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Abstract
Let R be a commutative noetherian ring. Denote by ���R the category of finitely gener-
ated R-modules. In this paper, we study n-torsionfree modules in the sense of Auslander 
and Bridger, by comparing them with n-syzygy modules, and modules satisfying Serre’s 
condition (S

n
) . We mainly investigate closedness properties of the full subcategories of 

���R consisting of those modules.
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1 Introduction

The notion of n-torsionfree modules for n ⩾ 0 has been introduced by Auslander and 
Bridger [1], and actually plays an essential role in their wide and deep theory on the stable 
category of finitely generated modules over a noetherian ring. The modules located at the 
center of the n-torsionfree modules are the totally reflexive modules, which are also called 
Gorenstein projective modules or modules of Gorenstein dimension zero. So far a lot of 
studies have been done on n-torsionfree modules and totally reflexive modules; see [2, 8, 
12, 14, 16] for instance.
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Let R be a commutative noetherian ring. Let us denote by ���R the category of 
finitely generated R-modules, by ��n(R) the full subcategory of n-torsionfree modules, 
by ���n(R) the full subcategory of n-syzygy modules, and by �n(R) the full subcategory 
of modules satisfying Serre’s condition (Sn) . Let us set a couple of conditions. 

 (i) The ring R is locally Gorenstein in codimension n − 1 , and R ∈ �n(R).
 (ii) There is an equality ��n+1(R) = ���n+1(R).
 (iii) There are equalities ��n(R) = ���n(R) = �n(R).

Auslander and Bridger [1] prove that (i) is equivalent to (ii). Evans and Griffith [9] 
prove that (i) implies (iii). Goto and Takahashi [11] show that (iii) implies (i) under the 
additional assumption that R is local. Matsui, Takahashi and Tsuchiya [17] show that all 
the three conditions are equivalent.

The main purpose of this paper is to investigate the structure of the subcategory 
��n(R) , and toward this we shall mainly compare ��n(R) with ���n(R) and �n(R) like 
the previous works mentioned above. In what follows, we explain our main results. For 
simplicity, we assume that R is a local ring with residue field k, and has dimension d and 
depth t.

We begin with considering how to describe �n(R) as the extension and resolving clo-
sures of ��n(R) and ���n(R) . We obtain a couple of sufficient conditions for �n(R) to 
coincide with the resolving closure of ��n(R) as in the following theorem, which are 
included in Proposition 3.2(4) and Theorem 3.3(1).

Theorem 1.1 It holds that �n(R) is the smallest resolving subcategory of ���R contain-
ing ��n(R), if the ring R satisfies (Sn) and either of the following holds. 

(1) The ring R is locally Gorenstein in codimension n − 2.
(2) One has n ⩽ d + 1, and R is locally a Cohen–Macaulay ring with minimal multiplicity 

on the punctured spectrum such that for each � ∈ SingR there exists M ∈ ��n(R) 
satisfying pdR�

M� = ∞.

The nature of proof of the above theorem naturally tempts us to consider the n-tor-
sionfree property of syzygies of k, as a consequence of which we can also study when 
���n(R) is closed under direct summands. We obtain various equivalent conditions for R 
to be Gorenstein in terms of ��n(R) and ���n(R) , which are stated in the theorem below. 
This is included in Theorems 4.1(3), 4.5(3), 5.4 and Proposition 5.1(5b).

Theorem 1.2 The following are equivalent. 

(1) The ring R is Gorenstein.
(2) The nth syzygy Ωnk  of the R-module k belongs to ��t+2(R) for some n ⩾ t + 1.
(3) The subcategory ��t+1(R) is closed under extensions.
(4) The subcategory ���n(R) is closed under extensions for some n ⩾ t + 1.
(5) The ring R is Cohen–Macaulay, and the syzygy Ωtk belongs to ���t+2(R).
(6) The ring R is Cohen–Macaulay, and the subcategory ���t+2(R) is closed under direct 

summands.
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We also obtain the following theorem, which yields sufficient conditions for ��n(R) to 
coincide with the subcategory ��(R) of totally reflexive modules. This is included in Prop-
osition 5.1(5) and Corollary 5.9.

Theorem 1.3 The equality ��n(R) = ��(R) holds if either of the following holds. 

(1) One has n ⩾ t + 2, and the subcategory ��n(R) is closed under syzygies.
(2) One has n ⩾ t + 1, and the subcategory ��n(R) is closed under extensions.
(3) One has n ⩾ 1, and there is an equality ��n(R) = ��n+1(R) of subcategories.

The organization of the paper is as follows. Section 2 is devoted to preliminaries for 
the later sections. In Sect. 3, we try to describe �n(R) as the resolving closure of ��n(R) . 
We prove Theorem 1.1 and give various other related desciptions. We also derive some 
partial converses to Theorem  1.1(1). In Sects.  4 and  5, we prove a much more general 
version of Theorems 1.2 and 1.3. We also consider extending the implication (6) ⇒ (1) in 
Theorem 1.2 for ���n(R) with n > t + 2 , and provide both positive and negative answers. 
Finally, we investigate some other subcategories related to ��n(R) and �n(R).

2  Preliminaries

In this section, we introduce some basic notions, notations and terminologies that will be 
used tacitly in the later sections of the paper.

Convention 2.1 Throughout the paper, let R be a commutative noetherian ring. All mod-
ules are assumed to be finitely generated and all subcategories be strictly full. Subscripts 
and superscripts may be omitted unless there is a danger of confusion. We may identify 
each object M of a category C with the subcategory of C consisting just of M.

Notation 2.2 

(1) The singular locus of R is denoted by SingR , which is defined as the set of prime ideals 
� of R such that R� is singular (i.e., nonregular).

(2) We denote by ���R the category of (finitely generated) R-modules, by ����R the sub-
category of ���R consisting of projective R-modules, and by ��(R) the subcategory 
of ���R consisting of maximal Cohen–Macaulay R-modules (recall that an R-module 
M is called maximal Cohen–Macaulay if depthM� = dimR� for all � ∈ SuppM).

(3) We denote by (−)∗ the R-dual functor HomR(−,R) from ���R to itself.
(4) Let M and N be R-modules. We write M ⋖ N  to mean that M is isomorphic to a 

direct summand of N. By M ≈ N we mean that M ⊕ P ≅ N ⊕ Q for some projective 
R-modules P and Q.

Definition 2.3 Let M be an R-module. 

(1) We denote by ΩM the kernel of a surjective homomorphism P → M with P ∈ ����R 
and call it the first syzygy of M. Note that ΩM is uniquely determined up to pro-
jective summands. For n ⩾ 1 we inductively define the nth syzygy ΩnM of M by 
ΩnM ∶= Ω(Ωn−1M) , where we put Ω0M = M.
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(2) Let P1

d
�����→ P0 → M → 0 be a projective presentation of M. We set ��M = Coker(d∗) 

and call it the (Auslander) transpose of M. It is uniquely determined up to projective 
summands; see [1] for details.

(3) Suppose that R is local. Then one can take a minimal free resolution 
⋯

d2
��������→ F1

d1
��������→ F0

d0
��������→ M → 0 of M. We can define ΩnM and ��M as Im dn and Coker(d∗

1
) , 

respectively. Recall that a minimal free resolution is uniquely determined up to iso-
morphism. Whenever R is local, we define syzygies and transposes by using minimal 
free resolutions, so that they are uniquely determined up to isomorphism.

Definition 2.4 Let X  be a subcategory of ���R . We say that X  is closed under extensions 
(closed under kernels of epimorphisms) if for an exact sequence 0 → L → M → N → 0 in 
���R with L,N ∈ X  (resp. M,N ∈ X  ) it holds that M ∈ X  (resp. L ∈ X  ). We say that X  is 
resolving if it contains ����R and is closed under direct summands, extensions and kernels 
of epimorphisms. Note that X  is resolving if and only if it contains R and is closed under 
direct summands, extensions and syzygies (since an exact sequence 0 → L → M → N → 0 
induces an exact sequence 0 → ΩN → L⊕ P → M → 0 with P ∈ ����R).

Definition 2.5 Let X  be a subcategory of ���R . 

(1) Denote by ���X  (resp. ���X  ) the additive closure (resp. extension closure) of X  , that 
is, the smallest subcategory of ���R containing X  and closed under finite direct sums 
and direct summands (resp. closed under direct summands and extensions). Note that 
���R = ����R and ���X ⊆ ���X ⊆ ���X .

(2) Denote by ΩX  the subcategory of ���R consisting of R-modules M that fits into an 
exact sequence 0 → M → P → X → 0 in ���R with P ∈ ����R and X ∈ X  . Denote by 
��X  the subcategory of ���R consisting of R-modules of the form Coker(d∗) , where 
d ∶ P1 → P0 is a homomorphism of projective R-modules such that Coker d belong to 
X  . For each n ⩾ 0 , we inductively define ΩnX  by Ω0X ∶= X  and ΩnX ∶= Ω(Ωn−1X) . 
Note that ����R ⊆ ΩnX ∩ ��X  . We set ���n(R) = Ωn(���R) . Then ���n(R) consists 
of those modules M that fits into an exact sequence 0 → M → Pn−1 → ⋯ → P0 with 
Pi ∈ ����R for each i. We say that an R-module is n-syzygy if it belongs to ���n(R).

Definition 2.6 Let n ⩾ 0 be an integer. We say that R satisfies (Gn) if R� is Gorenstein for 
all prime ideals � of R with dimR� ⩽ n . We denote by �̃n(R) (resp. �n(R) ) the subcategory 
of ���R consisting of R-modules M satisfying Serre’s condition (S̃n) (resp. (Sn) ), that is to 
say, depthM� ⩾ min{n, depthR�} (resp. depthM� ⩾ min{n, dimR�} ) for all prime ideals � 
of R. By the depth lemma �̃n(R) is a resolving subcategory of ���R containing ���n(R) , 
and �n(R) = �̃n(R) holds if (and only if) R satisfies (Sn).

Definition 2.7 Let M be an R-module, X  a subcategory of ���R and Φ a subset of 
SpecR . 

(1) We denote by IPD(M) the infinite projective dimension locus of M, that is, the set of 
prime ideals � of R with pdR�

M� = ∞ . We set IPD(X) =
⋃

X∈X IPD(X) . We denote by 
IPD−1(Φ) the subcategory of ���R consisting of modules M with IPD(M) ⊆ Φ . Note 
that IPD−1(Φ) is a resolving subcategory of ���R and IPD(���X) = IPD(X) ⊆ SingR . 
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Also, IPD(���n(R)) = SingR for any n ⩾ 0 , as � ∈ IPD(Ωn
R
(R∕�)) for � ∈ SingR . If R 

satisfies (Sn) , then IPD(�n(R)) = SingR , since ���n(R) ⊆ �n(R).
(2) The nonfree locus NF(M) of M is defined as the collection of all prime ideals � 

of R such that M� is not R�-free. We put NF(X) =
⋃

M∈X NF(M) . It holds that 
IPD(X) ⊆ NF(X) = NF(���X) . If R is Cohen–Macaulay, then �n(R) = ��(R) for 
every n ⩾ dimR and IPD(X) = NF(X) if X ⊆ ��(R) , whence there are equalities 
IPD(��(R)) = NF(��(R)) = SingR.

Definition 2.8 Let a, b ∈ ℤ⩾0 ∪ {∞} . By Ga,b we denote the subcategory of ���R con-
sisting of R-modules M such that Exti

R
(M,R) = 0 = Ext

j

R
(��M,R) for all 1 ⩽ i ⩽ a and 

1 ⩽ j ⩽ b . By definition, the R-modules in G∞,∞ (resp. G0,n for n ⩾ 0 ) are the totally reflex-
ive (resp. n-torsionfree) R-modules. We put ��(R) = G∞,∞ and ��n(R) = G0,n . Note that 
there are equalities ��1(R) = ���1(R) and ��2(R) = ��� R , where ��� R stands for the sub-
category of ���R consisting of reflexive R-modules.

3  Representing �
n
(R) as the resolving closure of ��

n
(R)

In this section we investigate when one can represent the subcategories �n(R) and �̃n(R) as 
the extension and resolving closures of ��n(R) and ���n(R) . We begin with establishing a 
lemma.

Lemma 3.1 Let X  be a subcategory of ���R . 

(1) If X  contains R and is closed under syzygies, then there is an equality ���X = ���X .
(2) If X  is resolving, then ΩX  is closed under syzygies and direct summands.

Proof 

(1) It suffices to show that ���X  is closed under syzygies. Consider the subcategory Y of 
���R consisting of modules M such that ΩM ∈ ���ΩX  . It is easy to observe that Y 
contains X  and is closed under direct summands and extensions. Hence Y contains 
���X  , which means that Ω(���X) ⊆ ���ΩX  . Since ΩX ⊆ X  , we get ���ΩX ⊆ ���X  
and Ω(���X) ⊆ ���X .

(2) Since ΩX ⊆ X  , we have Ω(ΩX) ⊆ ΩX  . Let 0 → M ⊕ N → F → X → 0 be an exact 
sequence with F ∈ ���R and X ∈ X  . Then by [22, Lemma 3.1] we get exact sequences 
0 → M → F → A → 0 and 0 → F → A⊕ B → X → 0 . As X  is resolving, the latter 
exact sequence shows A ∈ X  , and then from the former we obtain M ∈ ΩX  . Therefore, 
ΩX  is closed under direct summands.

  ◻

Let R be a Cohen–Macaulay local ring. We say that R has minimal multiplicity if the 
equality e(R) = edimR − dimR + 1 holds. A maximal Cohen–Macaulay R-module M is 
called Ulrich if e(M) = �(M) . We denote by ��(R) the subcategory of ��(R) consisting of 
Ulrich R-modules. In the proposition below we provide several descriptions as extension 
and resolving closures.
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Proposition 3.2 

(1) There are equalities �̃n(R) = ��� ���n(R) = ��� ���n(R).
(2) If R satisfies (Sn), then one has �n(R) = ��� ���n(R) = ��� ���n(R). The converse holds 

as well.
(3) If R is Cohen–Macaulay, then ��(R) = ��� ���n(R) = ��� ���n(R) for all n ⩾ dimR.
(4) If R satisfies (Sn) and (Gn−2), then the equalities �n(R) = ��� ��n(R) = ��� ��n(R) hold.
(5) If R is a local Cohen–Macaulay ring of minimal multiplicity, then 

��(R) = ��� ��(R) = ��� ��(R).

Proof 

(1) By Lemma 3.1(1), we have X ∶= ��� ���n(R) = ��� ���n(R) ⊆
��n(R) . For each 

� ∈ SpecR the module Ωn(R∕�) belongs to X  . Hence X  is dominant in the sense of 
[5]. Fix M ∈ �̃n(R) and � ∈ SpecR , so that depthM� ⩾ min{n, depthR�} . In view of 
[24, Theorem 1.1], it suffices to show that there exists X ∈ X  with depthM� ⩾ depthX� . 
If depthR� ⩽ n , then depthM� ⩾ depthR� , and we are done since R ∈ X  . Now sup-
pose depthR� > n . Then depthM� ⩾ n < depthR� . Setting X = Ωn(R∕�) , we have 
X ∈ ���n(R) ⊆ X  and X� ≅ Ωn𝜅(�)⊕ R⊕a

�
 for some a ⩾ 0 . As depthR� > n and 

depth �(�) = 0 , we have depthΩn�(�) = n , and so we get 

 Thus depthM� ⩾ n = depthX� , and the proof is completed.
(2) The first assertion follows from (1). The second assertion holds since we have 

R ∈ ���n(R) ⊆ ��� ���n(R) = �n(R).
(3) We have R ∈ �n(R) for n ⩾ 0 and ��(R) = �n(R) for n ⩾ dimR . The assertion follows 

by (2).
(4) We may assume n ⩾ 1 . By [17], Theorem 2.3(2)⇒(6)] we have ��n(R) = ���n(R) . 

Apply (2).
(5) Put d = dimR . We have ��� ��(R) ⊆ ��� ��(R) ⊆ ��(R) = ��� ���d+1(R) ⊆ ���Ω��(R) , 

where the equality follows from (3). It thus suffices to show Ω��(R) ⊆ ��� ��(R) , 
and for this we may assume that R is singular. Let k be the residue field of R. Take an 
exact sequence 0 → Ωd+2k → F → Ωd+1k → 0 with F nonzero and free. The modules 
Ωd+1k,Ωd+2k ∈ Ω��(R) have no nonzero free summands by [7, Corollary 1.3]. It 
follows from [15, Proposition 3.6] that Ωd+1k,Ωd+2k are in ��� ��(R) , so is F, and so is 
R ⋖ F . We obtain Ω��(R) ⊆ ��� ��(R) by [15, Proposition 3.6] again.

  ◻

In Proposition 3.2(4) we got a description of �n(R) as the resolving closure of ��n(R) 
under a certain assumption on the Gorenstein locus of R. We have the same description 
regardless of the Gorenstein locus in the theorem below.

depthX� =

{
depthΩn𝜅(�) = n if a = 0,

inf{depthR�, depthΩ
n𝜅(�)} = inf{depthR�, n} = n if a > 0.
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Theorem 3.3 Let (R,�, k) be a local ring of dimension d. 

(1) Suppose that R is locally a Cohen–Macaulay ring with minimal multiplicity on 
the punctured spectrum of R. Let 0 ⩽ n ⩽ d + 1 be such that R satisfies (Sn). Then 
SingR = IPD(��n(R)) if and only if �n(R) = ��� ��n(R).

(2) Assume that R is Cohen–Macaulay ring and locally has minimal multiplicity on the 
punctured spectrum of R. Then SingR = NF(��n(R)) if and only if ��(R) = ��� ��n(R) 
for n = d, d + 1.

Proof (2) The assertion is immediate from (1).
(1) The “if” part is obvious. In what follows, we show the “only if” part. We may 

assume n ⩾ 1 . Set X = ��� ��n(R) . We have ��n(R) ⊆ ���n(R) ⊆ �n(R) and �n(R) is resolv-
ing. Thus it is enough to show that X  contains �n(R).

Put t = depthR . As R satisfies (Sn) , we have t ⩾ inf{n, d} . As n ⩽ d + 1 by assumption, 
we get

The module Exti
R
(k,R) has grade at least i − 1 for each 1 ⩽ i ⩽ t + 1 . By [1, Proposition 

(2.26)], the module Ωik is i-torsionfree for each 1 ⩽ i ⩽ t + 1 . By (1) we get

Fix a nonmaximal prime ideal � of R. By assumption, the local ring R� is Cohen–Macaulay 
and has minimal multiplicity. If R� is regular, then Ωht��(�) is R�-free, and belongs to X� . 
Suppose that R� is singular. By assumption we get � ∈ IPD(��n(R)) , which implies 
� ∈ IPD(G) for some G ∈ ��n(R) . Then Ωht�G� is a nonfree maximal Cohen–Macaulay R�

-module. It is observed by using [23, Proposition 5.2 and Lemma 5.4] and [5, Lemma 
3.2(1)] that Ωht�𝜅(�) ∈ ���R�

(Ωht�G�) ⊆ ���R�
X� . Thus we have

It follows from (2) and (3) that the resolving subcategory X  of ���R is dominant.
Fix an R-module M ∈ �n(R) . The proof of the theorem will be completed once we prove 

that M belongs to X  . Fix a prime ideal � of R. In view of [24, Theorem 1.1], it suffices to 
show that depthM� is not less than r ∶= infX∈X{depthX�} . As M satisfies (Sn) , we have 
depthM� ⩾ inf{n, ht �} . If ht� ⩽ n , then depthM� ⩾ ht� ⩾ r , and we are done. We may 
assume ht� > n , and hence depthM� ⩾ n and depthR� ⩾ inf{n, ht �} = n . It is enough to 
deduce that n ⩾ r.

Consider the case where � = � . In this case, we have depthR ⩾ n . Applying the depth 
lemma yields depth (Ωnk)� = depthΩnk = n , while Ωnk ∈ X  by (2). Hence n ⩾ r . Thus we 
may assume � ≠ �.

The inequality ht� > n particularly says that R� is not artinian, which implies that 
� ∈ NF(R∕�) . By [4, Lemma 4.6], we find an R-module C with NF(C) = V(�) and 
depthC� = inf{depthR�, depth (R∕�)�} for all � ∈ V(�) . Set Z = ΩnC . As depthC� = 0 
and depthR� ⩾ n , the depth lemma says depth Z� = n . For each integer 1 ⩽ i ⩽ n there are 
equalities and inequalities

(1)1 ⩽ n ⩽ t + 1.

(2)Ωnk is n-torsionfree.

(3)Ωht��(�) ∈ ���R�
X� for all nonmaximal prime ideals � ofR.

(4)grade Exti
R
(C,R) = inf{depthR� ∣ � ∈ SuppExti

R
(C,R)}
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here (4) follows from [3, Proposition 1.2.10(a)], the inequality (5) is an equality unless 
Exti

R
(C,R) = 0 , and the equality (6) holds since R is locally Cohen–Macaulay on the punc-

tured spectrum. In (7), the first inequality holds since SuppExti
R
(C,R) ⊆ NF(C) = V(�) , 

the equality holds since � ≠ � , and the second inequality follows from (1) and the fact that 
ht� > n . By [1, Proposition (2.26)] the module Z is n-torsionfree, and in particular, Z ∈ X  . 
It is now seen that n ⩾ r .   ◻

To show our next proposition, we establish the lemma below, which is of independent 
interest.

Lemma 3.4 Let (R,�, k) be a d-dimensional Cohen–Macaulay non-Gorenstein local ring 
with minimal multiplicity. Then Gi,j = ���R for all i, j ⩾ 0 with i + j ⩾ 2d + 2.

Proof We freely use [14, Proposition 1.1.1]. We may assume i + j = 2d + 2 since Ga,b con-
tains Ga+1,b and Ga,b+1 for all a, b ⩾ 0 . As the stable category of Gi,j is equivalent to that of 
G2d+2,0 , it suffices to show that every M ∈ G2d+2,0 is free. Taking the faithfully flat map 
R → R[X]�R[X] , we may assume that k is infinite. Choose an R-sequence x = x1, ..., xd with 
�2 = x� by [3, Exercise 4.6.14]. We have N ∶= ΩdM ∈ Gd+2,d ⊆ ��(R) . Using the exact 
sequences {0 → N∕xi−1N

xi
�������→ N∕xi−1N → N∕xiN → 0}d

i=1
 where xi = x1,… , xi , we see that 

Ext
j

R
(N,R) = 0 for j = d + 1, d + 2 where (−) = (−)⊗R R∕(x) . Hence Extj

R
(N,R) = 0 for 

j = 1, 2 by [3, Lemma 3.1.16]. In particular, Ext1
R
(L,R) = 0 where L = Ω

R
N . As 

(�R)2 = 0 , the module L is a k-vecor space. As R is non-Gorenstein, we must have L = 0 , 
which means N is R-free, which means N is R-free (by [3, Lemma 1.3.5]), which means M 
is R-free (as M ≈ Ω−dN ).   ◻

Using the above lemma, we can prove the following proposition.

Proposition 3.5 Suppose that for all minimal prime ideals � of R the artinian local ring 
R� has minimal multiplicity. If NonGor(R) ⊆ NF(��� R) (e.g., if SingR ⊆ NF(��� R)), then R 
is generically Gorenstein.

Proof Take any � ∈ MinR . By assumption, we have (�R�)
2 = 0 . If � ∈ NonGor(R) , then 

Lemma 3.4 implies (��� R)� ⊆ ��� (R�) = ���(R�) . But then � ∉ NF(��� R) , contradicting 
our assumption. Thus if � ∈ MinR , then � ∉ NonGor(R) , that is, R� is Gorenstein.   ◻

The corollary below, which is a consequence of the above proposition, gives kind of a 
converse to Proposition 3.2(4), and shows that in some cases the minimal multiplicity con-
dition in Theorem 3.3(1) actually forces some stringent condition on the Gorenstein locus 
of R, so that in those cases Theorem 3.3(1) gives nothing newer than Proposition 3.2(4).

Corollary 3.6 Assume that R satisfies (S2). Consider the following four statements. 

(5)⩾ inf{depthR, depthR� ∣ � ≠ � ∈ SuppExti
R
(C,R)}

(6)= inf{t, ht � ∣ � ≠ � ∈ SuppExti
R
(C,R)}

(7)⩾ inf{t, ht � ∣ � ≠ � ∈ V(�)} = inf{t, ht �} ⩾ n − 1 ⩾ i − 1.
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(1) R is generically a hypersurface.
(2) R is generically Gorenstein.
(3) �2(R) = ���(��� R).
(4) SingR = IPD(��� R).

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) hold. If R is generically of minimal multiplicity, then the four 
statements are equivalent. If R is Cohen–Macaulay and dimR ⩽ 2, then (4) is equivalent to 
SingR = NF(��� R).
Proof The last assertion is clear. It is obvious that (1) implies (2). Proposition 3.2(4) shows 
that (2) implies (3). Since IPD(�2(R)) = SingR , so (3) implies (4).

Suppose that R is generically of minimal multiplicity, and assume (4). Then 
SingR = IPD(��� R) ⊆ NF(��� R) , and hence (2) holds by Proposition 3.5. Finally, (2) 
implies (1) by the well-known (and easy to see) fact that an artinian Gorenstein local ring 
with minimal multiplicity is a hypersurface.   ◻

The first example below shows the non-vacuousness of Corollary 3.6. The second says 
that one cannot drop the hypothesis of R being generically of minimal multiplicity in the 
second part of Corollary 3.6.

Example 3.7 Let k be a field. 

(1) Let R = k[[x, y, z]]∕(x2, xy, y2z) . Then R is a 1-dimensional Cohen–Macaulay 
local ring with y − z a parameter. Put � = (x, y) , � = (x, z) and � = (x, y, z) . It 
holds that R� ≅ k[[x, y, z]](x,y)∕(x

2, xy, y2) with z a unit, while R� ≅ k[[y]](0) with y 
a unit. We have ��(R�) = 2 , ��(R�) = 1 , SpecR = {�, �,�} , MinR = {�, �} and 
SingR = NonGorR = {�,�} . Hence R is generically of minimal multiplicity, R is not 
generically Gorenstein and � does not belong to NF(��� R).

(2) Let R = k[[x, y, z,w]]∕(x2, y2, yz, z2w) .  Then R  is a 1-dimensional Cohen–
Macaulay local ring with w − z a parameter. Set � = (x, y, z) and � = (x, y,w) . 
We  h ave  R� ≅ k[[x, y, z,w]](x,y,z)∕(x

2, y2, yz, z2)  w i t h  w  a  u n i t ,  w h i l e 
R� ≅ k[[x, z]](x)∕(x

2) with z a unit. It follows that SpecR = SingR = {�, �,�} , 
MinR = {�, �} and {�,�} = NonGorR .  So R  is not generically Goren-
stein. As (x,  x) is an exact pair of zerodivisors (i.e., 0 ∶ x = (x) ), R/(x) is 
a totally reflexive R-module, and in particular, it is reflexive. We see that 
NonGorR ⊆ SingR ⊆ NF(R∕(x)) ⊆ NF(��(R)) ⊆ NF(��� R) ⊆ NF(��(R)) = SingR . 
Note that ��(R�) = 3 , so that R� does not have minimal multiplicity.

In view of Corollary 3.6, we raise natural questions.

Question 3.8 

(1) For a local Cohen–Macaulay ring R (generically of minimal multiplicity) of dimension 
d > 1 , does the equality ���(��d+1(R)) = ��(R) force any condition on the Gorenstein 
locus of R ?

(2) Let R be an artinian local ring. When does the equality ���(��� R) = ���R imply the 
Gorensteinness of R ? (Lemma 3.4 gives one sufficient condition that R has minimal 
multiplicity).
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4  Syzygies of the residue field and direct summands of syzygies

The proof of Theorem 3.3(1) crucially uses the torsionfree nature of syzygies of the residue 
field of a local ring. So, in this section, we record some results explaining when certain 
syzygies of the residue field of a local ring is or is not n-torsionfree for certain n depending 
on the depth of the ring. We begin with the following result. For a local ring R, we denote 
by ���0 R the subcategory of ���R consisting of modules which are locally free on the 
punctured spectrum of R.

Theorem 4.1 Let (R,�, k) be a local ring of depth t. Then the following statements hold. 

(1) Let n ⩾ 0 be an integer, and put m = min{n, t + 1}. Then the inclusion 
���n(R) ∩���0 R ⊆ ��m(R) holds true. In particular, the module Ωnk is m-torsionfree.

(2) The module Ωtk is (t + 1)-torsionfree.
(3) If Ωnk is (t + 2)-torsionfree for some n ⩾ t + 1, then R is Gorenstein. The converse is 

also true.

Proof 

(1) Let M  be an R-module in ���n(R) ∩���0 R .  Since m ⩽ n ,  we have 
M ∈ ���n(R) ⊆ ���m(R) . Let � be a prime ideal of R such that depthR� ⩽ m − 2 . Then 
depthR� ⩽ m − 2 ⩽ t − 1 , which forces � ≠ � . Hence the R�-module M� is free. Apply-
ing [16, Theorem 43], we obtain M ∈ ��m(R).

(2) There is an R-sequence x = x1,… , xt . Since R∕(x) has depth 0, there is an exact sequence 
0 → k → R∕(x) → C → 0 . Applying Ωt = Ωt

R
 and remembering pdR R∕(x) = t , we get 

an exact sequence 0 → Ωtk → F → ΩtC → 0 of R-modules with F free. This shows 
Ωtk ≈ Ωt+1C . It follows from (1) that Ωt+1C ∈ ���t+1(R) ∩���0 R ⊆ ��t+1(R) , and 
therefore Ωtk ∈ ��t+1(R).

(3) First we prove the n = t + 1 case. With the notation of the proof of (1), we have 
Ωtk ≈ Ωt+1C . This implies Ωt+1k ≈ Ωt+2C and Ωt+2C ∈ ��t+2(R) . It follows from 
[1, Corollary (4.18) and Proposition (2.26)] that Extt+2

R
(C,R) has grade at least 

t + 1 . Note that any nonzero R-module has grade at most t = depthR . We thus have 
0 = Extt+2

R
(C,R) = Ext1

R
(Ωt+1C,R) = Ext1

R
(Ωtk,R) = Extt+1

R
(k,R) . By [20, II. Theo-

rem 2] we get idR R < t + 1 . We conclude that R is Gorenstein.
  Next assume n ⩾ t + 2 . We have Ωnk = Ωt+2(Ωn−t−2k) ∈ ��t+2(R) . Again by [1, 

Corollary (4.18) and Proposition (2.26)], Extt+2
R

(Ωn−t−2k,R) has grade at least t + 1 . 
We have 0 = Extt+2

R
(Ωn−t−2k,R) = Extn

R
(k,R) , and again by [20, II. Theorem 2] we get 

idR R < n and R is Gorenstein.

  ◻

Remark 4.2 Theorem 4.1(2) vastly generalizes [10, Proposition 4.1] in that we neither use 
any Cohen–Macaulay assumption on the ring, nor do we have any restriction on the depth 
of the ring.

As an immediate consequence of Theorem 4.1, we can describe, for certain values of n, 
the resolving closure of n-torsionfree modules which are also locally free on the punctured 
spectrum.
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Corollary 4.3 Let (R,�, k) be a local ring of depth t. Then there are equalities

Proof Fix 0 ⩽ n ⩽ t and put Xn = {M ∈ ���0 R ∣ depthM ⩾ n} . That Xn is resolving is 
seen by the depth lemma etc. Also, ��n(R) ⊆ ���n(R) ⊆ Xn by the depth lemma again. 
Therefore, ���(��n(R) ∩���0 R) ⊆ Xn . The reverse inclusion follows from [24, Proposi-
tion 3.4] and Theorem  4.1(1): we have M ∈ ���Ωnk ⊆ ���(��n(R) ∩���0 R) whenever 
M ∈ Xn . We obtain Xn = ���(��n(R) ∩���0 R) for every 0 ⩽ n ⩽ t . For the other equality, 
we have ���(��t+1(R) ∩���0 R) ⊆ ���(��t(R) ∩���0 R) = Xt , and the opposite inclusion 
follows similarly as above by using [24, Proposition 3.4] and Theorem 4.1(2).   ◻

In view of Theorem  4.1(2) it would also be natural to ask if for any special classes 
of non-Gorenstein local Cohen–Macaulay rings (R,�, k) of dimension d, one can 
prove Ωdk ∈ ��n(R) or even Ωdk ∈ ���n(R) for some n > d + 1 . We shall show that the 
answer is no. For this, we record the following lemma, whose second assertion would 
be of independent interest. Recall that for a local ring (R,�, k) of depth t the number 
r(R) = dimk Ext

t
R
(k,R) is called the type of R.

Lemma 4.4 Let (R,�, k) be a local ring of depth t and type r.

(1) Assume t = 0. Suppose that there is an exact sequence 0 → M → F1

�
�����→ F0 of R-modules 

with F0,F1 free, Im 𝜕 ⊆ �F0 , M =
⨁n

i=0
(Ωik)⊕mi and m0 = 1. It then holds that r = 1.

(2) The R-module (Ωtk)⊕r is (t + 2)-syzygy.

Proof 

(1) We may assume that R is not a field. Applying HomR(k,−) to the exact sequence and 
noting HomR(k, �) = 0 , we get an isomorphism HomR(k,M) ≅ HomR(k,F1) . Setting 
s = rankR F1 , we get 

 Hence rs =
∑n

i=0
uimi , where ui ∶= dimk HomR(k,Ω

ik) . Note that for each 
2 ⩽ i ⩽ n there is an exact sequence 0 → Ωik → R⊕bi−1

𝛿i−1
�������������→ R⊕bi−2 with 

Im 𝛿i−1 ⊆ �R⊕bi−2 and bj = �j(k) for each j. Similarly as above, we obtain iso-
morphisms k⊕ui ≅ HomR(k,Ω

ik) ≅ HomR(k,R
⊕bi−1 ) ≅ k⊕rbi−1 , which imply 

ui = rbi−1 for all 2 ⩽ i ⩽ n . As R is not a field, the map HomR(k,�) → HomR(k,R) 
induced from the inclusion map � → R is an isomorphism. Hence ui = rbi−1 for 
all 1 ⩽ i ⩽ n . We have u0 = dimk HomR(k, k) = 1 , while m0 = 1 by assumption. 
We obtain rs =

∑n

i=0
uimi = u0m0 +

∑n

i=1
rbi−1mi = 1 +

∑n

i=1
rbi−1mi , and get 

r(s −
∑n

i=1
bi−1mi) = 1 . This forces us to have r = 1.

(2) Take an R-sequence x = x1,… , xt . Then the socle of R∕(x) is isomorphic to k⊕r . Let 
y1,… , yn be elements of � whose residue classes form a system of generators of �∕(x) . 
Then we have an exact sequence 0 → k⊕r

→ R∕(x)
m
�������→ (R∕(x))⊕n

→ L → 0 , where m is 
given by the transpose of the matrix (y1,… , yn) . Applying the functor Ωt = Ωt

R
 , we get 

���(��n(R) ∩���0 R) = {M ∈ ���0 R ∣ depthM ⩾ n} for 0 ⩽ n ⩽ t, and

���(��t+1(R) ∩���0 R) = {M ∈ ���0 R ∣ depthM ⩾ t}.

k⊕rs ≅ HomR(k,F1) ≅ HomR(k,M) ≅ HomR(k,

n⨁
i=0

(Ωik)⊕mi ) ≅

n⨁
i=0

HomR(k,Ω
ik)⊕mi .
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an exact sequence 0 → (Ωtk)⊕r
→ P → Q → ΩtL → 0 of R-modules with P, Q free. 

Consequently, we obtain the containment (Ωtk)⊕r ∈ ���t+2(R).

  ◻

Now we can prove the following theorem.

Theorem 4.5 Let (R,�, k) be a local ring of dimension d and depth t. 

(1) The module Ωtk is (t + 2)-syzygy if and only if the local ring R has type one.
(2) Suppose that the subcategory ���t+2(R) is closed under direct summands. Then R has 

type one.
(1) Suppose that R is Cohen–Macaulay. Then the ring R is Gorenstein if and only if Ωdk 

is (d + 2)-syzygy, if and only if ���d+2(R) is closed under direct summands.

Proof Assertion (2) immediately follows from (1) and Lemma 4.4(2). Assertion (3) is a 
direct consequence of (1) and (2). The “if” part of (1) follows from Lemma 4.4(2). To 
show the “only if” part, put r = r(R) . By assumption, there is an exact sequence 
0 → Ωtk → Ft+1

�t+1
�������������→ Ft

�t
�������→ ⋯

�1
��������→ F0 → M → 0 with Fi free for all 0 ⩽ i ⩽ t + 1 . If Ωtk 

has a nonzero free summand, then R is regular by [7, Corollary 1.3] and r = 1 . We may 
assume that Ωtk has no nonzero free summand, and hence we may assume Im 𝜕i ⊆ �Fi−1 
for all 1 ⩽ i ⩽ t + 1 . Set N = Im �t . The depth lemma shows depthN ⩾ t . Choose a regular 
sequence x = x1,… , xt on R and N with xi ∈ 𝔪 ⧵𝔪2 for all 1 ⩽ i ⩽ t . Putting 
(−) = (−)⊗R R∕(x) and applying [22, Corollary 5.3], we have an isomorphism 

Ωt
R
k ≅

⨁t

i=0
(Ωi

R
k)

⊕

⎛
⎜⎜⎝
t

i

⎞⎟⎟⎠ , and an exact sequence 0 → Ωtk → Ft+1

�t+1
�������������→ Ft → N → 0 is 

induced. We apply Lemma 4.4(1) to obtain r = 1 .   ◻

Theorem 4.5(1) may lead us to wonder whether the condition that Ωtk is (t + 2)-syzygy 
already implies that R is Gorenstein. The next example answers in the negative.

Example 4.6 Let R be a local ring with R∕(z) ≅ k[[x, y]]∕(x2, xy) for some R-sequence 
z = z1,… , zt . Then R has depth t and type 1, so Ωtk is (t + 2)-syzygy by Theorem 4.5(1), 
but R is not Gorenstein.

In view of Theorem 4.5, it is natural to ask the following question.

Question 4.7 Let R be a local ring with residue field k, and let n ⩾ depthR be an integer. 
Assume that Ωnk is (n + 2)-syzygy (note that this assumption is satisfied if ���n+2(R) is 
closed under direct summands by Lemma 4.4(2)). Does then R have type one? What if we 
also assume R is Cohen–Macaulay?

Note that Theorem 4.5(1) exactly says that Question 4.7 has an affirmative answer when 
n = t , which is why we were able to derive Theorem 4.5(3). We record some special cases, 
apart from that already contained in Theorem 4.5(3), where Question 4.7 has a positive 
answer.
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Proposition 4.8 Let (R,�, k) be a local ring of depth t. Suppose that ���n+2(R) is closed 
under direct summands for some n ⩾ t. Then R has type one in either of the following two 
cases. 

(1) One has t > 0 and there is an R-sequence x = x1,… , xt−1 such that �∕(x) is decompos-
able.

(2) The module Ωtk is a direct summand of Ωt+lk for some l > 0 (this holds if R is singular 
and Burch).

Proof 

(1) Write R = R∕(x) and � = �∕(x) . Since � is decomposable, R is singular. Fix s ⩾ 0 . 
By [19, Theorem A] we have Ω

R
k = � ⋖ Ω3

R
L⊕Ω4

R
L⊕Ω5

R
L = Ωs+3

R
N  , where 

L = Ωs

R
k and N = k⊕Ω

R
k⊕Ω2

R
k . Taking the functor Ωt−1

R
 and applying [19, Lemma 

4.2], we obtain Ωt
R
k⊕ F ⋖ Ωs+t+2

R
N ⊕ G ∈ ���s+t+2(R) for some free R-modules F, G. 

By assumption, we can choose s ⩾ 0 so that ���s+t+2(R) is closed under direct sum-
mands. Then we have Ωt

R
k ∈ ���s+t+2(R) ⊆ ���t+2(R) , and Theorem 4.5(2) implies 

r(R) = 1.
(2) Applying the functor Ωl to the relation Ωtk ⋖ Ωt+lk repeatedly, we have Ωtk ⋖ Ωt+blk 

for every b ⩾ 1 . Choose b so that t + bl ⩾ n + 2 . As ���n+2(R) is closed under direct 
summands, we get Ωtk ∈ ���n+2(R) . Theorem 4.5 implies r(R) = 1 . If R is a singular 
Burch ring, then Ωtk ⋖ Ωt+2k by [6, Proposition 5.10].

  ◻

Next we show that the converse to Theorem 4.5(2) is not true, that is, it is possible that 
R is a local ring of depth t and type 1 but ���t+2(R) is not closed under direct summands. 
Moreover, we shall show that for large classes of local rings R with decomposable maximal 
ideal and of integers n the subcategory ���n(R) is not closed under direct summands. For 
this, we begin with establishing a lemma.

Lemma 4.9 Let (R,�, k) be local and with depthR = t. Then depthM = t for each 
0 ≠ M ∈ ���t+2(R).

Proof By the depth lemma it suffices to show depthM ⩽ t , which holds if 
R ⋖ M . We may let M ≅ Ωt+2C for some R-module C, and get an exact sequence 
0 → M → F

f
�����→ G → N → 0 with F,  G free, N t-syzygy and Im f ⊆ �G . Again by the 

depth lemma depthN ⩾ t . Break the exact sequence down as 0 → M → F → ΩN → 0 and 
0 → ΩN → G → N → 0 . We get exact sequences Extt

R
(k,M)

a
�����→ Extt

R
(k,F)

b
�����→ Extt

R
(k,ΩN) 

and 0 = Extt−1
R

(k,N) → Extt
R
(k,ΩN)

c
�����→ Extt

R
(k,G) . Note that cb = Extt

R
(k, f ) = 0 . 

As c is injective, we have b = 0 and a is surjective. Since Extt
R
(k,F) ≠ 0 , we obtain 

Extt
R
(k,M) ≠ 0 .   ◻

Remark 4.10 The (t + 2) nd threshold in Lemma 4.9 is sharp. Indeed, let (R,�) be a local 
ring with dimR > 0 = depthR . Then there exists � ≠ � ∈ AssR . We have depthR∕� > 0 
and 0 ≠ R∕� ∈ ���1(R).

Now we produce the promised classes of local rings R and integers n.
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Proposition 4.11 Let (R,�, k) be a local ring such that � = I ⊕ J for some nonzero 
ideals I, J of R.

(1) Suppose that depthR∕I = 0 and depthR∕J ⩾ 1. Then one has depthR = 0, and the 
subcategory ���n(R) is not closed under direct summands for every n ⩾ 2.

(2) Suppose that I is indecomposable and depthR∕I ⩾ 2. Then one has depthR ⩽ 1, and 
the subcategory ���n(R) is not closed under direct summands for every n ⩾ 4.

Proof By [19, Fact 3.1] we have depthR = min{depthR∕I, depthR∕J, 1} ⩽ 1 . 

(1) S ince  I ≅ �∕J ⊆ R∕J  and  depthR∕J > 0  ,  we  s ee  t ha t  depth I ⩾ 1 . 
Lemma 4 .9  y i e lds  I ∉ ���2(R) .  By  [19 ,  Theorem A]  we  ge t 
I ⋖ � ⋖ Ω3(Ωik)⊕Ω4(Ωik)⊕Ω5(Ωik) ∈ ���i+3(R) ⊆ ���i+2(R) for every i ⩾ 0 . If 
���n(R) is closed under direct summands for some n ⩾ 2 , then choosing i = n − 2 , we 
obtain I ∈ ���n(R) ⊆ ���2(R) , which is a contradiction.

(2) Note that IJ = 0 . We also have J2 ≠ 0 , as otherwise �2 = (I + J)(I + J) = I2 ⊆ I , con-
tradicting depthR∕I ⩾ 2 . Similarly as in the proof of (1), for each i ⩾ 0 there exists 
X ∈ ���i+3(R) with I ⋖ X.

  Assuming that ���n(R) is closed under direct summands for some n ⩾ 4 , we shall 
derive a contradiction. Choosing i = n − 3 , we get I ∈ ���n(R) ⊆ ���4(R) . The equality 
IJ = 0 implies that I does not have a nonzero free summand. Hence I ≅ Ω4H for some 
R-module H. Putting M = Ω3H , we get an exact sequence 0 → I → R⊕a

→ M → 0 . 
Note that M ≠ 0 . By [18, Proposition 4.2] there are an R/I-module A and an R/J-module 
B such that M ≅ A⊕ B . Now I = ΩRM ≅ ΩRA⊕ΩRB . Then indecopmosability of I 
implies ΩRA = 0 or ΩRB = 0 , hence A or B is R-free. As IA = 0 = JB , either A = 0 or 
B = 0 . If A = 0 , then we get an exact sequence 0 → I → R⊕a

→ B → 0 and I, B are 
annihilated by J, whence J2R⊕a = 0 , contradicting J2 ≠ 0 . We get B = 0 and an exact 
sequence 0 → I → R⊕a

→ A → 0 . As IA = 0 , the surjection R⊕a
→ A factors through 

the canonical surjection R⊕a
→ (R∕I)⊕a , which induces a surjection I → ΩR∕IA . Since 

IJ = 0 , the module ΩR∕IA is annihilated by I, J and by I + J = � . Thus ΩR∕IA ≅ k⊕s 
for some s ⩾ 0 . But ΩR∕IA embeds inside a free R/I-module which has positive depth, 
hence k cannot be a summand of ΩR∕IA , thus ΩR∕IA = 0 . Therefore A is R/I-free and 
has depth at least 2. But A ≅ M has depth at most 1 by Lemma 4.9. We now have a 
desired contradiction.

  ◻

The ring R in the first example below shows that the converse to Theorem 4.5(2) does 
not hold. The second example presents a local ring R of depth 1 and type 1 such that 
���n(R) is not closed under direct summands for every n ⩾ 4 , which concretely illustrates 
Proposition 4.11(2). The third example shows that the assumption depthR∕I ⩾ 2 in Propo-
sition 4.11(2) cannot be dropped.

Example 4.12 Let k be a field. In each of the following statements, � denotes the maximal 
ideal of R. 

(1) Consider the local ring R = k[[x, y]]∕(x2, xy) . Then � = (y)⊕ (x) , depthR∕(y) = 0 and 
depthR∕(x) = 1 . Proposition 4.11(1) shows that ���n(R) is not closed under direct 
summands for all n ⩾ 2.
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(2) Let R = k[[x, y, z]]∕(xy, xz) . Then � = (x)⊕ (y, z) and (x) is indecomposable with 
depthR∕(x) = 2 . Proposition 4.11(2) implies that ���n+3(R) is not closed under direct 
summands for every n ⩾ 4.

(3) Let R = k[[x, y]]∕(xy) . Then � = (x)⊕ (y) and (x) is indecomposable with 
depthR∕(x) = 1 . As R is a 1-dimensional Gorenstein ring, ���n(R) = ��(R) is closed 
under direct summands for any n ⩾ 1.

5  Closedness under extensions and syzygies, and totally reflexive 
modules

In this section, we derive some consequences of ��n(R) being closed under extensions or 
syzygies for certain values of n depending on the depth of the local ring R. We will see that 
in the most reasonable cases, if ��n(R) is resolving, then it coincides with the category of 
totally reflexive modules.

We begin with investigating when the subcategory ��n(R) is closed under extensions or 
syzygies. For two subcategories X,Y of ���R we denote by X ∗ Y the subcategory con-
sisting of modules X that fits into an exact sequence 0 → M → X → N → 0 with M ∈ X  
and N ∈ Y.

Proposition 5.1 Let n be either a nonnegative integer or ∞. The following statements 
hold. 

(1) If M is an R-module such that (���R) ∗ M ⊆ ��n(R), then there is a containment 
ΩM ∈ ��n+1(R).

(2) If the subcategory ��n(R) is closed under extensions, then the inclusion 
Ω��n(R) ⊆ ��n+1(R) holds.

(3) The subcategory ��n(R) is resolving if (and only if) ��n(R) is closed under extensions.
(4) Suppose that ��n+1(R) is closed under extensions. If R satisfies (Sn), then R� is Goren-

stein for all � ∈ SpecR with ht� = n. If R satisfies (Sn+1) and is local with dimR ⩾ n, 
then R satisfies (Gn).

(5) Suppose that R is a local ring of depth t. 

(a) Let n ⩾ t + 2. Then ��n(R) = ��(R) if (and only if) ��n(R) is closed under 
syzygies.

(b) Let n ⩾ t + 1. Then ��n(R) = ��(R) if (and only if) ��n(R) is closed under exten-
sions. When n = t + 1, it is also equivalent to the Gorenstein property of the local 
ring R.

Proof 

 (1) By [1, Proposition (2.21)] and its proof, there is an exact sequence 
0 → P → N → M → 0 with P ∈ ���R ,  where N = ��Ω��ΩM  .  We have 
N ∈ (���R) ∗ M ⊆ ��n(R) , and hence N ∈ ��n(R) ∩ G1,0 = G1,n . By [14, Proposi-
tion 1.1.1] and [1, Theorem 2.17] we get ΩM ≈ ΩN ∈ ΩG1,n(R) ⊆ ��n+1(R).

 (2) The assertion immediately follows from (1) as we have (���R) ∗ ��n(R) ⊆ ��n(R) by 
assumption.
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 (3) The assertion is a direct consequence of (2) together with the general fact 
��n+1(R) ⊆ ��n(R).

 (4) The second assertion follows by the first and [11, Theorem 4.1]. To show the first 
assertion, let � ∈ SpecR with ht� = n , i ⩾ 0 and M = Exti

R
(R∕�,R) . Each � ∈ SuppM 

contains � , so ht � ⩾ ht� = n . As R satisfies (Sn) , we get depthR� ⩾ n . By [3, Propo-
sition 1.2.10(a)] we have gradeM ⩾ n . It follows from [1, Proposition (2.26)] that 
Ωn+1(R∕�) ∈ ��n+1(R) . We see from (2) that Ω��n+1(R) ⊆ ��n+2(R) , and hence 
Ωn+2(R∕�) ∈ ��n+2(R) , which induces Ωn+2�(�) ∈ ��n+2(R�) . Using again the 
assumption that R satisfies (Sn) , we have depthR� = n . It follows from Theorem 4.1(3) 
that R� is Gorenstein.

 (5a) Fix M ∈ ��
n
(R) . By assumption ΩM ∈ ��

n
(R) i.e. Exti

R
(��ΩM,R) = 0 for all 1 ⩽ i ⩽ n  

By [1,  Theorem (2.8)]  there  is  an exact  sequence 0 = Tor
R

1
(M,R)

→ (Ext1
R
(M,R))∗ → Ext

2

R
(𝖳𝗋ΩM,R) = 0 . Hence (Ext1

R
(M,R))∗ = 0 . By [1, Prop-

osition (2.6)], there exists an exact sequence 0 → Ext
1

R
(M,R) → 𝖳𝗋M → 

Ω𝖳𝗋ΩM → 0 , which induces an exact sequence Exti
R
(𝖳𝗋M,R) → Ext

i

R
(Ext1

R
(M,R),R) →

Ext
i+1
R

(Ω��ΩM,R) = Ext
i+2
R

(��ΩM,R)  fo r  eve r y  i ⩾ 0  .  T h i s  i m p l i e s 
Exti

R
(Ext1

R
(M,R),R) = 0 for all 1 ⩽ i ⩽ n − 2 . Thus Exti

R
(Ext1

R
(M,R),R) = 0 for all 

0 ⩽ i ⩽ n − 2 , that is, grade Ext1
R
(M,R) ⩾ n − 1 > t . As depthR = t , we must have 

Ext1
R
(M,R) = 0 . Replacing M by ΩiM for i ⩾ 0 , we get Ext>0

R
(M,R) = 0 i.e. M ∈ G∞,0 . 

So, ��M ∈ G0,∞ ⊆ ��n(R) . By what we have seen, ��M ∈ G∞,0 . Thus M ∈ ��(R).
 (5b) Using (2), we observe that Ω��n(R) ⊆ ��n+1(R) ⊆ ��n(R) . The case n ⩾ t + 2 fol-

lows from (5a). Now we consider the case n = t + 1 . Theorem 4.1(1) yields that 
Ωnk ∈ ��n(R) , which implies that Ωn+1k ∈ Ω��n(R) ⊆ ��n+1(R) . Theorem 4.1(3) 
implies that R is Gorenstein and thus ��n(R) = ��(R) . Therefore, R is a Gorenstein 
ring if (and only if) the subcategory ��t+1(R) is closed under extensions.

  ◻

Remark 5.2 

(1) Proposition 5.1(1) for n = 1 recovers [13, Corollary 2.2]. Indeed, it says if 
��1(R) = ���1(R) is closed under extensions, then ΩM ∈ ��2(R) = ��� R for 
M ∈ ��1(R) . As Ω2

��M ≈ M∗ , we have that if ���1(R) is closed under extensions, 
then M∗ ∈ ��� R for every M ∈ ���R.

(2) The inequality dimR ⩾ n in Proposition 5.1(4) is sharp. Indeed, if (R,�) is a non-
Gorenstein local ring with �2 = 0 , then ��2(R) = ����R (see Lemma 3.4) is closed 
under extensions.

(3) Proposition 5.1(4) refines [17], Theorem 2.3(3)⇒(2)] in some cases.

Next we show the proposition below, which can also be of some independent interest.

Proposition 5.3 Let (R,�, k) be a local ring of depth t. Let a ∈ {t, t + 1} and n ⩾ a . 

(1) Let K ∈ ���0 R. If Exta+1
R

(��M,R) = 0 for all M ∈ R ∗ ΩnK, then Extn+1
R

(K,R) = 0.
(2) If Exta+1

R
(��M,R) = 0 for every M ∈ R ∗ Ωnk, then the local ring R is Gorenstein.
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Proof 

(1) As n ⩾ t , the conclusion is clear if R is Gorenstein. Let R be non-Gorenstein. Put 
L = ΩnK . Assuming Extn+1

R
(K,R) = Ext1

R
(L,R) ≠ 0 , we work towards a contradiction. 

The choice of K implies that Ext1
R
(L,R) has finite length. Choose a socle element 

0 ≠ � ∈ Ext1
R
(L,R) . Let 0 → R → N → L → 0 be the exact sequence corresponding to 

� . Then N is in R ∗ L , and Exta+1
R

(��N,R) = 0 by assumption. Using the snake lemma, 
we get the following commutative diagrams with exact rows and columns. 

 Note that A ≈ ��ΩnK and B ≈ ��N . There is also an exact sequence 
N∗

f
�����→ R

g
�����→ Ext1

R
(ΩnK,R) with g(1) = � . It is seen that Coker f ≅ k . We get exact 

sequences 0 → k → A → B → 0 , and 

 Using Theorem  4.1(1) and the general fact that ��i+1(R) ⊆ ��i(R) for i ⩾ 0 , we 
obtain ΩnK ∈ ��a(R) . Suppose a ⩾ 1 . Then Exta

R
(A,R) = Exta

R
(��ΩnK,R) = 0 , and 

it follows from (8) that Exta
R
(k,R) = 0 . As a ∈ {t, t + 1} , we must have a = t + 1 . By 

[20, II. Theorem 2] the ring R is Gorenstein, and we get a desired contradiction. Thus 
we may assume a = 0 , and then t = 0 . The slanted arrow � ∶ A∗

→ R in the third dia-
gram above is a zero map by the injectivity of the map h. Hence the map l is surjec-
tive (and hence an isomorphism). From (8) we get k∗ = 0 , which is a contradiction to 
the fact that t = 0.

(2) By (1) we have Extn+1
R

(k,R) = 0 . Since n ⩾ t , the ring R is Gorenstein by [20, II. Theo-
rem 2].

  ◻

Applying the above proposition, we can prove the following theorem.

Theorem  5.4 Let (R,�, k) be local with depth t. Then R is Gorenstein if and 
only if ���m(R) is closed under extensions for some integer m > t, if and only if 
R ∗ Ωnk ⊆ ���t+1(R) for some integer n ⩾ t.

Proof First, suppose that ���m(R) is closed under extensions for some inte-
ger m > t . Then m − 1 ⩾ t and Ωm−1k ∈ ���m(R) by Theorem  4.1(2). We obtain 
R ∗ Ωm−1k ∈ ���m(R) ⊆ ���t+1(R) . Next, suppose that R ∗ Ωnk ⊆ ���t+1(R) for some 
n ⩾ t . Then R ∗ Ωnk ⊆ ���t+1(R) ∩���0 R ⊆ ��t+1(R) by Theorem  4.1(1). Hence 
Extt+1

R
(��M,R) = 0 for all M ∈ R ∗ Ωnk . Proposition 5.3(2) implies R is Gorenstein.   ◻

(8)Exta
R
(B,R) → Exta

R
(A,R) → Exta

R
(k,R) → Exta+1

R
(B,R) = Exta+1

R
(𝖳𝗋N,R) = 0.
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To show our next result, we prepare a lemma to get a certain property of �̃n(R).

Lemma 5.5 If Ω�̃n(R) is closed under extensions, then one has the equality 
Ω�̃n(R) = �̃n+1(R).

Proof We easy see that Ω��n(R) ⊆ ��n+1(R) . The subcategory �̃n(R) is resolving and con-
tains ���n(R) . By assumption and by Lemma 3.1(2) the subcategory Ω�̃n(R) is resolving, 
and it contains Ω���n(R) = ���n+1(R) . Hence Ω�̃n(R) contains ��� ���n+1(R) = �̃n+1(R) by 
Proposition 3.2(1).   ◻

The corollary below states several consequences of Theorem 5.4. The first two asser-
tions of the corollary give necessary and sufficient conditions for R to be Gorenstein. In 
[17, Theorem 2.3(8)] it is required that R satisfies (Sn) along with ���n(R) being closed 
under extensions. In the third assertion of the corollary, we show some special cases 
where the condition of (Sn) can be dropped.

Corollary 5.6 Let (R,�, k) be a local ring of dimension d and depth t. 

(1) One has that R is a Gorenstein local ring if and only if Ω�̃n(R) is closed under exten-
sions for some consecutive (t + 1)-many values of n.

(2) The ring R is Gorenstein if and only if R is Cohen–Macaulay and Ω��(R) is closed 
under extensions.

(3) If ���n(R) is closed under extensions for some n ⩾ min{d, t + 1}, then R is Cohen–
Macaulay and ��i(R) = ���i(R) for all 1 ⩽ i ⩽ n + 1.

Proof 

(1) If R is Gorenstein, then for all n ⩾ d one has �̃n(R) = ��(R) and Ω�̃n(R) = ��(R) , 
and ��(R) is closed under extensions. This shows the “only if” part. From 
now on we prove the “if” part. There is an integer l ⩾ 0 such that Ω�̃n(R) 
is closed under extensions for l ⩽ n ⩽ l + t . We have Ωlk ∈ �̃l(R) , so that 
Ωt+1+lk ∈ Ωt+1

�̃l(R) = �̃t+1+l(R) by Lemma 5.5. Since �̃t+1+l(R) is resolving, this 
implies R ∗ Ωt+1+lk ⊆ ��t+1+l(R) = Ωt+1��l(R) ⊆ ���t+1(R) . Theorem 5.4 implies that 
R is Gorenstein.

(2) If R is Cohen–Macaulay, then �̃n(R) = ��(R) for all n ⩾ d . If R is Gorenstein, then 
Ω��(R) = ��(R) . The assertion now follows from (1).

(3) If n ⩾ t + 1 , then R is Gorenstein by Theorem 5.4 and ��i(R) = ���i(R) for all i ⩾ 0 by 
[1, Corollary (4.22)]. Assume n ⩾ d and R is not Cohen–Macaulay. Then n ⩾ d ⩾ t + 1 
and Theorem 5.4 implies R is Gorenstein, which contradicts the assumption that R 
is not Cohen–Macaulay. Thus R must be Cohen–Macaulay, hence satisfies (Sn) . By 
[17], Theorem 2.3(8)⇒(6)] we get ��n+1(R) = ���n+1(R) , and finally by [1, Corollary 
4.18] we obtain ��i(R) = ���i(R) for all 1 ⩽ i ⩽ n + 1.

  ◻

Question 5.7 Let R be a local ring of depth t such that ���t(R) is closed under extensions. 
Then, is ��t(R) also closed under extensions, or at least closed under syzygies? (Note that 
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Proposition 5.1(3) implies that if ��t(R) is closed under extensions, then it is closed under 
syzygies).

Here we record the following observation on Ga,b . We should compare it with Propo-
sition 5.1(5a).

Proposition 5.8 

(1) Let 0 < a < ∞ and 0 ⩽ b ⩽ ∞. Then the subcategory Ga,b is closed under syzygies if 
and only if there is an equality Ga,b = ��(R).

(2) Suppose that (R,�, k) is a local ring of depth t. Let n ∈ ℤ>0 ∪ {∞} be such that Gn,0 is 
closed under syzygies. Then one has n ⩾ t. If one also has n ⩽ t + 1, then R is a Gore-
nstein local ring.

Proof 

(1) For the first assertion, it suffices to show the “only if” part. Let M ∈ Ga,b , and i ⩾ 0 
an integer. By assumption, ΩiM is in Ga,b . As a > 0 , we have ΩiM ∈ G1,0 , that is, 
Exti+1

R
(M,R) = Ext1

R
(ΩiM,R) = 0 . Hence M ∈ G∞,0 , and thus M ∈ Ga,b ∩ G∞,0 = G∞,b . 

It follows that Ga,b = G∞,b . We are done for b = ∞ , so assume b < ∞ . We get 
Gb,a = ��Ga,b = ��G∞,b = Gb,∞ by [14, Proposition 1.1.1]. Note that b − a is an integer. 
Hence Ωb−a is defined, and we obtain Ga,b = Ωb−aGb,a = Ωb−aGb,∞ = Ga,∞+b−a = Ga,∞ 
by [14,  Proposit ion 1.1.1] again.  I t  follows that  Ga,b = Ga,∞ ,  and 
Ga,b = Ga,∞ ∩ G∞,b = G∞,∞ = ��(R).

(2) If n < t , then k is in Gn,0 and so does Ωt−nk by assumption, which implies Extt
R
(k,R) = 0 , 

a contradiction. Hence n ⩾ t . Suppose n ⩽ t + 1 . As Ωt+1k ∈ ��t+1(R) by Theo-
rem 4.1(1), applying (1) shows ��Ωt+1k ∈ Gt+1,0 ⊆ Gn,0 = ��(R) . Thus Ωt+1k ∈ ��(R) , 
which implies that R is Gorenstein.

  ◻

Corollary 5.9 Let n ⩾ 0 be an integer such that ��n(R) = ��n+1(R). Then ��n(R) = ��(R).

Proof Using [14, Proposition 1.1.1] shows ΩG
n+1,0 = G

n,1
⊆ G

n,0
= �� ��

n
(R) = �� ��

n+1(R) = G
n+1,0 . 

Proposition 5.8(1) yields Gn+1,0 = ��(R) . We conclude ��
n
(R) = ��

n+1(R) = ��G
n+1,0 = ��(R) .  

 ◻

Remark 5.10 The dual version of Proposition 5.8(1) holds true as well: Let 0 ⩽ a ⩽ ∞ and 
0 < b < ∞ . Then Ga,b is closed under cosyzygies if and only if Ga,b = ��(R) . This is a con-
sequence of the combination of Proposition 5.8(1), [21, Lemma 4.1] and [14, Proposition 
1.1.1].
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