

On the subcategories of *n***‑torsionfree modules and related modules**

Souvik Dey1 · Ryo Takahashi[2](http://orcid.org/0000-0001-6287-8941)

Received: 19 January 2021 / Accepted: 20 September 2021 / Published online: 22 October 2021 © The Author(s), under exclusive licence to Universitat de Barcelona 2021

Abstract

Let R be a commutative noetherian ring. Denote by mod R the category of finitely generated *R*-modules. In this paper, we study *n*-torsionfree modules in the sense of Auslander and Bridger, by comparing them with *n*-syzygy modules, and modules satisfying Serre's condition (S*n*). We mainly investigate closedness properties of the full subcategories of mod R consisting of those modules.

Keywords Subcategory closed under direct summands/extensions/syzygies · *n*-torsionfree module \cdot *n*-syzygy module \cdot Serre's condition $(S_n) \cdot$ Resolving subcategory \cdot Totally refexive module · Cohen–Macaulay ring · Gorenstein ring · Maximal Cohen–Macaulay module · (Auslander) transpose

Mathematics Subject Classifcation 13C60 · 13D02

1 Introduction

The notion of *n*-torsionfree modules for $n \geq 0$ has been introduced by Auslander and Bridger [[1](#page-19-0)], and actually plays an essential role in their wide and deep theory on the stable category of fnitely generated modules over a noetherian ring. The modules located at the center of the *n*-torsionfree modules are the totally refexive modules, which are also called Gorenstein projective modules or modules of Gorenstein dimension zero. So far a lot of studies have been done on *n*-torsionfree modules and totally reflexive modules; see [\[2](#page-19-1), [8](#page-19-2), [12](#page-19-3), [14,](#page-19-4) [16\]](#page-19-5) for instance.

 \boxtimes Ryo Takahashi takahashi@math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~takahashi/

Souvik Dey souvik@ku.edu

¹ Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd., Lawrence, KS 66045, USA

² Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya $464-8602$, Japan

Let R be a commutative noetherian ring. Let us denote by mod R the category of finitely generated *R*-modules, by $TF_n(R)$ the full subcategory of *n*-torsionfree modules, by $\text{Syz}_n(R)$ the full subcategory of *n*-syzygy modules, and by $\text{S}_n(R)$ the full subcategory of modules satisfying Serre's condition (S*n*). Let us set a couple of conditions.

- (i) The ring *R* is locally Gorenstein in codimension $n 1$, and $R \in S_n(R)$.
- (ii) There is an equality $TF_{n+1}(R) = Syz_{n+1}(R)$.
(iii) There are equalities $TF_n(R) = Syz_n(R) = S$.
- There are equalities $TF_n(R) = Syz_n(R) = S_n(R)$.

Auslander and Bridger [\[1](#page-19-0)] prove that (i) is equivalent to (ii). Evans and Griffith [[9](#page-19-6)] prove that (i) implies (iii). Goto and Takahashi [[11\]](#page-19-7) show that (iii) implies (i) under the additional assumption that *R* is local. Matsui, Takahashi and Tsuchiya [[17\]](#page-19-8) show that all the three conditions are equivalent.

The main purpose of this paper is to investigate the structure of the subcategory $TF_n(R)$, and toward this we shall mainly compare $TF_n(R)$ with $Syz_n(R)$ and $S_n(R)$ like the previous works mentioned above. In what follows, we explain our main results. For simplicity, we assume that *R* is a local ring with residue feld *k*, and has dimension *d* and depth *t*.

We begin with considering how to describe $S_n(R)$ as the extension and resolving closures of $TF_n(R)$ and $Syz_n(R)$. We obtain a couple of sufficient conditions for $S_n(R)$ to coincide with the resolving closure of $TF_n(R)$ as in the following theorem, which are included in Proposition $3.2(4)$ $3.2(4)$ and Theorem $3.3(1)$ $3.3(1)$.

Theorem 1.1 It holds that $S_n(R)$ is the smallest resolving subcategory of mod R contain*ing* $TF_n(R)$ *, if the ring* R satisfies (S_n) and either of the following holds.

- (1) *The ring R is locally Gorenstein in codimension* $n 2$.
- (2) One has $n \leq d + 1$, and R is locally a Cohen–Macaulay ring with minimal multiplicity *on the punctured spectrum such that for each* $\mathfrak{p} \in \text{Sing } R$ *there exists* $M \in \text{TF}_n(R)$ *satisfying* $pd_{R_1} M_p = \infty$.

The nature of proof of the above theorem naturally tempts us to consider the *n*-torsionfree property of syzygies of *k*, as a consequence of which we can also study when $Syz_n(R)$ is closed under direct summands. We obtain various equivalent conditions for *R* to be Gorenstein in terms of $TF_n(R)$ and $Syz_n(R)$, which are stated in the theorem below. This is included in Theorems $4.1(3)$ $4.1(3)$, $4.5(3)$ $4.5(3)$, 5.4 and Proposition $5.1(5b)$.

Theorem 1.2 *The following are equivalent.*

- (1) *The ring R is Gorenstein.*
- (2) *The nth syzygy* Ω^{*nk*} *of the R-module k belongs to* $TF_{t+2}(R)$ *for some n* ≥ *t* + 1.
- (3) *The subcategory* $TF_{t+1}(R)$ *is closed under extensions.*
- (4) The subcategory $\text{Syz}_n(R)$ *is closed under extensions for some* $n \geq t + 1$.
- (5) *The ring R is Cohen–Macaulay, and the syzygy* $\Omega^t k$ *belongs to* $\text{Syz}_{t+2}(R)$.
- (6) *The ring R is Cohen–Macaulay, and the subcategory* $\text{Syz}_{t+2}(R)$ *is closed under direct summands.*

We also obtain the following theorem, which yields sufficient conditions for $TF_n(R)$ to coincide with the subcategory $\mathsf{GP}(R)$ of totally reflexive modules. This is included in Proposition [5.1\(](#page-14-0)5) and Corollary [5.9](#page-18-0).

Theorem 1.3 *The equality* $TF_n(R) = GP(R)$ *holds if either of the following holds.*

- (1) *One has* $n \geq t + 2$ *, and the subcategory* $TF_n(R)$ *is closed under syzygies.*
- (2) *One has* $n \geq t + 1$ *, and the subcategory* $TF_n(R)$ *is closed under extensions.*
- (3) *One has* $n \geq 1$ *, and there is an equality* $TF_n(R) = TF_{n+1}(R)$ *of subcategories.*

The organization of the paper is as follows. Section [2](#page-2-0) is devoted to preliminaries for the later sections. In Sect. [3](#page-4-0), we try to describe $S_n(R)$ as the resolving closure of $TF_n(R)$. We prove Theorem [1.1](#page-1-0) and give various other related desciptions. We also derive some partial converses to Theorem $1.1(1)$ $1.1(1)$. In Sects. [4](#page-9-1) and [5,](#page-14-1) we prove a much more general version of Theorems [1.2](#page-1-1) and [1.3](#page-2-1). We also consider extending the implication (6) \Rightarrow (1) in Theorem [1.2](#page-1-1) for $Syz_n(R)$ with $n > t + 2$, and provide both positive and negative answers. Finally, we investigate some other subcategories related to $TF_n(R)$ and $S_n(R)$.

2 Preliminaries

In this section, we introduce some basic notions, notations and terminologies that will be used tacitly in the later sections of the paper.

Convention 2.1 Throughout the paper, let *R* be a commutative noetherian ring. All modules are assumed to be fnitely generated and all subcategories be strictly full. Subscripts and superscripts may be omitted unless there is a danger of confusion. We may identify each object *M* of a category C with the subcategory of C consisting just of *M*.

Notation 2.2

- (1) The *singular locus* of *R* is denoted by Sing *R*, which is defned as the set of prime ideals $\mathfrak p$ of *R* such that R_p is singular (i.e., nonregular).
- (2) We denote by mod R the category of (finitely generated) R-modules, by proj R the subcategory of mod R consisting of projective R -modules, and by $CM(R)$ the subcategory of mod *R* consisting of maximal Cohen–Macaulay *R*-modules (recall that an *R*-module *M* is called *maximal Cohen–Macaulay* if depth $M_p = \dim R_p$ for all $p \in \text{Supp } M$).
- (3) We denote by $(-)^*$ the *R*-dual functor $\text{Hom}_R(-, R)$ from mod *R* to itself.
- (4) Let *M* and *N* be *R*-modules. We write $M \le N$ to mean that *M* is isomorphic to a direct summand of *N*. By $M \approx N$ we mean that $M \oplus P \cong N \oplus Q$ for some projective *R*-modules *P* and *Q*.

Defnition 2.3 Let *M* be an *R*-module.

(1) We denote by ΩM the kernel of a surjective homomorphism $P \to M$ with $P \in \text{proj } R$ and call it the *frst syzygy* of *M*. Note that Ω*M* is uniquely determined up to projective summands. For $n \geq 1$ we inductively define the *nth syzygy* $\Omega^n M$ of M by $\Omega^n M := \Omega(\Omega^{n-1}M)$, where we put $\Omega^0 M = M$.

- (2) Let $P_1 \xrightarrow{d} P_0 \rightarrow M \rightarrow 0$ be a projective presentation of *M*. We set $Tr M = Coker(d^*)$ and call it the *(Auslander) transpose* of *M*. It is uniquely determined up to projective summands; see [[1\]](#page-19-0) for details.
- (3) Suppose that R_0 is local. Then one can take a minimal free resolution $\cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$ of M. We can define $\Omega^n M$ and $Tr M$ as Im d_n and Coker(d_1^*), respectively. Recall that a minimal free resolution is uniquely determined up to isomorphism. *Whenever R is local, we defne syzygies and transposes by using minimal free resolutions, so that they are uniquely determined up to isomorphism.*

Definition 2.4 Let X be a subcategory of mod R. We say that X is *closed under extensions* (*closed under kernels of epimorphisms*) if for an exact sequence $0 \to L \to M \to N \to 0$ in mod *R* with *L*, *N* ∈ \mathcal{X} (resp. *M*, *N* ∈ \mathcal{X}) it holds that $M \in \mathcal{X}$ (resp. *L* ∈ \mathcal{X}). We say that \mathcal{X} is *resolving* if it contains $proj R$ and is closed under direct summands, extensions and kernels of epimorphisms. Note that X is resolving if and only if it contains R and is closed under direct summands, extensions and syzygies (since an exact sequence $0 \to L \to M \to N \to 0$ induces an exact sequence $0 \to \Omega N \to L \oplus P \to M \to 0$ with $P \in \text{proj } R$).

Definition 2.5 Let X be a subcategory of mod R.

- (1) Denote by add $\mathcal X$ (resp. ext $\mathcal X$) the *additive closure* (resp. *extension closure*) of $\mathcal X$, that is, the smallest subcategory of mod R containing $\mathcal X$ and closed under finite direct sums and direct summands (resp. closed under direct summands and extensions). Note that add $R = \text{proj } R$ and add $\mathcal{X} \subseteq \text{ext } \mathcal{X} \subseteq \text{res } \mathcal{X}$.
- (2) Denote by $\Omega \mathcal{X}$ the subcategory of mod *R* consisting of *R*-modules *M* that fits into an exact sequence $0 \to M \to P \to X \to 0$ in mod R with $P \in \text{proj } R$ and $X \in \mathcal{X}$. Denote by Tr X the subcategory of mod R consisting of R-modules of the form Coker(d^*), where $d : P_1 \to P_0$ is a homomorphism of projective *R*-modules such that Coker *d* belong to \mathcal{X} . For each *n* ≥ 0, we inductively define $\Omega^n \mathcal{X}$ by $\Omega^0 \mathcal{X} := \mathcal{X}$ and $\Omega^n \mathcal{X} := \Omega(\Omega^{n-1} \mathcal{X})$. Note that proj *R* ⊆ Ω^{*n*} X ∩ Tr X . We set Syz_{*n*}(*R*) = Ω^{*n*}(mod *R*). Then Syz_{*n*}(*R*) consists of those modules *M* that fits into an exact sequence $0 \to M \to P_{n-1} \to \cdots \to P_0$ with $P_i \in \text{proj } R$ for each *i*. We say that an *R*-module is *n*-*syzygy* if it belongs to $Syz_n(R)$.

Definition 2.6 Let $n \ge 0$ be an integer. We say that *R* satisfies (G_n) if R_n is Gorenstein for all prime ideals $\mathfrak p$ of *R* with dim $R_{\mathfrak p} \leq n$. We denote by $\mathfrak S_n(R)$ (resp. $\mathfrak S_n(R)$) the subcategory of mod *R* consisting of *R*-modules *M* satisfying Serre's condition (S_n) (resp. (S_n)), that is to say, depth $M_n \geq \min\{n, \text{depth } R_n\}$ (resp. depth $M_n \geq \min\{n, \dim R_n\}$) for all prime ideals p of *R*. By the depth lemma $\mathcal{S}_n(R)$ is a resolving subcategory of mod *R* containing $\mathcal{S}yz_n(R)$, and $S_n(R) = S_n(R)$ holds if (and only if) *R* satisfies (S_n) .

Definition 2.7 Let *M* be an *R*-module, \mathcal{X} a subcategory of mod *R* and Φ a subset of Spec *R*.

(1) We denote by IPD(*M*) the *infnite projective dimension locus* of *M*, that is, the set of prime ideals \mathfrak{p} of *R* with $\text{pd}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \infty$. We set IPD(*X*) = $\bigcup_{X \in \mathcal{X}} \text{IPD}(X)$. We denote by IPD⁻¹(Φ) the subcategory of mod *R* consisting of modules *M* with IPD(*M*) $\subseteq \Phi$. Note that IPD⁻¹(Φ) is a resolving subcategory of mod *R* and IPD(*r*es \mathcal{X}) = IPD(\mathcal{X}) \subseteq Sing *R*. Also, $IPD(Syz_n(R)) = \text{Sing } R \text{ for any } n \geq 0, \text{ as } \mathfrak{p} \in \text{IPD}(\Omega_R^n(R/\mathfrak{p})) \text{ for } \mathfrak{p} \in \text{Sing } R.$ If R satisfies (S_n) , then $IPD(S_n(R)) = \text{Sing } R$, since $\text{Syz}_n(R) \subseteq S_n(R)$.

(2) The *nonfree locus* NF(*M*) of *M* is defined as the collection of all prime ideals \mathfrak{p} of *R* such that $M_{\mathfrak{p}}$ is not $R_{\mathfrak{p}}$ -free. We put $NF(\mathcal{X}) = \bigcup_{M \in \mathcal{X}} NF(M)$. It holds that IPD(X) ⊆ NF(X) = NF(res X). If *R* is Cohen–Macaulay, then $S_n(R) = CM(R)$ for every $n \geq \dim R$ and IPD(\mathcal{X}) = NF(\mathcal{X}) if $\mathcal{X} \subseteq CM(R)$, whence there are equalities $IPD(CM(R)) = NF(CM(R)) = Sing R.$

Definition 2.8 Let $a, b \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$. By $\mathcal{G}_{a,b}$ we denote the subcategory of mod R consisting of *R*-modules *M* such that $\text{Ext}^i_R(M, R) = 0 = \text{Ext}^i_R(\text{Tr }M, R)$ for all $1 \le i \le a$ and $1 \leq j \leq b$. By definition, the *R*-modules in $\mathcal{G}_{\infty,\infty}$ (resp. $\mathcal{G}_{0,n}$ for $n \geq 0$) are the *totally reflexive* (resp. *n*-*torsionfree*) *R*-modules. We put $GP(R) = \mathcal{G}_{\infty,\infty}$ and $TF_n(R) = \mathcal{G}_{0,n}$. Note that there are equalities $TF_1(R) = Syz_1(R)$ and $TF_2(R) = ref R$, where ref R stands for the subcategory of mod *R* consisting of reflexive *R*-modules.

3 Representing $S_n(R)$ as the resolving closure of $TF_n(R)$

In this section we investigate when one can represent the subcategories $S_n(R)$ and $\widetilde{S}_n(R)$ as the extension and resolving closures of $TF_n(R)$ and $Syz_n(R)$. We begin with establishing a lemma.

Lemma 3.1 *Let* X *be a subcategory of mod R.*

- (1) *If* X contains R and is closed under syzygies, then there is an equality $ext{ext} = \text{res } \mathcal{X}$.
- (2) *If* X *is resolving, then* ΩX *is closed under syzygies and direct summands.*

Proof

- (1) It suffices to show that $ext{ } X$ is closed under syzygies. Consider the subcategory Y of $\text{mod } R$ consisting of modules *M* such that $\Omega M \in \text{ext }\Omega \mathcal{X}$. It is easy to observe that \mathcal{Y} contains X and is closed under direct summands and extensions. Hence Y contains $ext{\mathcal{X}}$, which means that $\Omega(\text{ext}\mathcal{X}) \subseteq \text{ext}\Omega\mathcal{X}$. Since $\Omega\mathcal{X} \subseteq \mathcal{X}$, we get $ext{\Omega}\mathcal{X} \subseteq \text{ext}\mathcal{X}$ and Ω (ext \mathcal{X}) \subseteq ext \mathcal{X} .
- (2) Since $\Omega \mathcal{X} \subseteq \mathcal{X}$, we have $\Omega(\Omega \mathcal{X}) \subseteq \Omega \mathcal{X}$. Let $0 \to M \oplus N \to F \to X \to 0$ be an exact sequence with $F \in \mathsf{add}\, R$ and $X \in \mathcal{X}$. Then by [\[22](#page-19-9), Lemma 3.1] we get exact sequences $0 \to M \to F \to A \to 0$ and $0 \to F \to A \oplus B \to X \to 0$. As X is resolving, the latter exact sequence shows $A \in \mathcal{X}$, and then from the former we obtain $M \in \Omega \mathcal{X}$. Therefore, $\Omega \mathcal{X}$ is closed under direct summands.

◻

Let *R* be a Cohen–Macaulay local ring. We say that *R* has *minimal multiplicity* if the equality $e(R) = edim R - dim R + 1$ holds. A maximal Cohen–Macaulay *R*-module *M* is called *Ulrich* if $e(M) = \mu(M)$. We denote by $U(R)$ the subcategory of $CM(R)$ consisting of Ulrich *R*-modules. In the proposition below we provide several descriptions as extension and resolving closures.

Proposition 3.2

- (1) *There are equalities* $\widetilde{S}_n(R) = \text{ext} Syz_n(R) = \text{res} Syz_n(R)$.
- (2) *If R satisfies* (S_n) *, then one has* $S_n(R) = \text{ext} Syz_n(R) = \text{res} Syz_n(R)$ *. The converse holds as well.*
- (3) *If R is Cohen–Macaulay, then* $CM(R) = \text{ext} Syz_n(R) = \text{res} Syz_n(R)$ *for all* $n \geq \dim R$.
- (4) *If R satisfies* (S_n) *and* (G_{n-2}) *, then the equalities* $S_n(R) = \text{ext TF}_n(R) = \text{res TF}_n(R)$ *hold.*
- (5) *If R is a local Cohen–Macaulay ring of minimal multiplicity, then* $CM(R) = ext \, Ul(R) = res \, Ul(R)$.

Proof

(1) By Lemma [3.1\(](#page-4-1)1), we have $X := \text{ext} \text{Syz}_n(R) = \text{res} \text{Syz}_n(R) \subseteq \widetilde{\text{S}}_n(R)$. For each $\mathfrak{p} \in \operatorname{Spec} R$ the module $\Omega^n(R/\mathfrak{p})$ belongs to X. Hence X is dominant in the sense of [\[5](#page-19-10)]. Fix $M \in \widetilde{S}_n(R)$ and $\mathfrak{p} \in \text{Spec } R$, so that depth $M_n \geq \min\{n, \text{depth } R_n\}$. In view of [\[24](#page-19-11), Theorem 1.1], it suffices to show that there exists $X \in \mathcal{X}$ with depth $M_{\rm h} \geqslant$ depth $X_{\rm h}$. If depth $R_p \le n$, then depth $M_p \ge$ depth R_p , and we are done since $R \in \mathcal{X}$. Now suppose depth $R_p > n$. Then depth $M_p \ge n <$ depth R_p . Setting $X = \Omega^n(R/p)$, we have $X \in Syz_n(R) \subseteq \mathcal{X}$ and $X_p \cong \Omega^n \kappa(p) \oplus R_p^{\oplus a}$ for some $a \ge 0$. As depth $R_p > n$ and depth $\kappa(\mathfrak{p}) = 0$, we have depth $\Omega^n \kappa(\mathfrak{p}) = n$, and so we get

$$
\operatorname{depth} X_{\mathfrak{p}} = \begin{cases} \operatorname{depth} \Omega^{n} \kappa(\mathfrak{p}) = n & \text{if } a = 0, \\ \inf\{\operatorname{depth} R_{\mathfrak{p}}, \operatorname{depth} \Omega^{n} \kappa(\mathfrak{p})\} = \inf\{\operatorname{depth} R_{\mathfrak{p}}, n\} = n & \text{if } a > 0. \end{cases}
$$

Thus depth $M_p \ge n$ = depth X_p , and the proof is completed.

- (2) The first assertion follows from (1). The second assertion holds since we have $R \in \text{Syz}_n(R) \subseteq \text{ext} \text{Syz}_n(R) = \text{S}_n(R)$.
- (3) We have $R \in S_n(R)$ for $n \geq 0$ and $CM(R) = S_n(R)$ for $n \geq \dim R$. The assertion follows by (2).
- (4) We may assume $n \geq 1$. By [[17\]](#page-19-8), Theorem 2.3(2) \Rightarrow (6)] we have $TF_n(R) = Syz_n(R)$. Apply (2).
- (5) Put $d = \dim R$. We have ext $\text{Ul}(R) \subseteq \text{res}\,\text{Ul}(R) \subseteq \text{CM}(R) = \text{ext}\,\text{Syz}_{d+1}(R) \subseteq \text{ext}\,\Omega\text{CM}(R)$, where the equality follows from (3). It thus suffices to show $\Omega CM(R) \subseteq$ ext $UI(R)$, and for this we may assume that *R* is singular. Let *k* be the residue feld of *R*. Take an exact sequence $0 \to \Omega^{d+2} k \to F \to \Omega^{d+1} k \to 0$ with *F* nonzero and free. The modules $\Omega^{d+1}k, \Omega^{d+2}k \in \Omega \text{CM}(R)$ have no nonzero free summands by [[7,](#page-19-12) Corollary 1.3]. It follows from [[15,](#page-19-13) Proposition 3.6] that $\Omega^{d+1}k$, $\Omega^{d+2}k$ are in ext $\text{U}(R)$, so is *F*, and so is $R \leq F$. We obtain $\Omega CM(R) \subseteq$ ext $UI(R)$ by [[15](#page-19-13), Proposition 3.6] again.

 ◻ In Proposition [3.2](#page-5-0)(4) we got a description of $S_n(R)$ as the resolving closure of $TF_n(R)$ under a certain assumption on the Gorenstein locus of *R*. We have the same description regardless of the Gorenstein locus in the theorem below.

Theorem 3.3 *Let* (R, m, k) *be a local ring of dimension d.*

- (1) *Suppose that R is locally a Cohen–Macaulay ring with minimal multiplicity on the punctured spectrum of R. Let* $0 \le n \le d + 1$ *be such that R satisfies* (S_n) *. Then* $\text{Sing } R = \text{IPD}(\text{TF}_n(R))$ *if and only if* $\mathsf{S}_n(R) = \text{res } \text{TF}_n(R)$.
- (2) *Assume that R is Cohen–Macaulay ring and locally has minimal multiplicity on the punctured spectrum of R. Then* $\text{Sing } R = \text{NF}(\text{TF}_n(R))$ *if and only if* $\text{CM}(R) = \text{res } \text{TF}_n(R)$ *for* $n = d, d + 1$.

Proof (2) The assertion is immediate from (1).

(1) The "if" part is obvious. In what follows, we show the "only if" part. We may assume $n \ge 1$. Set $\mathcal{X} = \text{res TF}_n(R)$. We have $\text{TF}_n(R) \subseteq \text{Syz}_n(R) \subseteq \text{S}_n(R)$ and $\text{S}_n(R)$ is resolving. Thus it is enough to show that $\mathcal X$ contains $S_n(R)$.

Put $t =$ depth R. As R satisfies (S_n) , we have $t \ge \inf\{n, d\}$. As $n \le d + 1$ by assumption, we get

$$
1 \le n \le t + 1. \tag{1}
$$

The module $\text{Ext}^{i}_{R}(k, R)$ has grade at least *i* − 1 for each $1 \le i \le t + 1$. By [\[1,](#page-19-0) Proposition (2.26)], the module $\Omega^i k$ is *i*-torsionfree for each $1 \le i \le t + 1$. By [\(1\)](#page-6-1) we get

$$
\Omega^n k \text{ is } n\text{-torsionfree.} \tag{2}
$$

Fix a nonmaximal prime ideal $\mathfrak p$ of *R*. By assumption, the local ring $R_{\mathfrak p}$ is Cohen–Macaulay and has minimal multiplicity. If R_p is regular, then $\Omega^{ht\,\mathfrak{p}}\kappa(\mathfrak{p})$ is R_p -free, and belongs to \mathcal{X}_p . Suppose that $R_{\rm p}$ is singular. By assumption we get $\mathfrak{p} \in \text{IPD}(\text{TF}_n(R))$, which implies $\mathfrak{p} \in \text{IPD}(G)$ for some $G \in \text{TF}_n(R)$. Then $\Omega^{\text{ht}\,\mathfrak{p}}G_\mathfrak{p}$ is a nonfree maximal Cohen–Macaulay $R_\mathfrak{p}$ -module. It is observed by using [\[23,](#page-19-14) Proposition 5.2 and Lemma 5.4] and [[5](#page-19-10), Lemma 3.2(1)] that $\Omega^{ht\mathfrak{p}}\kappa(\mathfrak{p}) \in \text{res}_{R_{\mathfrak{p}}}(\Omega^{ht\mathfrak{p}}G_{\mathfrak{p}}) \subseteq \text{add}_{R_{\mathfrak{p}}} \mathcal{X}_{\mathfrak{p}}$. Thus we have

$$
\Omega^{\text{ht}\,\mathfrak{p}}\kappa(\mathfrak{p}) \in \text{add}_{R_{\mathfrak{p}}} \mathcal{X}_{\mathfrak{p}} \text{ for all nonmaximal prime ideals } \mathfrak{p} \text{ of } R. \tag{3}
$$

It follows from [\(2\)](#page-6-2) and ([3](#page-6-3)) that the resolving subcategory $\mathcal X$ of mod R is dominant.

Fix an *R*-module $M \in S_n(R)$. The proof of the theorem will be completed once we prove that *M* belongs to X. Fix a prime ideal $\mathfrak p$ of *R*. In view of [[24](#page-19-11), Theorem 1.1], it suffices to show that depth $M_{\rm p}$ is not less than $r := \inf_{X \in \mathcal{X}} {\{\text{depth } X_{\rm p}\}}$. As M satisfies (S_n) , we have depth $M_p \ge \inf\{n, \text{ht } p\}$. If $\text{ht } p \le n$, then depth $M_p \ge \text{ht } p \ge r$, and we are done. We may assume ht $\mathfrak{p} > n$, and hence depth $M_{\mathfrak{p}} \geq n$ and depth $R_{\mathfrak{p}} \geq \inf\{n, \ln \mathfrak{p}\} = n$. It is enough to deduce that $n \geq r$.

Consider the case where $\mathfrak{p} = \mathfrak{m}$. In this case, we have depth $R \geq n$. Applying the depth lemma yields depth $(\Omega^n k)_p = \text{depth } \Omega^n k = n$, while $\Omega^n k \in \mathcal{X}$ by [\(2](#page-6-2)). Hence $n \geq r$. Thus we may assume $\mathfrak{p} \neq \mathfrak{m}$.

The inequality ht $p > n$ particularly says that R_p is not artinian, which implies that $\mathfrak{p} \in \text{NF}(R/\mathfrak{p})$. By [[4](#page-19-15), Lemma 4.6], we find an *R*-module *C* with $\text{NF}(C) = \text{V}(\mathfrak{p})$ and depth $C_{\alpha} = \inf{\{\text{depth } R_{\alpha}, \text{depth } (R/\mathfrak{p})_{\alpha}\}}$ for all $\mathfrak{q} \in V(\mathfrak{p})$. Set $Z = \Omega^n C$. As depth $C_{\mathfrak{p}} = 0$ and depth $R_p \ge n$, the depth lemma says depth $Z_p = n$. For each integer $1 \le i \le n$ there are equalities and inequalities

$$
\operatorname{grade} \operatorname{Ext}^i_R(C, R) = \inf \{ \operatorname{depth} R_{\mathfrak{q}} \mid \mathfrak{q} \in \operatorname{Supp} \operatorname{Ext}^i_R(C, R) \} \tag{4}
$$

$$
\geq \inf\{\text{depth } R, \text{depth } R_{\mathfrak{q}} \mid \mathfrak{m} \neq \mathfrak{q} \in \text{Supp}\,\mathrm{Ext}^i_R(C,R)\}\tag{5}
$$

$$
= \inf\{t, \text{ht } \mathfrak{q} \mid \mathfrak{m} \neq \mathfrak{q} \in \text{Supp Ext}_{R}^{i}(C, R)\}\
$$
 (6)

$$
\geqslant \inf\{t, \ln q \mid \mathfrak{m} \neq q \in V(\mathfrak{p})\} = \inf\{t, \ln \mathfrak{p}\} \geqslant n - 1 \geqslant i - 1. \tag{7}
$$

here ([4\)](#page-6-4) follows from [\[3](#page-19-16), Proposition 1.2.10(a)], the inequality [\(5](#page-7-0)) is an equality unless $\text{Ext}^i_R(C, R) = 0$, and the equality [\(6\)](#page-7-1) holds since *R* is locally Cohen–Macaulay on the punc-tured spectrum. In ([7](#page-7-2)), the first inequality holds since Supp $\text{Ext}_R^i(C, R) \subseteq \text{NF}(C) = \text{V}(\mathfrak{p}),$ the equality holds since $\mathfrak{p} \neq \mathfrak{m}$, and the second inequality follows from ([1](#page-6-1)) and the fact that ht $\mathfrak{p} > n$. By [[1,](#page-19-0) Proposition (2.26)] the module *Z* is *n*-torsionfree, and in particular, $Z \in \mathcal{X}$. It is now seen that $n \ge r$.

To show our next proposition, we establish the lemma below, which is of independent interest.

Lemma 3.4 *Let* (R, m, k) *be a d-dimensional Cohen–Macaulay non-Gorenstein local ring with minimal multiplicity. Then* $G_{i,j}$ = add *R* for all *i*, *j* \geq 0 *with i* + *j* \geq 2*d* + 2.

Proof We freely use [[14](#page-19-4), Proposition 1.1.1]. We may assume $i + j = 2d + 2$ since $\mathcal{G}_{a,b}$ contains $\mathcal{G}_{a+1,b}$ and $\mathcal{G}_{a,b+1}$ for all $a,b \ge 0$. As the stable category of $\mathcal{G}_{i,j}$ is equivalent to that of $G_{2d+2,0}$, it suffices to show that every $M \in \mathcal{G}_{2d+2,0}$ is free. Taking the faithfully flat map $R \rightarrow R[X]_{\text{mR}[X]}$, we may assume that *k* is infinite. Choose an *R*-sequence $x = x_1, ..., x_d$ with $m^2 = xm$ by [[3,](#page-19-16) Exercise 4.6.14]. We have $N := \Omega^d M \in \mathcal{G}_{d+2,d} \subseteq \text{CM}(R)$. Using the exact sequences $\{0 \to N/x_{i-1}N \to N/x_{i-1}N \to N/x_iN \to 0\}_{i=1}^d$ where $x_i = x_1, ..., x_i$, we see that $\text{Ext}_R^j(\overline{N}, R) = 0$ for $j = d + 1, d + 2$ where $\overline{(-)} = (-) \otimes_R^j R/(x)$. Hence $\text{Ext}_R^j(\overline{N}, \overline{R}) = 0$ for $j = 1, 2$ by [\[3,](#page-19-16) Lemma 3.1.16]. In particular, $\text{Ext}^1_{\overline{R}}(L, \overline{R}) = 0$ where $L = \Omega_{\overline{R}}\overline{N}$. As $(mR)^2 = 0$, the module *L* is a *k*-vecor space. As *R* is non-Gorenstein, we must have $L = 0$, which means \overline{N} is \overline{R} -free, which means N is R -free (by [[3,](#page-19-16) Lemma 1.3.5]), which means M is *R*-free (as $M \approx \Omega^{-d}N$).

Using the above lemma, we can prove the following proposition.

Proposition 3.5 *Suppose that for all minimal prime ideals* \mathfrak{p} *of R the artinian local ring R*^{*n*} *has minimal multiplicity. If* $NonGor(R) ⊆ NF(ref R)(e.g., if Sing R ⊆ NF(ref R))$, then R *is generically Gorenstein.*

Proof Take any $\mathfrak{p} \in \text{Min } R$. By assumption, we have $(\mathfrak{p}R_{\mathfrak{p}})^2 = 0$. If $\mathfrak{p} \in \text{NonGor}(R)$, then Lemma [3.4](#page-7-3) implies (ref R)_p ⊆ ref(R _p) = add(R _p). But then $\mathfrak{p} \notin \mathbb{N}$ F(ref R), contradicting our assumption. Thus if $\mathfrak{p} \in \text{Min } R$, then $\mathfrak{p} \notin \text{NonGor}(R)$, that is, $R_{\mathfrak{p}}$ is Gorenstein. \Box

The corollary below, which is a consequence of the above proposition, gives kind of a converse to Proposition [3.2\(](#page-5-0)4), and shows that in some cases the minimal multiplicity condition in Theorem [3.3](#page-6-0)(1) actually forces some stringent condition on the Gorenstein locus of *R*, so that in those cases Theorem [3.3](#page-6-0)(1) gives nothing newer than Proposition [3.2](#page-5-0)(4).

Corollary 3.6 *Assume that R satisfies* (S_2) *. Consider the following four statements.*

- (1) *R is generically a hypersurface.*
- (2) *R is generically Gorenstein.*
- (3) $S_2(R) = \text{res}(\text{ref } R)$.
- (4) $\text{Sing } R = \text{IPD}(\text{ref } R)$.

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ *hold. If R is generically of minimal multiplicity, then the four statements are equivalent. If R is Cohen–Macaulay and* $\dim R \leq 2$, then (4) is equivalent to $\text{Sing } R = \text{NF}(\text{ref } R)$.

Proof The last assertion is clear. It is obvious that (1) implies (2). Proposition [3.2\(](#page-5-0)4) shows that (2) implies (3). Since $IPD(S_2(R)) =$ Sing *R*, so (3) implies (4).

Suppose that R is generically of minimal multiplicity, and assume (4) . Then $\text{Sing } R = \text{IPD}(\text{ref } R) \subseteq \text{NF}(\text{ref } R)$, and hence (2) holds by Proposition [3.5](#page-7-4). Finally, (2) implies (1) by the well-known (and easy to see) fact that an artinian Gorenstein local ring with minimal multiplicity is a hypersurface. $□$

The frst example below shows the non-vacuousness of Corollary [3.6](#page-7-5). The second says that one cannot drop the hypothesis of *R* being generically of minimal multiplicity in the second part of Corollary [3.6.](#page-7-5)

Example 3.7 Let *k* be a feld.

- (1) Let $R = k[[x, y, z]]/(x^2, xy, y^2z)$. Then *R* is a 1-dimensional Cohen–Macaulay local ring with $y - z$ a parameter. Put $\mathbf{p} = (x, y)$, $\mathbf{q} = (x, z)$ and $\mathbf{m} = (x, y, z)$. It holds that $R_{\mathfrak{p}} \cong k[[x, y, z]]_{(x, y)}/(x^2, xy, y^2)$ with *z* a unit, while $R_{\mathfrak{q}} \cong k[[y]]_{(0)}$ with *y* a unit. We have $\ell \ell(R_n) = 2$, $\ell \ell(R_n) = 1$, Spec $R = \{p, q, m\}$, Min $R = \{p, q\}$ and $\text{Sing } R = \text{NonGor } R = \{ \mathfrak{p}, \mathfrak{m} \}.$ Hence *R* is generically of minimal multiplicity, *R* is not generically Gorenstein and $\mathfrak p$ does not belong to NF(ref R).
- (2) Let $R = k[[x, y, z, w]]/(x^2, y^2, yz, z^2w)$. Then *R* is a 1-dimensional Cohen– Macaulay local ring with $w - z$ a parameter. Set $\mathfrak{p} = (x, y, z)$ and $\mathfrak{q} = (x, y, w)$. We have $R_p \cong k[[x, y, z, w]]_{(x,y,z)} / (x^2, y^2, yz, z^2)$ with *w* a unit, while $R_a \cong k[[x, z]]_{(x)}/(x^2)$ with *z* a unit. It follows that Spec *R* = Sing *R* = { $\mathfrak{p}, \mathfrak{q}, \mathfrak{m}$ }, $Min R = \{p, q\}$ and $\{p, m\} = NonGor R$. So R is not generically Gorenstein. As (x, x) is an exact pair of zerodivisors (i.e., $0 : x = (x)$), $R/(x)$ is a totally reflexive *R*-module, and in particular, it is reflexive. We see that NonGor $R \subseteq \text{Sing } R \subseteq \text{NF}(R/(x)) \subseteq \text{NF}(\text{GP}(R)) \subseteq \text{NF}(\text{ref } R) \subseteq \text{NF}(\text{CM}(R)) = \text{Sing } R$. Note that $\ell \ell(R_h) = 3$, so that R_h does not have minimal multiplicity.

In view of Corollary [3.6](#page-7-5), we raise natural questions.

Question 3.8

- (1) For a local Cohen–Macaulay ring *R* (generically of minimal multiplicity) of dimension $d > 1$, does the equality res $(TF_{d+1}(R)) = CM(R)$ force any condition on the Gorenstein locus of *R* ?
- (2) Let *R* be an artinian local ring. When does the equality $ext{erf } R$ = mod *R* imply the Gorensteinness of R ? (Lemma [3.4](#page-7-3) gives one sufficient condition that R has minimal multiplicity).

4 Syzygies of the residue feld and direct summands of syzygies

The proof of Theorem [3.3](#page-6-0)(1) crucially uses the torsionfree nature of syzygies of the residue feld of a local ring. So, in this section, we record some results explaining when certain syzygies of the residue feld of a local ring is or is not *n*-torsionfree for certain *n* depending on the depth of the ring. We begin with the following result. For a local ring *R*, we denote by mod_o R the subcategory of mod R consisting of modules which are locally free on the punctured spectrum of *R*.

Theorem 4.1 Let (R, m, k) be a local ring of depth t. Then the following statements hold.

- (1) Let $n \geq 0$ be an integer, and put $m = \min\{n, t+1\}$. Then the inclusion $\text{Syz}_n(R) \cap \text{mod}_0 R \subseteq \text{TF}_m(R)$ *holds true. In particular, the module* $\Omega^n k$ *is m-torsionfree.*
- (2) *The module* $\Omega^t k$ *is* $(t + 1)$ *-torsionfree.*
- (3) *If* Ω^n *k is* (*t* + 2)*-torsionfree for some* $n \geq t + 1$ *, then R is Gorenstein. The converse is also true.*

Proof

- (1) Let *M* be an *R*-module in $Syz_n(R) \cap \text{mod}_0 R$. Since $m \leq n$, we have *M* ∈ Syz_n(*R*) ⊆ Syz_m(*R*). Let **p** be a prime ideal of *R* such that depth $R_p \le m - 2$. Then depth $R_p \le m - 2 \le t - 1$, which forces $p \ne m$. Hence the R_p -module M_p is free. Applying $[16,$ $[16,$ $[16,$ Theorem 43], we obtain $M \in \mathsf{TF}_{m}(R)$.
- (2) There is an *R*-sequence $x = x_1, \ldots, x_t$. Since $R/(x)$ has depth 0, there is an exact sequence $0 \to k \to R/(\mathbf{x}) \to C \to 0$. Applying $\Omega^t = \Omega^t_R$ and remembering $\text{pd}_R R/(\mathbf{x}) = t$, we get an exact sequence $0 \to \Omega^t k \to F \to \Omega^t C \to 0$ of *R*-modules with *F* free. This shows $\Omega^t k \approx \Omega^{t+1} C$. It follows from (1) that $\Omega^{t+1} C \in \text{Syz}_{t+1}(R) \cap \text{mod}_0 R \subseteq \text{TF}_{t+1}(R)$, and therefore $\Omega^t k \in \mathsf{TF}_{t+1}(R)$.
- (3) First we prove the $n = t + 1$ case. With the notation of the proof of (1), we have $\Omega^t k \approx \Omega^{t+1} C$. This implies $\Omega^{t+1} k \approx \Omega^{t+2} C$ and $\Omega^{t+2} C \in \mathbb{R}^n_{t+2}(R)$. It follows from [\[1](#page-19-0), Corollary (4.18) and Proposition (2.26)] that $\text{Ext}^{t+2}_R(C, R)$ has grade at least $t + 1$. Note that any nonzero *R*-module has grade at most $t = \text{depth } R$. We thus have $0 = \text{Ext}_{R}^{1+2}(C, R) = \text{Ext}_{R}^{1}(\Omega^{t+1}C, R) = \text{Ext}_{R}^{1}(\Omega^{t}K, R) = \text{Ext}_{R}^{t+1}(k, R)$. By [[20,](#page-19-17) II. Theorem 2] we get $id_R R < t + 1$. We conclude that R is Gorenstein.

Next assume $n \geq t + 2$. We have $\Omega^n k = \Omega^{t+2}(\Omega^{n-t-2}k) \in \mathsf{TF}_{t+2}(R)$. Again by [\[1](#page-19-0), Corollary (4.18) and Proposition (2.26)], $\text{Ext}_{R}^{t+2}(\Omega^{n-t-2}k, R)$ has grade at least $t + 1$. We have $0 = \text{Ext}_{R}^{t+2}(\Omega^{n-t-2}k, R) = \text{Ext}_{R}^{n}(k, R)$, and again by [[20](#page-19-17), II. Theorem 2] we get $id_R R < n$ and R is Gorenstein.

ਾ ਸ਼ਾਮਲ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੀ ਸ਼ਾਮਲ ਸਮਾਜ ਦੀ ਸ

Remark 4.2 Theorem [4.1](#page-9-0)(2) vastly generalizes [\[10,](#page-19-18) Proposition 4.1] in that we neither use any Cohen–Macaulay assumption on the ring, nor do we have any restriction on the depth of the ring.

As an immediate consequence of Theorem [4.1](#page-9-0), we can describe, for certain values of *n*, the resolving closure of *n*-torsionfree modules which are also locally free on the punctured spectrum.

Corollary 4.3 Let (R, m, k) be a local ring of depth t. Then there are equalities

 $res(\mathsf{TF}_{n}(R) \cap \mathsf{mod}_{0} R) = \{M \in \mathsf{mod}_{0} R \mid \text{depth } M \geq n\} \text{ for } 0 \leq n \leq t, \text{ and}$ $res(TF_{t+1}(R) \cap \text{mod}_0 R) = \{M \in \text{mod}_0 R \mid \text{depth } M \geq t\}.$

Proof Fix $0 \le n \le t$ and put $\mathcal{X}_n = \{M \in \text{mod}_0 R \mid \text{depth } M \ge n\}$. That \mathcal{X}_n is resolving is seen by the depth lemma etc. Also, $TF_n(R) \subseteq Syz_n(R) \subseteq \mathcal{X}_n$ by the depth lemma again. Therefore, $res(TF_n(R) \cap mod_0 R) \subseteq \mathcal{X}_n$. The reverse inclusion follows from [[24](#page-19-11), Proposition 3.4] and Theorem $4.1(1)$ $4.1(1)$: we have $M \in \text{res } \Omega^n k \subseteq \text{res}(\text{TF}_n(R) \cap \text{mod}_0 R)$ whenever *M* ∈ X_n . We obtain X_n = res(TF_n(R) ∩ mod₀ R) for every $0 \le n \le t$. For the other equality, we have $res(\text{TF}_{t+1}(R) \cap \text{mod}_0 R) \subseteq res(\text{TF}_t(R) \cap \text{mod}_0 R) = \mathcal{X}_t$, and the opposite inclusion follows similarly as above by using $[24,$ $[24,$ $[24,$ Proposition 3.4] and Theorem [4.1\(](#page-9-0)2). \Box

In view of Theorem $4.1(2)$ $4.1(2)$ it would also be natural to ask if for any special classes of non-Gorenstein local Cohen–Macaulay rings (R, m, k) of dimension d , one can prove $\Omega^d k \in \text{TF}_n(R)$ or even $\Omega^d k \in \text{Syz}_n(R)$ for some $n > d + 1$. We shall show that the answer is no. For this, we record the following lemma, whose second assertion would be of independent interest. Recall that for a local ring (R, \mathfrak{m}, k) of depth *t* the number $r(R) = \dim_k \operatorname{Ext}^t_R(k, R)$ is called the *type* of *R*.

Lemma 4.4 *Let* (R, m, k) *be a local ring of depth t and type r.*

- (1) Assume $t = 0$. Suppose that there is an exact sequence $0 \to M \to F_1 \xrightarrow{\partial} F_0$ of R-modules *with* F_0 , F_1 *free*, $\text{Im } \partial \subseteq \mathfrak{m}F_0$, $M = \bigoplus_{i=0}^n (\Omega^i k)^{\oplus m_i}$ *and* $m_0 = 1$ *. It then holds that* $r = 1$ *.*
- (2) *The R-module* $(\Omega^t k)^{\oplus r}$ *is* $(t + 2)$ -syzygy.

Proof

(1) We may assume that *R* is not a field. Applying $\text{Hom}_R(k, -)$ to the exact sequence and noting $\text{Hom}_R(k, \partial) = 0$, we get an isomorphism $\text{Hom}_R(k, M) \cong \text{Hom}_R(k, F_1)$. Setting $s = \text{rank}_R F_1$, we get

$$
k^{\oplus rs}\cong \mathrm{Hom}_R(k,F_1)\cong \mathrm{Hom}_R(k,M)\cong \mathrm{Hom}_R(k,\bigoplus_{i=0}^n (\Omega^i k)^{\oplus m_i})\cong \bigoplus_{i=0}^n \mathrm{Hom}_R(k,\Omega^i k)^{\oplus m_i}.
$$

Hence $rs = \sum_{i=0}^{n} u_i m_i$, where $u_i := \dim_k \text{Hom}_R(k, \Omega^i k)$. Note that for each $2 \le i \le n$ there is an exact sequence $0 \to \Omega^i k \to R^{\oplus b_{i-1}} \xrightarrow{R^{\oplus b_{i-2}}} R^{\oplus b_{i-2}}$ with Im δ_{i-1} ⊆ mR^{⊕*b*_{*i*−2} and *b_j* = $\beta_j(k)$ for each *j*. Similarly as above, we obtain iso-} m orphisms $k^{\oplus u_i} \cong \text{Hom}_R(\vec{k}, \Omega^i \vec{k}) \cong \text{Hom}_R(k, R^{\oplus b_{i-1}}) \cong k^{\oplus rb_{i-1}},$ which imply *u_i* = rb_{i-1} for all $2 \le i \le n$. As *R* is not a field, the map $\text{Hom}_R(k, \mathfrak{m}) \to \text{Hom}_R(k, R)$ induced from the inclusion map $m \rightarrow R$ is an isomorphism. Hence $u_i = rb_{i-1}$ for all $1 \le i \le n$. We have $u_0 = \dim_k \text{Hom}_R(k, k) = 1$, while $m_0 = 1$ by assumption. We obtain $rs = \sum_{i=0}^{n} u_i m_i = u_0 m_0 + \sum_{i=1}^{n} r b_{i-1} m_i = 1 + \sum_{i=1}^{n} r b_{i-1} m_i$, and get $r(s - \sum_{i=1}^{n} b_{i-1} m_i) = 1$. This forces us to have $r = 1$.

(2) Take an *R*-sequence $x = x_1, \dots, x_t$. Then the socle of $R/(x)$ is isomorphic to $k^{\oplus r}$. Let *y*₁, …, *y_n* be elements of \mathfrak{m} whose residue classes form a system of generators of $\mathfrak{m}/(x)$. Then we have an exact sequence $0 \to k^{\oplus r} \to R/(x) \to (R/(x))^{\oplus n} \to L \to 0$, where *m* is given by the transpose of the matrix $(y_1, ..., y_n)$. Applying the functor $\Omega^t = \Omega^t_R$, we get an exact sequence $0 \to (\Omega^t k)^{\oplus r} \to P \to Q \to \Omega^t L \to 0$ of *R*-modules with *P*, *Q* free. Consequently, we obtain the containment $(\Omega^t k)^{\oplus r} \in Syz_{t+2}(R)$.

Now we can prove the following theorem.

Theorem 4.5 *Let* (R, m, k) *be a local ring of dimension d and depth t.*

- (1) *The module* $\Omega^t k$ *is* (*t* + 2)*-syzygy if and only if the local ring R* has type one.
- (2) *Suppose that the subcategory* $Syz_{t+2}(R)$ *is closed under direct summands. Then R has type one.*
- (1) *Suppose that R is Cohen–Macaulay. Then the ring R is Gorenstein if and only if* $\Omega^d k$ iS (d + 2)*-syzygy, if and only if* $Syz_{d+2}(R)$ *is closed under direct summands.*

Proof Assertion (2) immediately follows from (1) and Lemma [4.4](#page-10-0)(2). Assertion (3) is a direct consequence of (1) and (2) . The "if" part of (1) follows from Lemma [4.4](#page-10-0)(2). To show the "only if" part, put $r = r(R)$. By assumption, there is an exact sequence $0 \to \Omega' k \to F_{t+1} \xrightarrow{\partial_{t+1}} F_t \xrightarrow{\partial_t} \cdots \xrightarrow{\partial_1} F_0 \to M \to 0$ with F_i free for all $0 \le i \le t+1$. If $\Omega' k$ has a nonzero free summand, then *R* is regular by [[7](#page-19-12), Corollary 1.3] and $r = 1$. We may assume that $\Omega^t k$ has no nonzero free summand, and hence we may assume Im $\partial_i \subseteq \mathfrak{m} F_{i-1}$ for all $1 \le i \le t + 1$. Set $N = \text{Im } \partial_t$. The depth lemma shows depth $N \ge t$. Choose a regular sequence $x = x_1, ..., x_t$ on *R* and *N* with $x_i \in \mathfrak{m} \setminus \mathfrak{m}^2$ for all $1 \le i \le t$. Putting (-) = (-) $\otimes_R R/(x)$ and applying [[22](#page-19-9), Corollary 5.3], we have an isomorphism $\overline{\Omega_R^t k} \cong \bigoplus_{i=0}^t (\Omega_R^i k)$ ⊕ *t i* \int , and an exact sequence $0 \to \overline{\Omega' k} \to \overline{F_{t+1}} \xrightarrow{\overline{\partial_{t+1}}} \overline{F_t} \to \overline{N} \to 0$ is induced. We apply Lemma $4.4(1)$ to obtain $r = 1$.

Theorem [4.5\(](#page-11-0)1) may lead us to wonder whether the condition that $\Omega^t k$ is $(t + 2)$ -syzygy already implies that *R* is Gorenstein. The next example answers in the negative.

Example 4.6 Let *R* be a local ring with $R/(z) \approx k[[x, y]]/(x^2, xy)$ for some *R*-sequence $z = z_1, \dots, z_t$. Then *R* has depth *t* and type 1, so $\Omega^t k$ is (*t* + 2)-syzygy by Theorem [4.5](#page-11-0)(1), but *R* is not Gorenstein.

In view of Theorem [4.5,](#page-11-0) it is natural to ask the following question.

Question 4.7 Let *R* be a local ring with residue field *k*, and let $n \geq \text{depth } R$ be an integer. Assume that $\Omega^n k$ is $(n+2)$ -syzygy (note that this assumption is satisfied if $Syz_{n+2}(R)$ is closed under direct summands by Lemma [4.4](#page-10-0)(2)). Does then *R* have type one? What if we also assume *R* is Cohen–Macaulay?

Note that Theorem $4.5(1)$ exactly says that Question 4.7 has an affirmative answer when $n = t$, which is why we were able to derive Theorem [4.5](#page-11-0)(3). We record some special cases, apart from that already contained in Theorem $4.5(3)$ $4.5(3)$, where Question 4.7 has a positive answer.

◻

Proposition 4.8 Let (R, m, k) *be a local ring of depth t. Suppose that* $Syz_{n+2}(R)$ *is closed under direct summands for some* $n \geq t$ *. Then R has type one in either of the following two cases.*

- (1) *One has* $t > 0$ *and there is an R-sequence* $\mathbf{x} = x_1, \dots, x_{t-1}$ *such that* $\mathfrak{m}/(\mathbf{x})$ *is decomposable.*
- (2) *The module* $\Omega^t k$ *is a direct summand of* $\Omega^{t+l} k$ *for some* $l > 0$ *(this holds if* R *is singular and Burch).*

Proof

- (1) Write $\overline{R} = R/(x)$ and $\overline{m} = m/(x)$. Since \overline{m} is decomposable, \overline{R} is singular. Fix $s \ge 0$. By [[19,](#page-19-19) Theorem A] we have $\Omega_R^- k = \overline{m} \le \Omega_L^3 L \oplus \Omega_L^4 L \oplus \Omega_L^5 L = \Omega_L^{s+3} N$, where $L = \Omega_R^s k$ and $N = k \oplus \Omega_R^2 k \oplus \Omega_Z^2 k$. Taking the functor Ω_R^{i-1} and applying [\[19,](#page-19-19) Lemma 4.2], we obtain Ω^{*t*}_{*R*}^{*k*} $oplus F ≪ Ω$ ^{*c*+*t*+2}*N* $oplus G ∈ Syz$ _{*s*+*t*+2}(*R*) for some free *R*-modules *F*, *G*. By assumption, we can choose $s \ge 0$ so that $Syz_{s+t+2}(R)$ is closed under direct summands. Then we have $\Omega_R^t k \in \text{Syz}_{s+t+2}(R) \subseteq \text{Syz}_{t+2}(R)$, and Theorem [4.5](#page-11-0)(2) implies $r(R) = 1.$
- (2) Applying the functor Ω^l to the relation $\Omega^l k \ll \Omega^{t+l} k$ repeatedly, we have $\Omega^l k \ll \Omega^{t+l} k$ for every $b \ge 1$. Choose *b* so that $t + bl \ge n + 2$. As $Syz_{n+2}(R)$ is closed under direct summands, we get $\Omega^t k \in \text{Syz}_{n+2}(R)$. Theorem [4.5](#page-11-0) implies $r(R) = 1$. If *R* is a singular Burch ring, then $\Omega^t k \le \Omega^{t+2} k$ by [\[6,](#page-19-20) Proposition 5.10].

 ◻ Next we show that the converse to Theorem $4.5(2)$ is not true, that is, it is possible that *R* is a local ring of depth *t* and type 1 but $Syz_{t+2}(R)$ is not closed under direct summands. Moreover, we shall show that for large classes of local rings *R* with decomposable maximal ideal and of integers *n* the subcategory $Syz_n(R)$ is not closed under direct summands. For this, we begin with establishing a lemma.

Lemma 4.9 *Let* (R, m, k) *be local and with depth* $R = t$ *. Then depth* $M = t$ *for each* $0 \neq M$ ∈ Syz_{t+2}(*R*).

Proof By the depth lemma it suffices to show depth $M \le t$, which holds if $R \leq M$. We may let $M \cong \Omega^{t+2}C$ for some *R*-module *C*, and get an exact sequence $0 \rightarrow M \rightarrow F \rightarrow G \rightarrow N \rightarrow 0$ with *F*, *G* free, *N t*-syzygy and Im *f* \subseteq m*G*. Again by the depth lemma depth $N \ge t$. Break the exact sequence down as $0 \to M \to F \to \Omega N \to 0$ and $0 \rightarrow \Omega N \rightarrow G \rightarrow N \rightarrow 0$. We get exact sequences $\text{Ext}^1_R(k, M) \rightarrow \text{Ext}^1_R(k, F) \rightarrow \text{Ext}^1_R(k, \Omega N)$ and $0 = \text{Ext}^{t-1}_R(k, N) \to \text{Ext}^t_R(k, \Omega N) \to \text{Ext}^t_R(k, G)$. Note that $cb = \text{Ext}^t_R(k, f) = 0$. As *c* is injective, we have $\vec{b} = 0$ and *a* is surjective. Since $\text{Ext}^1_R(k, F) \neq 0$, we obtain $\text{Ext}^t_R(k,M) \neq 0.$

Remark 4.10 The $(t + 2)$ nd threshold in Lemma [4.9](#page-12-0) is sharp. Indeed, let (R, m) be a local ring with dim $R > 0 =$ depth *R*. Then there exists $m \neq p \in$ Ass *R*. We have depth $R/p > 0$ and $0 \neq R/\mathfrak{p} \in \text{Syz}_1(R)$.

Now we produce the promised classes of local rings *R* and integers *n*.

Proposition 4.11 *Let* (R, m, k) *be a local ring such that* $m = I \oplus J$ *for some nonzero ideals I, J of R.*

- (1) *Suppose that* depth $R/I = 0$ *and* depth $R/J \ge 1$ *. Then one has* depth $R = 0$ *, and the subcategory* $Syz_n(R)$ *is not closed under direct summands for every* $n \ge 2$.
- (2) *Suppose that I is indecomposable and depth* $R/I \geq 2$ *. Then one has depth* $R \leq 1$ *, and the subcategory* $Syz_n(R)$ *is not closed under direct summands for every* $n \geq 4$.

Proof By [\[19,](#page-19-19) Fact 3.1] we have depth $R = \min{\{\text{depth } R/I, \text{depth } R/J, 1\}} \le 1$.

- (1) Since $I \cong m/J \subseteq R/J$ and depth $R/J > 0$, we see that depth $I \ge 1$. Lemma [4.9](#page-12-0) yields $I \notin Syz_2(R)$. By [[19,](#page-19-19) Theorem A] we get $I \leq m \leq \Omega^3(\Omega^i k) \oplus \Omega^4(\Omega^i k) \oplus \Omega^5(\Omega^i k) \in \text{Syz}_{i+3}(R) \subseteq \text{Syz}_{i+2}(R)$ for every $i \geq 0$. If $Syz_n(R)$ is closed under direct summands for some $n \ge 2$, then choosing $i = n - 2$, we obtain *I* ∈ $Syz_n(R)$ ⊆ $Syz_2(R)$, which is a contradiction.
- (2) Note that $IJ = 0$. We also have $J^2 \neq 0$, as otherwise $m^2 = (I + J)(I + J) = I^2 \subseteq I$, contradicting depth $R/I \ge 2$. Similarly as in the proof of (1), for each $i \ge 0$ there exists $X \in Syz_{i+3}(R)$ with $I \ll X$.

Assuming that $Syz_n(R)$ is closed under direct summands for some $n \geq 4$, we shall derive a contradiction. Choosing $i = n - 3$, we get $I \in Syz_n(R) ⊆ Syz_4(R)$. The equality $IJ = 0$ implies that *I* does not have a nonzero free summand. Hence $I \cong \Omega^4 H$ for some *R*-module *H*. Putting $M = \Omega^3 H$, we get an exact sequence $0 \to I \to R^{\oplus a} \to M \to 0$. Note that $M \neq 0$. By [[18](#page-19-21), Proposition 4.2] there are an *R*/*I*-module *A* and an *R*/*J*-module *B* such that $M \cong A \oplus B$. Now $I = \Omega_R M \cong \Omega_R A \oplus \Omega_R B$. Then indecopmosability of *I* implies $\Omega_p A = 0$ or $\Omega_p B = 0$, hence *A* or *B* is *R*-free. As *IA* = 0 = *JB*, either *A* = 0 or *B* = 0. If *A* = 0, then we get an exact sequence $0 \rightarrow I \rightarrow R^{\oplus a} \rightarrow B \rightarrow 0$ and *I*, *B* are annihilated by *J*, whence $J^2 R^{\oplus a} = 0$, contradicting $J^2 \neq 0$. We get $B = 0$ and an exact sequence $0 \to I \to R^{\oplus a} \to A \to 0$. As $I A = 0$, the surjection $R^{\oplus a} \to A$ factors through the canonical surjection $R^{\oplus a} \to (R/I)^{\oplus a}$, which induces a surjection $I \to \Omega_{R/I}A$. Since *IJ* = 0, the module $\Omega_{R/I}A$ is annihilated by *I*, *J* and by $I + J = \mathfrak{m}$. Thus $\Omega_{R/I}A \cong k^{\oplus s}$ for some $s \ge 0$. But $\Omega_{R/I}$ ^{*A*} embeds inside a free *R*/*I*-module which has positive depth, hence *k* cannot be a summand of $\Omega_{R/I}A$, thus $\Omega_{R/I}A = 0$. Therefore *A* is *R*/*I*-free and has depth at least 2. But $A \cong M$ has depth at most 1 by Lemma [4.9](#page-12-0). We now have a desired contradiction.

ਾ ਸ਼ਾਮਲ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੀ ਸ਼ਾਮਲ ਸਮਾਜ ਦੀ ਸ The ring R in the first example below shows that the converse to Theorem $4.5(2)$ $4.5(2)$ does not hold. The second example presents a local ring *R* of depth 1 and type 1 such that $Syz_n(R)$ is not closed under direct summands for every $n \geq 4$, which concretely illustrates Proposition [4.11\(](#page-13-0)2). The third example shows that the assumption depth $R/I \ge 2$ in Proposition [4.11\(](#page-13-0)2) cannot be dropped.

Example 4.12 Let k be a field. In each of the following statements, m denotes the maximal ideal of *R*.

(1) Consider the local ring $R = k[[x, y]]/(x^2, xy)$. Then $m = (y) \oplus (x)$, depth $R/(y) = 0$ and depth $R/(x) = 1$. Proposition [4.11\(](#page-13-0)1) shows that $Syz_n(R)$ is not closed under direct summands for all $n \geq 2$.

- (2) Let $R = k[[x, y, z]]/(xy, xz)$. Then $m = (x) \oplus (y, z)$ and (x) is indecomposable with depth $R/(x) = 2$. Proposition [4.11\(](#page-13-0)2) implies that $Syz_{n+3}(R)$ is not closed under direct summands for every $n \geq 4$.
- (3) Let $R = k[[x, y]]/(xy)$. Then $m = (x) \oplus (y)$ and (x) is indecomposable with depth $R/(x) = 1$. As *R* is a 1-dimensional Gorenstein ring, $Syz_n(R) = CM(R)$ is closed under direct summands for any $n \geq 1$.

5 Closedness under extensions and syzygies, and totally refexive modules

In this section, we derive some consequences of $TF_n(R)$ being closed under extensions or syzygies for certain values of *n* depending on the depth of the local ring *R*. We will see that in the most reasonable cases, if $TF_n(R)$ is resolving, then it coincides with the category of totally refexive modules.

We begin with investigating when the subcategory $TF_n(R)$ is closed under extensions or syzygies. For two subcategories \mathcal{X}, \mathcal{Y} of mod R we denote by $\mathcal{X} * \mathcal{Y}$ the subcategory consisting of modules *X* that fits into an exact sequence $0 \to M \to X \to N \to 0$ with $M \in \mathcal{X}$ and $N \in \mathcal{Y}$.

Proposition 5.1 *Let n be either a nonnegative integer or* ∞*. The following statements hold.*

- (1) *If M is an R-module such that* $(\text{add } R) * M \subseteq \text{TF}_n(R)$ *, then there is a containment* $\Omega M \in \mathsf{TF}_{n+1}(R)$.
- (2) If the subcategory $TF_n(R)$ is closed under extensions, then the inclusion $\Omega \mathsf{T}\mathsf{F}_n(R) \subseteq \mathsf{T}\mathsf{F}_{n+1}(R)$ *holds.*
- (3) *The subcategory* $TF_n(R)$ *is resolving if (and only if)* $TF_n(R)$ *is closed under extensions.*
- (4) *Suppose that* $TF_{n+1}(R)$ *is closed under extensions. If* R *satisfies* (S_n) *, then* R_n *is Gorenstein for all* $\mathfrak{p} \in \text{Spec } R$ *with* $\text{ht } \mathfrak{p} = n$ *. If* R *satisfies* (S_{n+1}) *and is local with* dim $R \ge n$ *, then R satisfies* (G_n) .
- (5) *Suppose that R is a local ring of depth t.*
	- (a) Let $n \geq t + 2$. Then $TF_n(R) = GP(R)$ if (and only if) $TF_n(R)$ is closed under *syzygies.*
	- (b) Let $n \geq t + 1$. Then $TF_n(R) = GP(R)$ if (and only if) $TF_n(R)$ is closed under exten*sions. When* $n = t + 1$ *, it is also equivalent to the Gorenstein property of the local ring R*.

Proof

- (1) By [[1](#page-19-0), Proposition (2.21)] and its proof, there is an exact sequence $0 \to P \to N \to M \to 0$ with $P \in \text{add } R$, where $N = \text{Tr} \Omega \text{Tr} \Omega M$. We have *N* ∈ (add *R*) $*$ *M* ⊆ **TF**_{*n}*(*R*), and hence *N* ∈ **TF**_{*n*}(*R*) ∩ $\mathcal{G}_{1,0} = \mathcal{G}_{1,n}$. By [[14,](#page-19-4) Proposi-</sub> tion [1](#page-19-0).1.1] and [1, Theorem 2.17] we get $\Omega M \approx \Omega N \in \Omega \mathcal{G}_{1,n}(R) \subseteq \mathsf{T}F_{n+1}(R)$.
- (2) The assertion immediately follows from (1) as we have (add R) $*$ $TF_n(R) \subseteq TF_n(R)$ by assumption.
- (3) The assertion is a direct consequence of (2) together with the general fact $TF_{n+1}(R) \subseteq TF_n(R)$.
- (4) The second assertion follows by the frst and [\[11](#page-19-7), Theorem 4.1]. To show the frst assertion, let $\mathfrak{p} \in \operatorname{Spec} R$ with ht $\mathfrak{p} = n, i \geq 0$ and $M = \operatorname{Ext}^i_R(R/\mathfrak{p}, R)$. Each $\mathfrak{q} \in \operatorname{Supp} M$ contains \mathfrak{p} , so ht $\mathfrak{q} \geq \mathfrak{h}$ t $\mathfrak{p} = n$. As *R* satisfies (S_n) , we get depth $R_a \geq n$. By [\[3](#page-19-16), Proposition 1.2.10(a)] we have grade $M \ge n$. It follows from [\[1](#page-19-0), Proposition (2.26)] that $Ωⁿ⁺¹(R/\mathfrak{p}) ∈ TF_{n+1}(R)$. We see from (2) that $ΩTF_{n+1}(R) ⊆ TF_{n+2}(R)$, and hence $\Omega^{n+2}(R/\mathfrak{p}) \in \text{TF}_{n+2}(R)$, which induces $\Omega^{n+2}\kappa(\mathfrak{p}) \in \text{TF}_{n+2}(R_{\mathfrak{p}})$. Using again the assumption that *R* satisfies (S_n) , we have depth $R_n = n$. It follows from Theorem [4.1\(](#page-9-0)3) that $R_{\rm h}$ is Gorenstein.
- (5a) Fix $M \in \text{TF}_n(R)$. By assumption $\Omega M \in \text{TF}_n(R)$ i.e. $\text{Ext}_R^i(\text{Tr}\Omega M, R) = 0$ for all $1 \le i \le n$ By $[1,$ $[1,$ Theorem (2.8)] there is an exact sequence $0 = Tor_1^R(M, R)$ \rightarrow $(\text{Ext}_{R}^{1}(M, R))^{*} \rightarrow \text{Ext}_{R}^{2}(Tr \Omega M, R) = 0$ $(\text{Ext}_{R}^{1}(M, R))^{*} \rightarrow \text{Ext}_{R}^{2}(Tr \Omega M, R) = 0$ $(\text{Ext}_{R}^{1}(M, R))^{*} \rightarrow \text{Ext}_{R}^{2}(Tr \Omega M, R) = 0$. Hence $(\text{Ext}_{R}^{1}(M, R))^{*} = 0$. By [1, Proposition (2.6)], there exists an exact sequence $0 \to \text{Ext}^1_R(M, R) \to \text{Tr } M \to$ Ω **Tr** Ω *M* \to 0, which induces an exact sequence $\text{Ext}^i_R(\text{Tr }M, R) \to \text{Ext}^i_R(\text{Ext}^1_R(M, R), R) \to$ $\text{Ext}_{R}^{i+1}(\Omega \text{Tr }\Omega M, R) = \text{Ext}_{R}^{i+2}(\text{Tr }\Omega M, R)$ for every $i \geq 0$. This implies $\text{Ext}^i_R(\text{Ext}^1_R(M, R), R) = 0$ for all $1 \le i \le n - 2$. Thus $\text{Ext}^i_R(\text{Ext}^1_R(M, R), R) = 0$ for all $0 \le i \le n-2$, that is, grade $\text{Ext}_{R}^{1}(M, R) \ge n-1 > t$. As depth *R* = *t*, we must have $Ext_R^1(M, R) = 0$. Replacing *M* by $\Omega^i M$ for $i \ge 0$, we get $Ext_R^{>0}(M, R) = 0$ i.e. $M \in \mathcal{G}_{\infty, 0}$. So, $Tr M \in \mathcal{G}_{0,\infty} \subseteq TF_n(R)$. By what we have seen, $Tr M \in \mathcal{G}_{\infty,0}$. Thus $M \in GP(R)$.
- (5b) Using (2), we observe that $\Omega \mathsf{T} \mathsf{F}_n(R) \subseteq \mathsf{T} \mathsf{F}_n(R) \subseteq \mathsf{T} \mathsf{F}_n(R)$. The case $n \geq t + 2$ follows from (5a). Now we consider the case $n = t + 1$. Theorem [4.1](#page-9-0)(1) yields that $\Omega^n k \in \text{TF}_n(R)$, which implies that $\Omega^{n+1} k \in \Omega \text{TF}_n(R) \subseteq \text{TF}_{n+1}(R)$. Theorem [4.1](#page-9-0)(3) implies that *R* is Gorenstein and thus $TF_n(R) = GP(R)$. Therefore, *R* is a Gorenstein ring if (and only if) the subcategory $TF_{t+1}(R)$ is closed under extensions.

Remark 5.2

- (1) Proposition [5.1](#page-14-0)(1) for $n = 1$ recovers [[13](#page-19-22), Corollary 2.2]. Indeed, it says if $TF_1(R) = Syz_1(R)$ is closed under extensions, then $\Omega M \in TF_2(R) = \text{ref } R$ for $M \in \mathsf{TF}_1(R)$. As $\Omega^2 \mathsf{Tr} M \approx M^*$, we have that if $\mathsf{Syz}_1(R)$ is closed under extensions, then $M^* \in \text{ref } R$ for every $M \in \text{mod } R$.
- (2) The inequality dim $R \ge n$ in Proposition [5.1](#page-14-0)(4) is sharp. Indeed, if (R, \mathfrak{m}) is a non-Gorenstein local ring with $m^2 = 0$, then $TF_2(R) = \text{proj } R$ (see Lemma [3.4\)](#page-7-3) is closed under extensions.
- (3) Proposition [5.1](#page-14-0)(4) refines [[17\]](#page-19-8), Theorem 2.3(3) \Rightarrow (2)] in some cases.

Next we show the proposition below, which can also be of some independent interest.

Proposition 5.3 *Let* (R, m, k) *be a local ring of depth t. Let* $a \in \{t, t + 1\}$ *and* $n \ge a$.

- (1) *Let* $K \in \text{mod}_0 R$. If $\text{Ext}^{a+1}_R(\text{Tr }M, R) = 0$ for all $M \in R * \Omega^n K$, then $\text{Ext}^{n+1}_R(K, R) = 0$.
- (2) If $\text{Ext}_{R}^{a+1}(\text{Tr }M, R) = 0$ *for every* $M \in R * \Omega^{n}$ *k*, then the local ring R is Gorenstein.

ਾ ਸ਼ਾਮਲ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੀ ਸ਼ਾਮਲ ਸਮਾਜ ਦੀ ਸ

Proof

(1) As $n \geq t$, the conclusion is clear if *R* is Gorenstein. Let *R* be non-Gorenstein. Put $L = \Omega^n K$. Assuming $\text{Ext}^{n+1}_R(K, R) = \text{Ext}^1_R(L, R) \neq 0$, we work towards a contradiction. The choice of *K* implies that $Ext^1_R(L, R)$ has finite length. Choose a socle element $0 \neq \sigma \in \text{Ext}^1_R(L, R)$. Let $0 \to R \to N \to L \to 0$ be the exact sequence corresponding to σ . Then *N* is in $R * L$, and $\text{Ext}_{R}^{a+1}(\text{Tr } N, R) = 0$ by assumption. Using the snake lemma, we get the following commutative diagrams with exact rows and columns.

Note that $A \approx Tr \Omega^n K$ and $B \approx Tr N$. There is also an exact sequence $N^* \to R \to \text{Ext}^1_R(\Omega^n K, R)$ with $g(1) = \sigma$. It is seen that Coker $f \cong k$. We get exact sequences $0 \rightarrow k \rightarrow A \rightarrow B \rightarrow 0$, and

$$
\operatorname{Ext}_{R}^{a}(B,R) \to \operatorname{Ext}_{R}^{a}(A,R) \to \operatorname{Ext}_{R}^{a}(k,R) \to \operatorname{Ext}_{R}^{a+1}(B,R) = \operatorname{Ext}_{R}^{a+1}(\operatorname{Tr}N,R) = 0. \tag{8}
$$

Using Theorem [4.1\(](#page-9-0)1) and the general fact that $TF_{i+1}(R) \subseteq TF_i(R)$ for $i \ge 0$, we obtain Ω^{*n*}K ∈ TF_{*a*}(*R*). Suppose *a* ≥ 1. Then $Ext^a_R(A, R) = Ext^a_R(Tr Ω^nK, R) = 0$, and it follows from [\(8\)](#page-16-1) that $\text{Ext}^a_R(k, R) = 0$. As $a \in \{t, t+1\}$, we must have $a = t + 1$. By [\[20,](#page-19-17) II. Theorem 2] the ring *R* is Gorenstein, and we get a desired contradiction. Thus we may assume $a = 0$, and then $t = 0$. The slanted arrow $\delta : A^* \to R$ in the third diagram above is a zero map by the injectivity of the map *h*. Hence the map *l* is surjec-tive (and hence an isomorphism). From [\(8](#page-16-1)) we get $k^* = 0$, which is a contradiction to the fact that $t = 0$.

(2) By (1) we have $\text{Ext}_{R}^{n+1}(k, R) = 0$. Since $n \ge t$, the ring R is Gorenstein by [\[20,](#page-19-17) II. Theorem 2].

ਾ ਸ਼ਾਮਲ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੀ ਸ਼ਾਮਲ ਸਮਾਜ ਦੀ ਸ

Applying the above proposition, we can prove the following theorem.

Theorem 5.4 *Let* (R, m, k) *be local with depth t. Then R is Gorenstein if and only if* $Syz_m(R)$ *is closed under extensions for some integer* $m > t$ *, if and only if* $R * \Omega^n k \subseteq Syz_{t+1}(R)$ *for some integer* $n \geq t$.

Proof First, suppose that $Syz_m(R)$ is closed under extensions for some integer $m > t$. Then $m - 1 \geq t$ and $\Omega^{m-1} k \in \text{Syz}_m(R)$ by Theorem [4.1](#page-9-0)(2). We obtain $R * \Omega^{m-1} k \in \text{Syz}_m(R) \subseteq \text{Syz}_{t+1}(R)$. Next, suppose that $R * \Omega^n k \subseteq \text{Syz}_{t+1}(R)$ for some *n* ≥ *t*. Then $R * \Omega^n k \subseteq Syz_{t+1}(R) \cap \text{mod}_0 R \subseteq TF_{t+1}(R)$ by Theorem [4.1\(](#page-9-0)1). Hence $\text{Ext}_{R}^{t+1}(\text{Tr }M, R) = 0$ for all $M \in R * \Omega^{n}k$. Proposition [5.3\(](#page-15-0)2) implies *R* is Gorenstein. \square

To show our next result, we prepare a lemma to get a certain property of $\mathcal{S}_n(R)$.

Lemma 5.5 *If* $\Omega \tilde{S}_n(R)$ *is closed under extensions, then one has the equality* $\widetilde{\Omega S}_n(R) = \widetilde{S}_{n+1}(R).$

Proof We easy see that $\Omega \widetilde{S}_n(R) \subseteq \widetilde{S}_{n+1}(R)$. The subcategory $\widetilde{S}_n(R)$ is resolving and contains $Syz_n(R)$. By assumption and by Lemma [3.1\(](#page-4-1)2) the subcategory $\Omega \widetilde{S}_n(R)$ is resolving, and it contains ΩSyz_n(R) = Syz_{n+1}(R). Hence Ω $\widetilde{S}_n(R)$ contains res Syz_{n+1}(R) = $\widetilde{S}_{n+1}(R)$ by Proposition 3.2(1). Proposition $3.2(1)$ $3.2(1)$.

The corollary below states several consequences of Theorem [5.4](#page-16-0). The frst two assertions of the corollary give necessary and sufficient conditions for *R* to be Gorenstein. In [[17,](#page-19-8) Theorem 2.3(8)] it is required that *R* satisfies (S_n) along with $Syz_n(R)$ being closed under extensions. In the third assertion of the corollary, we show some special cases where the condition of (S_n) can be dropped.

Corollary 5.6 *Let* (R, m, k) *be a local ring of dimension d and depth t.*

- (1) *One has that R is a Gorenstein local ring if and only if* $\Omega S_n(R)$ *is closed under extensions for some consecutive* $(t + 1)$ *-many values of n.*
- (2) *The ring R is Gorenstein if and only if R is Cohen–Macaulay and* Ω𝖢𝖬(*R*) *is closed under extensions.*
- (3) *If* $\text{Syz}_n(R)$ *is closed under extensions for some n* \geq min{*d, t* + 1}*, then R is Cohen– Macaulay and* $TF_i(R) = Syz_i(R)$ *for all* $1 \le i \le n + 1$.

Proof

- (1) If *R* is Gorenstein, then for all $n \ge d$ one has $\widetilde{S}_n(R) = CM(R)$ and $\Omega \widetilde{S}_n(R) = CM(R)$, and $CM(R)$ is closed under extensions. This shows the "only if" part. From now on we prove the "if" part. There is an integer $l \ge 0$ such that $\Omega S_n(R)$ is closed under extensions for $l \le n \le l + t$. We have $\Omega^l k \in \widetilde{S}_l(R)$, so that $\Omega^{t+1+l} k \in \Omega^{t+1} \widetilde{S}_l(R) = \widetilde{S}_{t+1+l}(R)$ by Lemma [5.5](#page-17-0). Since $\widetilde{S}_{t+1+l}(R)$ is resolving, this implies $R * \Omega^{t+1+l} k \subseteq \widetilde{S}_{t+1+l}(R) = \Omega^{t+1} \widetilde{S}_l(R) \subseteq Syz_{t+1}(R)$. Theorem [5.4](#page-16-0) implies that *R* is Gorenstein.
- (2) If *R* is Cohen–Macaulay, then $S_n(R) = CM(R)$ for all $n \ge d$. If *R* is Gorenstein, then $\Omega CM(R) = CM(R)$. The assertion now follows from (1).
- (3) If $n \ge t + 1$, then *R* is Gorenstein by Theorem [5.4](#page-16-0) and $TF_i(R) = Syz_i(R)$ for all $i \ge 0$ by $[1, Corollary (4.22)].$ $[1, Corollary (4.22)].$ $[1, Corollary (4.22)].$ Assume $n \geq d$ and R is not Cohen–Macaulay. Then $n \geq d \geq t + 1$ and Theorem [5.4](#page-16-0) implies *R* is Gorenstein, which contradicts the assumption that *R* is not Cohen–Macaulay. Thus *R* must be Cohen–Macaulay, hence satisfes (S*n*). By [[17\]](#page-19-8), Theorem 2.3(8) \Rightarrow (6)] we get $TF_{n+1}(R) = Syz_{n+1}(R)$, and finally by [\[1,](#page-19-0) Corollary 4.18] we obtain $TF_i(R) = Syz_i(R)$ for all $1 \le i \le n + 1$.

◻

Question 5.7 Let *R* be a local ring of depth *t* such that $Syz_i(R)$ is closed under extensions. Then, is $TF_i(R)$ also closed under extensions, or at least closed under syzygies? (Note that Proposition [5.1](#page-14-0)(3) implies that if $TF_i(R)$ is closed under extensions, then it is closed under syzygies).

Here we record the following observation on $\mathcal{G}_{a,b}$. We should compare it with Proposition $5.1(5a)$.

Proposition 5.8

- (1) Let $0 < a < \infty$ and $0 \le b \le \infty$. Then the subcategory $\mathcal{G}_{a,b}$ is closed under syzygies if *and only if there is an equality* $\mathcal{G}_{a,b} = \text{GP}(R)$.
- (2) *Suppose that* (R, \mathfrak{m}, k) *is a local ring of depth t. Let* $n \in \mathbb{Z}_{>0} \cup \{ \infty \}$ *be such that* \mathcal{G}_{n_0} *is closed under syzygies. Then one has* $n \geq t$. If one also has $n \leq t + 1$, then R is a Gore*nstein local ring.*

Proof

- (1) For the first assertion, it suffices to show the "only if" part. Let $M \in \mathcal{G}_{a,b}$, and $i \ge 0$ an integer. By assumption, $\Omega^i M$ is in $\mathcal{G}_{a,b}$. As $a > 0$, we have $\Omega^i M \in \mathcal{G}_{1,0}$, that is, $\text{Ext}_{R}^{i+1}(M, R) = \text{Ext}_{R}^{1}(\Omega^{i}M, R) = 0.$ Hence $M \in \mathcal{G}_{\infty,0}$, and thus $M \in \mathcal{G}_{a,b} \cap \mathcal{G}_{\infty,0} = \mathcal{G}_{\infty,b}$. It follows that $\mathcal{G}_{a,b} = \mathcal{G}_{\infty,b}$. We are done for $b = \infty$, so assume $b < \infty$. We get $G_{b,a}$ = Tr $G_{a,b}$ = Tr $G_{\infty,b}$ = $G_{b,\infty}$ by [\[14](#page-19-4), Proposition 1.1.1]. Note that *b* − *a* is an integer. Hence Ω^{b-a} is defined, and we obtain $\mathcal{G}_{a,b} = \Omega^{b-a} \mathcal{G}_{b,a} = \Omega^{b-a} \mathcal{G}_{b,\infty} = \mathcal{G}_{a,\infty+b-a} = \mathcal{G}_{a,\infty}$ by [[14,](#page-19-4) Proposition 1.1.1] again. It follows that $G_{a,b} = G_{a,\infty}$, and $\mathcal{G}_{a,b} = \mathcal{G}_{a,\infty} \cap \mathcal{G}_{\infty,b} = \mathcal{G}_{\infty,\infty} = \text{GP}(R).$
- (2) If $n < t$, then k is in $\mathcal{G}_{n,0}$ and so does $\Omega^{t-n}k$ by assumption, which implies $\text{Ext}^t_R(k, R) = 0$, a contradiction. Hence $n \geq t$. Suppose $n \leq t + 1$. As $\Omega^{t+1} k \in \mathsf{T}F_{t+1}(R)$ by Theo-rem [4.1\(](#page-9-0)1), applying (1) shows $Tr \Omega^{t+1} k \in \mathcal{G}_{t+1,0} \subseteq \mathcal{G}_{n,0} = GP(R)$. Thus $\Omega^{t+1} k \in GP(R)$, which implies that *R* is Gorenstein.

ਾ ਸ਼ਾਮਲ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੀ ਸ਼ਾਮਲ ਸਮਾਜ ਦੀ ਸ **Corollary 5.9** *Let* $n \geq 0$ *be an integer such that* $TF_n(R) = TF_{n+1}(R)$ *. Then* $TF_n(R) = GP(R)$ *.*

Proof Using [\[14](#page-19-4), Proposition 1.1.1] shows $\Omega \mathcal{G}_{n+1,0} = \mathcal{G}_{n,1} \subseteq \mathcal{G}_{n,0} = \text{Tr } \text{TF}_n(R) = \text{Tr } \text{TF}_{n+1}(R) = \mathcal{G}_{n+1,0}$. Proposition [5.8](#page-18-1)(1) yields $G_{n+1,0} = \text{GP}(R)$. We conclude $TF_n(R) = TF_{n+1}(R) = Tr G_{n+1,0} = GP(R)$.

◻

Remark 5.10 The dual version of Proposition [5.8\(](#page-18-1)1) holds true as well: Let $0 \le a \le \infty$ and $0 < b < \infty$. Then $\mathcal{G}_{a,b}$ is closed under cosyzygies if and only if $\mathcal{G}_{a,b} = \mathsf{GP}(R)$. This is a consequence of the combination of Proposition $5.8(1)$ $5.8(1)$, $[21,$ Lemma 4.1] and $[14,$ Proposition 1.1.1].

Acknowledgements The authors thank the anonymous referee for reading the paper carefully and giving them helpful comments.

Funding Ryo Takahashi was partly supported by JSPS Grant-in-Aid for Scientifc Research 19K03443.

References

- 1. Auslander, M., Bridger, M.: Stable Module Theory, vol. 94. Memoirs of the American Mathematical Society (1969)
- 2. Avramov, L.L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of fnite Gorenstein dimension. Proc. Lond. Math. Soc. (3) **85**(2), 393–440 (2002)
- 3. Bruns, W., Herzog, J.: Cohen–Macaulay Rings, Revised Edition, Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1998)
- 4. Dao, H., Takahashi, R.: The radius of a subcategory of modules. Algebra Number Theory **8**(1), 141– 172 (2014)
- 5. Dao, H., Takahashi, R.: Classifcation of resolving subcategories and grade consistent functions. Int. Math. Res. Not. IMRN **1**, 119–149 (2015)
- 6. Dao, H., Kobayashi, T., Takahashi, R.: Burch ideals and Burch rings. Algebra Number Theory **14**(8), 2121–2150 (2020)
- 7. Dutta, S.P.: Syzygies and homological conjectures. In: Hochster, M., Huneke, C., Sally, J. D. (eds.) Commutative Algebra (Berkeley, CA, 1987), vol. 15, pp. 139–156, Mathematical Sciences Research Institute Publications. Springer, New York (1989)
- 8. Enochs, E.E., Jenda, O.M.G.: Gorenstein injective and projective modules. Math. Z. **220**(4), 611–633 (1995)
- 9. Evans, E.G., Grifth, P.: Syzygies, London Mathematical Society Lecture Note Series, vol. 106. Cambridge University Press, Cambridge (1985)
- 10. Faber, E.: Trace ideals, normalization chains, and endomorphism rings. Pure Appl. Math. Q. **16**(4), 1001–1025 (2020)
- 11. Goto, S., Takahashi, R.: Extension closedness of syzygies and local Gorensteinness of commutative rings. Algebras Represent. Theory **19**(3), 511–521 (2016)
- 12. Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra **189**(1–3), 167–193 (2004)
- 13. Hoshino, M.: Extension closed refexive modules. Arch. Math. (Basel) **54**(1), 18–24 (1990)
- 14. Iyama, O.: Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories. Adv. Math. **210**(1), 22–50 (2007)
- 15. Kobayashi, T., Takahashi, R.: Ulrich modules over Cohen–Macaulay local rings with minimal multiplicity. Q. J. Math. **70**(2), 487–507 (2019)
- 16. Maşek, V.: Gorenstein dimension and torsion of modules over commutative Noetherian rings. Commun. Algebra **20**(12), 5783–5812 (2000)
- 17. Matsui, H., Takahashi, R., Tsuchiya, Y.: When are *n*-syzygy modules *n*-torsionfree? Arch. Math. **108**(1), 351–355 (2017)
- 18. Moore, W.F.: Cohomology over fber products of local rings. J. Algebra **321**(3), 758–773 (2009)
- 19. Nasseh, S., Takahashi, R.: Local rings with quasi-decomposable maximal ideal. Math. Proc. Camb. Philos. Soc. **168**(2), 305–322 (2020)
- 20. Roberts, P.: Two applications of dualizing complexes over local rings. Ann. Sci. École Norm. Sup. (4) **9**(1), 103–106 (1976)
- 21. Sadeghi, A., Takahashi, R.: Resolving subcategories closed under certain operations and a conjecture of Dao and Takahashi. Mich. Math. J. **70**(2), 341–367 (2021)
- 22. Takahashi, R.: Syzygy modules with semidualizing or *G*-projective summands. J. Algebra **295**(1), 179–194 (2006)
- 23. Takahashi, R.: Classifying resolving subcategories over a Cohen–Macaulay local ring. Math. Z. **273**(1–2), 569–587 (2013)
- 24. Takahashi, R.: Classifcation of dominant resolving subcategories by moderate functions. Ill. J. Math. **65**(3), 597–618 (2021)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.