutingwith the action
of S on X.

Proof (i)�⇒(ii)Consider RUC(S)∗ withw∗-topology and suppose thatμ is a P(ϕ)-invariant
mean on a P(ϕ)-invariant subspace X of RUC(S)∗. Let Y be a subspace of RUC(S)∗,
contains all means on RUC(S)∗ that they are extensions of μ. The Hahn-Banach Theorem
follows that Y is non-empty and w∗-compactness and convexity of the set of all means on
RUC(S)∗ implies that it is w∗-compact and convex.

Define the continuous affine action T : P(ϕ)×RUC(S)∗∗ −→ RUC(S)∗∗ by Tsν = �∗
s ν,

for all ν ∈ RUC(S)∗∗ and s ∈ P(ϕ), where �∗
s is the adjoint of �s . Continuity of �s implies

that the maps s �−→ Tsν andμ �−→ Tsν are continuous, for all ν ∈ RUC(S)∗ and s ∈ P(ϕ).
For all μ̃ ∈ Y and s ∈ P(ϕ),

�∗
s μ̃(I ) = μ̃(�s I ) = μ(I ) = 1.

Hence, μ̃ is a mean on RUC(S)∗. Moreover,

�∗
s μ̃(m) = μ̃�s(m) = μ�s(m)

= μ(m),

for all m ∈ X and s ∈ P(ϕ). Thus, Ts(Y ) ⊆ Y , for every s ∈ P(ϕ). Furthermore,

TsTs′ν(m) = Ts�
∗
s′ν(m) = �∗

s �
∗
s′ν(m) = �∗

s′ν(�sm)

= ν(�s′�sm) = ν(�ss′m) = �∗
ss′ν(m)

= Tss′ν(m),
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for all ν ∈ RUC(S)∗∗, m ∈ RUC(S)∗ and s, s′ ∈ P(ϕ). This means that TsTs′ = Tss′ ,
for all s, s′ ∈ P(ϕ), i.e., Ts is a representation on RUC(S)∗∗. Since S is left ϕ-amenable,
Corollary 5.2 together with Remark 5.3 implies that there exists μ̃ ∈ Y such that Tsμ̃ = μ̃.
Note that if in the definition of Ty in the proof of Corollary 5.2, we replace P(ϕ) by S, the
relation (5.2) becomes h(sy′) = ϕ(s)h(y′), for every s ∈ S. Thus, sy′ = ϕ(s)y′, for every
s ∈ S.

(ii)�⇒(i) Again, consider RUC(S)∗ with thew∗-topology and suppose that the left action
� : S × RUC(S)∗ −→ RUC(S)∗ is defined by �sm = ϕ(s)m, for all m ∈ RUC(S)∗ and
s ∈ S. Clearly, the map m �−→ �sm is continuous. Set

X = {m ∈ RUC(S)∗ : m(ϕ) = 1}.
Note that by Hahn-Banach Theorem the set {m ∈ RUC(S)∗ : m(ϕ) = 1} is non-empty.

Therefore, there exists at least one m ∈ X such that m(ϕ) = 1. Set Y = Cm. Clearly, Y is
P(ϕ)-invariant. Define μ on Y by μ(λm) = λ, for every λ ∈ C. Then

μ�s(m) = μ(ϕ(s)m) = μ(m),

for all s ∈ P(ϕ). This means that μ is P(ϕ)-invariant under � and (ii) implies that any
extension μ̃ is Sϕ-invariant under � i.e., μ̃�s = ϕ(s)μ̃, for every s ∈ S. Then

μ̃�s(m) = μ̃(s · m) = μ̃(ϕ(s)m),

for every s ∈ S. Hence, s · m = ϕ(s)m, for every s ∈ S, because μ̃ separates points of
RUC(S)∗. This implies that

m( f · s) = s · m( f ) = ϕ(s)m( f ),

for every f ∈ RUC(S) and s ∈ S. Thus, S is left ϕ-amenable.
(i)�⇒ (iii) Assume that Y is a closed Banach submodule of X ∈ ϕMS , then the quotient

Banach space X/Y is a Banach S-bimodule. Set

K =
⋂

s∈S
{y∗ ∈ Y ∗ : s · y∗ = ϕ(s)y∗} and X =

⋂

s∈S
{x∗ ∈ X∗ : s · x∗ = ϕ(s)x∗}.

Suppose that θ ∈ K and ˜θ ∈ X∗ is an extension of θ . Then æ : Y⊥ −→ (X/Y )∗ is an
onto isometry and S-module morphism, where

Y⊥ = {x∗ ∈ X∗| 〈y, x∗〉 = 0, for every y ∈ Y }.
Then

(s · ˜θ)(y) − (˜θ · s)(y) = (s · ˜θ − ϕ(s)˜θ)(y) = 0, (5.3)

for all s ∈ S and y ∈ Y . Therefore s · ˜θ − ϕ(s)˜θ ∈ Y⊥. Define D : S −→ (X/Y )∗ by
D(s) = æ(s · ˜θ − ϕ(s)˜θ), for every s ∈ S. Then

D(st) = ρ(st · ˜θ − ϕ(st)˜θ),

for all s, t ∈ S. On the other hand,

s · D(t) + D(s) · t = s · ρ(t · ˜θ − ϕ(t)˜θ) + ρ(s · ˜θ − ϕ(s)˜θ) · t
= ρ(st · ˜θ − ϕ(s)ϕ(t)˜θ)

= D(st),
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for all s, t ∈ S. This implies that D is a derivation. (i) follows that there exists y ∈ (X/Y )∗
such that D(s) = s · y − y · s, for every s ∈ S. Surjectivity of ρ leads to there exists z ∈ Y⊥
such that D(s) = s · ρ(z) − ϕ(s)ρ(z), for all s ∈ S. Now, set x = ˜θ − z. Then

(s · (˜θ − z) − ϕ(s)(˜θ − z))(y) = 0,

for all s ∈ S and y ∈ Y . Thus x ∈ X . This completes the proof.
(iii)�⇒ (iv) Consider X∗

̂⊗X as a Banach S-bimodule by the following actions

( f ⊗ x) · s = f ⊗ x · s and s · ( f ⊗ x) = f ⊗ ϕ(s)x = ϕ(s) f ⊗ x, (5.4)

for all s ∈ S, x ∈ X and f ∈ X∗. Set B(X) = {T ∈ B(X) : s • T = ϕ(s)T } where “•" is
the module product of S on B(X). Consider the following sets

H := lin
{

T ∗( f ) ⊗ x − f ⊗ T (x) : T ∈ B(X), f ∈ X∗, x ∈ X
}

and

K := lin
{

f ⊗ x : f ∈ X
}

,

where by lin, we mean the closed linear span. Let Y be the closed linear span of H and K .
Clearly, H and K are Banach S-submodules of X∗

̂⊗X . Therefore the quotient space Y/H is
a Banach S-submodule of (X∗

̂⊗X)/H . Let θ ∈ (X∗
̂⊗X)∗ that satisfies θ( f ⊗ x) = f (x),

for all x ∈ X and f ∈ X∗. Then

θ(T ∗( f ) ⊗ x − f ⊗ T (x)) = T ∗( f )(x) − f (T (x)) = 0, (5.5)

for all x ∈ X and all f ∈ X∗. This means that θ ∈ H⊥. Pick ϑ ∈ ((X∗
̂⊗X)/H)∗ such that

ϑ(y + H) = θ(y), for every y ∈ X∗
̂⊗X . By (5.4), we have

(s · ϑ − ϑ · s)( f ⊗ x + H) = ϑ(( f ⊗ x + H) · s) − ϑ(s · ( f ⊗ x + H))

= ϑ( f ⊗ x · s + H) − ϕ(s)ϑ( f ⊗ x + H)

= θ( f ⊗ x · s) − ϕ(s)θ( f ⊗ x), (5.6)

for all s ∈ S, x ∈ X and f ∈ X∗. Since α ∈ H⊥, if we apply (5.6), then

s · ϑ = ϕ(s)ϑ,

for all s ∈ S and ϑ ∈ (Y/H)∗. The part (ii) implies there is an extension ˜ϑ of ϑ such that
˜ϑ ∈ (X/H)∗ and s · ˜ϑ = ϕ(s )̃α. Define P( f )(x) = ˜ϑ( f ⊗ x + H), for all x ∈ X and
f ∈ X∗. Clearly, P is bounded. Moreover,

(P ◦ P( f ))(x) = P(P( f ))(x) = P(˜ϑ( f ⊗ x + H)) = P( f (x))

= P( f )(x)

for all x ∈ X and f ∈ X∗. This shows that P is a bounded projection from X∗ onto X∗. Let
T ∈ B(X), then by (5.5), we have

PT ∗( f )(x) = ˜ϑ(T ∗( f ) ⊗ x) = T ∗( f )(x)
= ϑ( f ⊗ T (x)) = ˜ϑ( f ⊗ T (x) + H) = P( f )(T (x))

= T ∗P( f )(x),

for all x ∈ X and f ∈ X∗. Thus, P commutes with every T ∗ ∈ B(X∗).
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(iv)�⇒(i) Assume that X = RUC(S)∗̂⊗RUC(S)∗, which X becomes a Banach S-
bimodule by the following actions

s · ( f ⊗ g) = ϕ(s) f ⊗ g and ( f ⊗ g) · s = f ⊗ g, (5.7)

for all f , g ∈ RUC(S)∗ and s ∈ S. Let T = {rs : s ∈ S} ∪ {ls : s ∈ S} be a family of
bounded linear operators from X into X , such that

ls( f ⊗ g) = ϕ(s) f ⊗ g and rs( f ⊗ g) = f ⊗ g, (5.8)

for all f , g ∈ RUC(S)∗ and s ∈ S. Then

t · ls( f ⊗ g) = (ls · t)( f ⊗ g), (5.9)

and

t · rs( f ⊗ g) = (rs · t)( f ⊗ g), (5.10)

for all f , g ∈ RUC(S)∗ and s, t ∈ S. Thus, every member of T commutes with the action
of S on X . Then (iii) implies that there is a bounded surjective projection P : X∗ −→ X∗
such that PT ∗ = T ∗P , for all T ∈ T .

Define τ : X∗ −→ X∗ by τ(F)( f ⊗g) = F(g⊗ f ), for all F ∈ X∗ and f , g ∈ RUC(S)∗.
Then

τ(F · s)( f ⊗ g) = (F · s)(g ⊗ f ) = ϕ(s)F(g ⊗ f )

= τ(F)(ϕ(s) f ⊗ g) = τ(F)(ls( f ⊗ g))

= l∗s τ(F)( f ⊗ g) (5.11)

for all F ∈ X∗, f , g ∈ RUC(S)∗ and s, t ∈ S. Consider the projective mapping π :
RUC(S)∗̂⊗RUC(S)∗ −→ RUC(S)∗ defined by π( f ⊗ g) = f g, for all f , g ∈ RUC(S)∗.
Set M = τ ∗(P∗(I ⊗ I )), where I is the identity function in RUC(S)∗. Since π∗∗M ∈
RUC(S)∗∗∗,

s · π∗∗M = ϕ(s)π∗∗M, (5.12)

for every s ∈ S. Then by properties of P , we have

π∗∗M(F) = π∗∗τ ∗(P∗(I ⊗ I ))(F) = (P∗(I ⊗ I ))(τπ∗(F))

= (Pτπ∗F)(I ⊗ I ) = (τπ∗(F))(I ⊗ I )

= π∗(F)(I ⊗ I ) = Fπ∗∗(I ⊗ I )

= F(I ), (5.13)

for every F ∈ RUC(S)∗∗. Now, we set m = π∗∗M |RUC(S). Then (5.12) implies that
s · m = ϕ(s)m, for every s ∈ S. Thus,

s · m( f ) = m( f · s) = ϕ(s)m( f ),

for all f ∈ RUC(S) and s ∈ S. The relation (5.13) shows that, for any f ∈ RUC(S),
π∗∗M( f ) = I ( f ) = 1. This implies that m(ϕ) = 1 and consequently, S is left ϕ-
amenable. ��

For the right case, similarly, by defining the right Hahn-Banach Property, we can prove
the above theorem.
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6 Some problems

We end this paper with the following problems:

(1) Let S, T be two semigroups and τ from T to End(S) be a semigroup homomorphism.
Consider the semidirect product S �τ T . What is the characterization of the set of char-
acters on S �τ T ? Moreover, what are the necessary and sufficient conditions, in terms
of S and T , for S �τ T to be character amenable? Is the converse hold (i.e. if S �τ T is
character amenable, are S and T character amenable?

(2) In Theorem 2.9, we show that character amenability of a discrete semigroup S and
character amenability of �1(S) are equivalent; is it true for topological semigroups?

(3) Let S be a topological semigroup,Y be a compactHausdorff space andCr (Y ) be the space
of all bounded real-valued continuous functions on Y (see Sect. 5) such that Y contains a
commonfixed point of P(ϕ) for continuous affine actions of P(ϕ) on compact convex sets
of a locally convex linear topological space. Under which conditions S is ϕ-amenable?

(4) In this paper, we have considered derivations from a semigroup into the dual of its module
with respect to characters and we show that the innerness of any derivation of this form
implies the left (right) amenability of the argued semigroup. What happens, when we
define any derivation from a semigroup to its module (not the dual of a module with
respect to characters)? We guess it has a close relationship with the contractibility of
semigroup algebras.

(5) Let S be a topological semigroup and ϕ ∈ �S(S). How one can describe Følner like
condition for ϕ-amenability of S?
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