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Abstract
We define a discrete version of the bilinear spherical maximal function, and show bilinear 
lp(ℤd) × lq(ℤd) → lr(ℤd) bounds for d ≥ 3 , 1

p
+

1

q
≥

1

r
 , r > d

d−2
 and p, q ≥ 1 . Due to inter-

polation, the key estimate is an lp(ℤd) × l∞(ℤd) → lp(ℤd) bound, which holds when d ≥ 3 , 
p >

d

d−2
 . A key feature of our argument is the use of the circle method which allows us to 

decouple the dimension from the number of functions compared to the work of Cook.

1  Introduction

The study of multilinear variants of continuous operators appearing in harmonic analysis is 
a rich area of study. Another active area of investigation is determining bounds for discrete 
operators involving integration over a curved submanifold—these operators often exhibit 
radically different behaviour than their continuous counterparts. Discrete bilinear and mul-
tilinear variants have been significantly less studied. In this paper we combine the themes 
of discreteness and multilinearity with the study of the discrete bilinear spherical maximal 
function. Namely, we prove lp(ℤd) × lq(ℤd) → lr(ℤd) bounds in an open region obtained by 
both simple discrete lp theory and interpolation with a key estimate, which we prove. This 
estimate is an lp(ℤd) × l∞(ℤd) → l∞(ℤd) bound for p > d

d−2
 that is obtained using the circle 

method from analytic number theory. While this application introduces a number of num-
ber theoretic obstacles, it also allows us to decouple the multilinearity (number of func-
tions) with the dimension compared to the work of Cook [6]. The idea for approaching an 
lp(ℤd) × l∞(ℤd) → l∞(ℤd) estimate is classic in the continuous setting, but in the particular 
case of the bilinear spherical maximal function it was first employed by Barrionuevo et al. 
[4]. For simplicity, we work with the bilinear version of the discrete spherical maximal 
function in ℤ2d but we comment on the more general results for the l-linear version in the 
last section.
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The study of spherical maximal functions dates back to Stein [18] where they natu-
rally arose in connection with the wave equation. This operator is bounded on Lp(ℝd) for 
d ≥ 2 , p > d

d−1
 (Stein d ≥ 3 [18], Bourgain d = 2 [5]); these ranges are sharp. Oberlin 

introduced a multilinear variant with functions on ℝ , and proved bounds from 
Lp(ℝ) ×… × Lp(ℝ) into Lq(ℝ) for ( 1

p
,
1

q
) lying in a polygonal region [15]. Geba et al. [7] 

were the first to consider a multilinear variant with functions in ℝd , and proved bounds 
in the bilinear setting of the type Lp(ℝd) × Lp(ℝd) → Lp

�

(ℝd) for 1 ≤ p ≤ 2 and d ≥ 2 . 
Barrionuevo et al. [4] expanded vastly on the results by Geba et al. and obtained a wide 
range of Hölder type estimates Lp(ℝd) × Lq(ℝd) → Lr(ℝd) for d ≥ 8 . This was improved 
to d ≥ 4 by Grafakos et al. [8] and the range of estimates then slightly expanded by Heo 
et al. [9]. Finally, in a recent work, Jeong and Lee proved sharp bounds for the continu-
ous bilinear spherical maximal function in ℝ2d [11] with their method clearly extending 
to higher levels of multilinearity.

Magyar, Stein and Wainger considered a discrete linear spherical maximal function, first 
introduced by Magyar [12], and proved bounds for d ≥ 5, p > d

d−2
 ; moreover they showed 

that this range was sharp in d and p. Cook studied a version of the discrete multilinear 
spherical maximal function analogous to Oberlin’s work and similarly proved bounds of 
the type lp(ℤ) ×… × lp(ℤ) → lq(ℤ) [6]. We continue to further the investigation of dis-
crete multilinear spherical maximal functions by introducing the circle method technique, 
allowing us to consider functions on ℤd and obtaining a wide range of estimates. Our range 
is not sharp, but approaches sharp estimates as d → ∞ . We relate some necessary condi-
tions of multilinear spherical maximal functions in the opening section as well as sharp-
ness examples after the proof of the main theorem. An interesting open question is to fully 
determine the sharp range for this operator, thus providing the discrete analogue to [11].

In our recent work [3], we have been able to show the sharp bound for the discrete bilin-
ear spherical maximial function for d ≥ 5 , with analogous results for multilinear and other 
variants. We emphasize that those techniques are both different to the current approach 
and do not permit us to currently say anything in dimensions 3 and 4, which this paper’s 
approach can tackle.

We now define our bilinear discrete (or integral) spherical maximal function (we com-
ment on the multilinear version in the last section). The operators that we consider extend 
those considered in [6], and our boundedness results complement these as well as the 
continuous bounds found in [4, 7–9, 11, 15]. Note that our technique is different to the 
approach used in [6], we directly import the continuous bounds as a key step. Many papers 
have used this technique in the linear setting, such as [2, 10, 13, 14].

The continuous spherical averages can be written as

where u and v are vectors in ℝd , and d�� is the continuous normalized spherical measure 
on ��2d−1 . We can rewrite this as a convolution operator:

Then the maximal operator is

Abusing notation, the discrete version that we will consider is

T�(f , g)(x) =
∫��2d−1

f (x − u)g(x − v)d��(u, v)

T𝜆(f , g)(x) = ((f ⊗ g) ∗ d𝜎𝜆)(x, x).

T∗(f , g)(x) ∶= sup
𝜆>0

|T𝜆(f , g)(x)|.
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where u , v ∈ ℤ
d and N(�) = #{(u, v) ∈ ℤ

d × ℤ
d ∶ u2 + v2 = �} is the number of lattice 

points on the sphere of radius �1∕2 in ℝ2d , which by the Hardy–Littlewood asymptotic is 
approximately �d−1 if the distribution is regular. Here u2 is shorthand for u2

1
+⋯ + u2

d
 . 

This operator can also be thought of as

where this time, ��(u, v) =
1

N(�)
�{u∈ℤd ,v∈ℤd∶u2+v2=�} is the normalized arithmetic (probabil-

ity) surface measure. For N(�) to be regular, we need 2d > 4 , or d ≥ 3 . We will assume 
regularity throughout the paper.

We will prove the following:

Theorem 1  T∗ is bounded lp(ℤd) × l∞(ℤd) → lp(ℤd) for all d ≥ 3 , p > d

d−2
.

Remark 1  Sharpness examples provided at the end of the proof of Theorem 1 in Sect. 6.1 
show that for lp(ℤd) × l∞(ℤd) → lp(ℤd) bounds to hold when d ≥ 3 we must have p > 1 . 
As d → ∞ our result approaches the sharp range.

Remark 2  By symmetry, we also get that T∗ is bounded l∞(ℤd) × lp(ℤd) → lp(ℤd) for 
all p > d

d−2
 . We can interpolate these bounds to get all points on the line including the 

l2p(ℤd) × l2p(ℤd) → lp(ℤd) bounds for all p > d

d−2
 ; these lines approach the line contain-

ing the l2(ℤd) × l2(ℤd) → l1(ℤd) bounds as d → ∞ so we approach the full Banach range 
of estimates as d → ∞ . By trivially estimating the operator in l∞(ℤd) , we also have that T∗ 
is bounded on l∞(ℤd) × l∞(ℤd) → l∞(ℤd) . Interpolating these three bounds and noting the 
nesting properties of the discrete lp spaces, that is:

leads to the Corollary below.

Corollary 1  T∗ is bounded lp(ℤd) × lq(ℤd) → lr(ℤd) for all d ≥ 3 , 1
p
+

1

q
≥

1

r
 , r > d

d−2
 and 

p, q ≥ 1.

The key feature of this Corollary is the wide range of Hölder estimates obtained, 
while the broader estimates follow immediately from the nesting property of the dis-
crete lp spaces. As mentioned it would be interesting to see what the full range of 
bounds (and most importantly the full Hölder range) for this operator are.

The paper is organized as follows: we begin with some necessary conditions for 
boundedness in Sect. 2. In Sect. 3 we use the circle method to decompose our operator. 
We handle the error from the minor arcs in Sect. 4, the rest of the error in Sect. 5, and 
the main term from the decomposition in Sect. 6, where we prove Theorem 1. We com-
ment on multilinear extensions in the final section.

T∗(f , g)(x) = sup
�∈ℕ

||||||

1

N(�)

∑

u2+v2=�

f (x − u)g(x − v)

||||||

T∗(f , g)(x) = sup
𝜆>0

||((f ⊗ g) ∗ 𝜎𝜆)(x, x)||.

‖f‖lq(ℤd) ≤ ‖f‖lp(ℤd) for all 1 ≤ p ≤ q ≤ ∞,
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2 � Necessary conditions

We begin by relating some necessary bounds for the bilinear (and multilinear) 
operators that we consider. Note that if we know that an operator T is bounded on 
lp0(ℤd) × lq0 (ℤd) → lr0(ℤd) , then we automatically get all bounds lp(ℤd) × lq(ℤd) → lr(ℤd) 
for all p ≤ p0, q ≤ q0, r ≥ r0 due to the nestedness properties of the discrete norms.

Lemma 1  If T∗(f1,… , fm) is bounded on lp1(ℤd) ×⋯ × lpm(ℤd) → lr(ℤd) , then 
1

r
≤

1

p1
+⋯ +

1

pm
.

Therefore for T∗ to be bounded on lp(ℤd) × lq(ℤd) → lr(ℤd) , we need 1
r
≤

1

p
+

1

q
 . (So 

in the bilinear case, the best l2(ℤd) bounds we can expect are l2(ℤd) × l2(ℤd) → l1(ℤd) 
bounds).

Proof  We focus on the bilinear setting—minor modifications yield the multilinear 
result. We also focus on the case when 1 ≤ p, q, r < ∞ . We use a scaling argument: Let 
f , g = �[0,L)d . Then we have that

For each y , the inner expression will be nonzero only if u2 + v2 = � and ui ≤ yi < ui + L 
as well as vi ≤ yi < vi + L for all 1 ≤ i ≤ d . Since L is fixed, when � gets large, there are Ld 
such y that contribute to the sum, giving

since there are asymptotically �d−1 such (u, v) . On the other hand by an even simpler 
calculation

Hence to have Ld∕r ≲ Ld∕pLd∕q we must have 1
r
≤

1

p
+

1

q
 , or more generally for the m-linear 

variant, 1
r
≤

1

p1
+⋯ +

1

pm
 . 	�  ◻

3 � Set up and decomposition

We now turn to the proof of Theorem 1. The first key point to note is that we can pull 
out the function g in l∞ norm and reduce matters to considering lp(ℤd) → lp(ℤd) bounds 
for an operator T0 , see for example Barrionuevo et al. [4]; indeed we have

where

‖T∗(f , g)(y)‖lr(ℤd) =

�
�

y∈ℤd

�
sup
�

�1−d
�

u2+v2=�

�[0,L)d (y − u)�[0,L)d (y − v)

�r�1∕r

.

(Ld(sup
𝜆

𝜆1−d#{|u|2 + |v|2 = 𝜆}r))1∕r ≲ Ld∕r

‖f‖lp(ℤn)‖g‖lq(ℤn) = Ld∕pLd∕q.

(3.1)T∗(f , g)(x) ≤ ‖g‖l∞(ℤd) ⋅ T
∗

0
(�f �)(x)
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and

Therefore we have that T0(|f |) = (|f |⊗ 1) ∗ 𝜎𝜆 , so

where � ∈ �
d and e(x) = e2�ix.

So we can rewrite

where

We will start by using the circle method to decompose the Fourier transform of the arithme-
tic surface measure 𝜎̂𝜆,0(𝜉) . The circle method will lead us to the following decomposition:

where the term I is the main term coming from the major arcs, term II is the major arc 
approximation error term, and term III is the error term coming from the minor arcs (we 
emphasize that T0 depends on � even though we suppress this notation). We will prove 
lp(ℤd) → lp(ℤd) bounds for the maximal operators arising from each of these terms. The 
process begins in a similar manner to [14] and [13]. Let Λ ≤ 𝜆 < 2Λ and call N = Λ1∕2 . 
Applying the circle method to 𝜎̂𝜆,0 , we get that

We will decompose this Fourier transform as 𝜎̂𝜆,0 = M̂𝜆 + Ê𝜆 , where M̂𝜆 will come from 
the major arcs and Ê𝜆 will come from the minor arc piece as well as error from the major 
arc approximation. Define the major arc centered at the rational a/q

(3.2)T0(f )(x) ∶=
1

N(�)

∑

u2+v2=�

f (x − u)

(3.3)T∗

0
(f ) ∶= sup

𝜆>0
|T0(f )|.

�T0(|f |)(�) =
(
�|f |⊗ 𝛿0

)
(�, �) ⋅ 𝜎̂𝜆(�, �) =

1

N(𝜆)

∑

u2+v2=𝜆

�|f |(�)e(u ⋅ �)

�T0(|f |) = �|f |𝜎̂𝜆,0

(3.4)𝜎̂𝜆,0(�) =
1

N(𝜆)

∑

u2+v2=𝜆

e(u ⋅ �).

(3.5)T0 = M� + E� = M� + (A� −M�) + Em,� ∶= I + II + III

𝜎̂𝜆,0(�) =
1

N(𝜆)

∑

0≤ui,vi≤N

e(u ⋅ �)
�
�

e(𝜃(u2 + v
2 − 𝜆))d𝜃

=
1

N(𝜆) ��

d∏

i=1

∑

ui≤N

e(𝜃u2
i
+ 𝜉iui)

d∏

j=1

∑

vj≤N

e(𝜃v2
j
)e(−𝜆𝜃)d𝜃

∶=
1

N(𝜆) ��

d∏

i=1

SN(𝜃, 𝜉i)

d∏

j=1

SN(𝜃)e(−𝜆𝜃)d𝜃

∶=
1

N(𝜆) ��

F(𝜃, �)F(𝜃)e(−𝜆𝜃)d𝜃.
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and the major arcs

and let m = � ⧵M be the minor arcs.
On the major arcs, let � =

a

q
+ � where |�| ≤ 1

8qN
 and split u = qũ + y, v = qṽ + z into 

residue classes. Define a smooth compactly supported function Φ(x) such that Φ(x) = 1 for 
|x| < 1 . Then on Ma∕q , we have

Let B(x) = e(�x2)Φ(
x

N
) . We apply Poisson summation with respect to each Φ separately to 

get

We define the Gauss sum G(l, a, q) = q−d
∑

y∈ℤd
q
e(

ay2

q
)e(

l⋅y

q
) and the sum 

G(m, 0, q) = q−d
∑

z∈ℤd
q
e(

m⋅z

q
) . Note that the sum G(m, 0, q) , despite our notation, is not a 

Gauss sum since there is no quadratic term. Due to the term B̂(−m

q
) in the exponential inte-

gral, we cannot use orthogonality of characters to simplify this piece; with this in mind, the 
above equals

We follow the approach of [13] and insert smooth cutoff functions Ψ1 , Ψ2 (where Ψ1(�) = 1 
for |�| < 1 and similarly for Ψ2 ) to define the approximate multiplier

Note that only the m = 0 term contributes to Ψ2 . One may wonder why Ψ2 was inserted, 
since it always localizes to the zero frequency. The reason for inserting such a localization 
is important for the main term analysis and we comment on this then. Any error that we 

Ma∕q ∶=

{
� ∈ � ∶ |� − a

q
| ≤ 1

8qN

}
,

M ∶=
⋃

1≤q≤N

⋃

(a,q)=1,a≤q

Ma∕q

1

N(�) ∫

∑

y∈ℤd
q

∑

z∈ℤd
q

∑

ũ∈ℤd

∑

ṽ∈ℤd

e

((
a

q
+ �

)
(qũ + y)2 + 𝝃 ⋅ (qũ + y)

+

(
a

q
+ �

)
(qṽ + z)2

)
Φ

(
u

N

)
Φ

(
v

N

)
e

(
−�

(
a

q
+ �

))
d�.

1

N(𝜆)
e

(
−𝜆a

q

)
q−d

∑

y∈ℤd
q

∑

l∈ℤd

e

(
ay2

q

)
e

(
l ⋅ y

q

)
q−d

∑

z∈ℤd
q

∑

m∈ℤd

e

(
m ⋅ z

q

)

∫|𝛽|< 1

8Nq

e(−𝜆𝛽)B̂

(
� −

l

q

)
B̂

(
−
m

q

)
d𝛽.

(3.6)

Â
a∕q

𝜆
∶=

1

N(𝜆)
e

(
−𝜆a

q

) ∑

l∈ℤd

G(l, a, q)
∑

m∈ℤd

G(m, 0, q)
�

|𝛽|≤1∕8qN

e(−𝜆𝛽)B̂

(
� −

l

q

)
B̂

(
−
m

q

)
d𝛽.

(3.7)

B̂
a∕q

𝜆
∶=

1

N(𝜆)
e

(
−𝜆a

q

) ∑

l∈ℤd

G(l, a, q)
∑

m∈ℤd

G(m, 0, q)Ψ1(q� − l)Ψ2(−m)

�

|𝛽|≤1∕8qN

e(−𝜆𝛽)B̂

(
� −

l

q

)
B̂

(
−
m

q

)
d𝛽.
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incur by inserting these functions will be handled easily in Sect. 5; moreover this approach 
of using smooth weights (the functions Ψ1 and Ψ2 ) is often done in analytic number theory 
(here we insert these weights on the Fourier side).

Now extend the integration to the whole real line to define the approximate multiplier:

Now we can identify, as in [17] (note that we have replaced sharp cutoffs with smooth ones 
via Ψ1 and Ψ2 ) the exponential integral in � with

which is the continuous spherical surface measure on the sphere of radius �1∕2 in ℝ2d , so 
Ĉ
a∕q

𝜆
= M̂

a∕q

𝜆
 . Note that this symbol enjoys the Fourier decay

Note that the justification of this identification and the claimed decay above follows exactly 
as in the proofs in [17] (see page 498 and related discussion, also see Section 3.1 in [10]). 
Summing over q, a, we have that

4 � Minor arcs

Here we show lp(ℤd) → lp(ℤd) bounds for the minor arc multiplier

This approach follows [1] with minor changes. We sketch the details.
We proceed by showing an l2(ℤd) → l2(ℤd) bound for a dyadic version of the operator 

Em,� , with some power decay in N, that is

for some 𝛿 > 0.

First, we adopt a proposition from [1]. Its proof is very similar, but we include a brief 
sketch for completion.

(3.8)

Ĉ
a∕q

𝜆
∶=

1

N(𝜆)
e

(
−𝜆a

q

) ∑

l∈ℤd

G(l, a, q)
∑

m∈ℤd

G(m, 0, q)Ψ1(q� − l)Ψ2(−m)

∫
ℝ

e(−𝜆𝛽)B̂

(
� −

l

q

)
B̂

(
−
m

q

)
d𝛽.

�d𝜎𝜆1∕2

(
(� ⊗ 0) −

(
l

q
⊗

m

q

))

(3.9)�d𝜎((� ⊗ �)) ≲ (1 + |�| + |�|)−
2d−1

2 .

M̂𝜆 =

N∑

q=1

∑

a∈ℤ∗
q

e

(
−𝜆a

q

) ∑

l∈ℤd

G(l, a, q)

∑

m∈ℤd

G(m, 0, q)Ψ1(q� − l)Ψ2(−m)�d𝜎𝜆1∕2

(
(� ⊗ 0) −

(
l

q
⊗

m

q

))
.

Êm,𝜆 =
1

N(𝜆) ∫m

F(𝜃, �)F(𝜃)e(−𝜆𝜃)d𝜃.

(4.1)‖ sup
𝜆∈[Λ,2Λ)

�Em,𝜆�‖l2(ℤd)→l2(ℤd) ≲ N−𝛿



82	 T. C. Anderson, E. A. Palsson 

1 3

Proposition 1 ‖ sup𝜆∈[Λ,2Λ) �Em,𝜆�‖l2(ℤd)→l2(ℤd) ≲
1

N(Λ)
∫
m
sup�∈𝕋 d �F(𝜃, �)��F(𝜃)�d𝜃

Proof  First note that

and call h(𝜃, u) ∶= ∫
� d F(𝜃, �)F(𝜃))f̂ (�)e(−u ⋅ �)d� . Now we have

using Minkowski’s integral inequality. After an application of Bessel’s inequality the above 
is bounded by

and after applying Plancherel we get

	�  ◻

Next using the classic Weyl’s inequality (see [19]), we get sup𝜉 |SN(𝜃, 𝜉)| ≲ N1∕2+𝜀 , so 
we therefore have (for any 𝜀 > 0),

which is (4.1) for � = d − 2 − �.
We also have that

since

Hence we can interpolate the gain from (4.1) with (4.2) to get:

|Em,𝜆(f )(u)| ≤
1

N(Λ) �m

||||�� d

F(𝜃, �)F(𝜃)f̂ (�)e(−u ⋅ �)d𝜉
||||
d𝜃

‖‖‖‖‖
sup

�∈[Λ,2Λ)
|Em,�(f )|

‖‖‖‖‖l2(ℤd)

≤
1

N(Λ)

‖‖‖‖�m

|h(�, u)|d�
‖‖‖‖l2(ℤd)

≤
1

N(Λ) �m

(
∑

u∈ℤd

|h(�, u)|2
)1∕2

d�

1

N(Λ) �m

�

�
� d

�F(𝜃, �)F(𝜃)f̂ (�)�2d�
�1∕2

d𝜃

≤
1

N(Λ) �m

sup
�

�F(𝜃, �)��F(𝜃)�d𝜃
�

�
� d

�f̂ (�)�2d�
�1∕2

≤
1

N(Λ)
‖f̂‖L2(� d)

�m

sup
�

�F(𝜃, �)��F(𝜃)�d𝜃

‖f‖l2(ℤd)

1

N(Λ) ∫m

sup
�

�F(�, �)��F(�)�d�.

∫m

sup
�∈� d

|F(𝜃, �)||F(𝜃)|d𝜃 ≲ Nd+𝜀 = N2d−2−(d−2)+𝜀

(4.2)
‖‖‖‖‖

sup
𝜆∈[Λ,2Λ)

|Em,𝜆|
‖‖‖‖‖l1(ℤd)→l1(ℤd)

≲ N2,

‖Em,𝜆(f )(u)‖l1(ℤd) ≤
1

N(𝜆) �m

�����𝕋 d

F(𝜃, �)F(𝜃))f̂ (�)e(−u ⋅ �)d�
����
d𝜃

≤
N2d

N(Λ)

�����m

�f (u)
����l1(Zd)

≤ N2�m�‖f‖1.
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where �p = 2(2∕p − 1) − �(2 − 2∕p) . If p > 2+𝛿

1+𝛿
 then we have that 𝛼p < 0 . We can take any 

0 < 𝛿 < d − 2 , so taking � as close to d − 2 as we wish, we get this bound for p > d

d−1
 . 

Then we sum up over dyadic ranges to get

which yields lp(ℤd) → lp(ℤd) bounds for Em,� for all p > d

d−1
.

5 � Major arc error terms

Here we will show that the error incurred from using the operator M� (via B� and C� ) 
instead of A� is small, namely:

for some 𝛾p > 0 . This argument is standard, but for completeness we quickly sketch the 
details. The estimate (5.1) is sufficient, since

To show (5.1), we will show

which is Proposition 4 of [13]; see also [10], and interpolate this with the estimate

Given any 𝜀 > 0 , this will prove (5.1) for any d

d−2
+ 𝜀 < p ≤ 2 as long as 𝛽p > 0 . To prove 

(5.3), we simply combine the estimates

and

‖‖‖‖‖
sup

𝜆∈[Λ,2Λ)
|Em,𝜆|

‖‖‖‖‖lp(ℤd)→lp(ℤd)

≲ N𝛼p

‖‖‖‖
sup
𝜆

||Em,𝜆|||
‖‖‖‖lp(ℤd)→lp(ℤd)

≤

∑

N=2j

‖‖‖‖‖
sup

𝜆∈[Λ,2Λ)
|Em,𝜆|

‖‖‖‖‖lp(ℤd)→lp(ℤd)

≲
∑

N=2j

N𝛼p ≲
∑

j

2𝛼pj ≤ C.

(5.1)
‖‖‖‖‖

sup
𝜆∈[Λ∕2,Λ)

||A𝜆 −M𝜆
||
‖‖‖‖‖lp(ℤd)→lp(ℤd)

≲ Λ−𝛾p

‖‖‖‖
sup
𝜆

||A𝜆 −M𝜆
||
‖‖‖‖lp(ℤd)→lp(ℤd)

≤

∑

Λ≊2j

‖‖‖‖‖
sup

𝜆∈[Λ∕2,Λ)

||A𝜆 −M𝜆
||
‖‖‖‖‖lp(ℤd)→lp(ℤd)

≲
∑

j

2−𝛾pj ≤ C.

(5.2)
‖‖‖‖‖

sup
𝜆∈[Λ∕2,Λ)

||A𝜆 −M𝜆
||
‖‖‖‖‖l2(ℤd)→l2(ℤd)

≲ Λ−𝛽p

(5.3)
‖‖‖‖‖

sup
𝜆∈[Λ∕2,Λ)

||A𝜆 −M𝜆
||
‖‖‖‖‖lp(ℤd)→lp(ℤd)

≲ 1.

‖‖‖‖‖
sup

𝜆∈[Λ∕2,Λ)

||A𝜆
||
‖‖‖‖‖lp(ℤd)→lp(ℤd)

≲ 1
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The latter estimate is true for d

d−2
< p ≤ 2 due to Sect. 6, and the former is true by [12].

6 � Main term

Here we estimate the lp → lp norm of the main term. Firstly, using the triangle inequality,

where we recall the multiplier M̂a,q

𝜆
 defined in (3.8):

The multiplier M̂a,q

𝜆
 naturally splits up into the product of two multipliers as in [14]

and

where Ψ�
1
 is an appropriate cutoff function such that Ψ�

1
Ψ1 = Ψ1 , and similarly for Ψ�

2
 . At 

this stage it is important to have the term Ψ2 present—without this localizing term (which 
reduces the sum in m to a single term), we could not split the multiplier in this way, since 
this splitting relies on the fact that for each � , there is only one l and one m that contribute 
to the sum - see [13] for details.

Since Ma,q

�
= S�

�
◦S = S◦S�

�
 , It suffices to bound both S and sup� |S′�| in lp(ℤd).

To bound S′ , we use the bounds for the continuous version of the bilinear spherical max-
imal function from [11]. Note that due to the extra Fourier decay, we are able to get lp(ℤd) 
bounds for all p > 1.

Proposition 2 ‖ sup� �S���‖lp(ℤd)→lp(ℤd) ≤ C for all d ≥ 2, p > 1

Proof  Fist note that we have Ŝ�𝜆(�) = Û𝜆(�, 0) where

This is now a symbol in � 2d . We can now apply Magyar–Stein–Wainger transference [14] 
to U� , followed by an application of the boundedness of the bilinear spherical maximal 
function in [11] to get

‖‖‖‖‖
sup

𝜆∈[Λ∕2,Λ)

||M𝜆
||
‖‖‖‖‖lp(ℤd)→lp(ℤd)

≲ 1.

‖‖‖‖
sup
�

|M�|
‖‖‖‖p

≤

∞∑

q=1

∑

a∈ℤ∗
q

‖‖‖‖
sup
�

|Ma,q

�
|
‖‖‖‖p

M̂
a,q

𝜆
=

∑

l∈ℤd

G(l, a, q)
∑

m∈ℤd

G(m, 0, q)Ψ1(q� − l)Ψ2(−m)�d𝜎𝜆1∕2((� ⊗ 0) −

(
l

q
⊗

m

q

)
.

Ŝ(�) =
∑

l∈ℤd

∑

m∈ℤd

G(l, a, q)G(m, 0, q)Ψ1(q� − l)Ψ2(−m)

Ŝ�𝜆(�) =
∑

l∈ℤd

∑

m∈ℤd

Ψ�

1
(q� − l)Ψ�

2
(−m)�d𝜎𝜆1∕2

(
(� ⊗ 0) −

(
l

q
⊗

m

q

))

(6.1)Û𝜆(�, �) =
∑

l∈ℤd

∑

m∈ℤd

Ψ�

1
(q� − l)Ψ2(q� −m)�d𝜎𝜆1∕2

(
(� ⊗ �) −

(
l

q
⊗

m

q

))
.
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where we have used the decay of our symbol in (3.9) to compare it to mollified bilinear 
spherical averages in [11] via the method of Rubio de Francia [16].

Finally, we have that since Ŝ�𝜆(�) = Û𝜆(�, 0) , then

and since ‖�0‖lp(ℤd) = 1,

which finishes the proof. 	�  ◻

To bound the operator S notice that now 
∑

m∈ℤd
q
G(m, 0, q)Ψ2(−m) = G(0, 0, q) = 1 so 

that our multiplier now takes the form of those considered in [14]. We have:

Proposition 3 ‖S‖lp(ℤd)→lp(ℤd) ≤ q−d(1−1∕p)

Proof  Using Proposition 2.2 of [14] with � = G(l, a, q) we have that

Recalling supl |G(l, a, q)| ≤ q−d∕2 , we get the desired bound. 	�  ◻

Summing over q and a, we get

if and only if p > d

d−2
 . Therefore, the arithmetic term provides the bottleneck for bounded-

ness, with the restriction p > d

d−2
 , which matches the bounds in the linear setting. Note that 

unlike the linear setting, we can take d ≥ 3 instead of d ≥ 5.

6.1 � Proof of Theorem 1

We now complete the proof of Theorem 1. Combining the restriction on p from the error 
estimates along with the sufficient conditions for the main term, we see that the full opera-
tor T∗

0
 is bounded on lp(ℤd) → lp(ℤd) for all d ≥ 3 , p > d

d−2
 . Therefore T∗ is bounded on 

lp(ℤd) × l∞(ℤd) → lp(ℤd) for all d ≥ 3 , p > d

d−2
.

By taking the example f = �0 , g ≡ 1 , one can see that for � = |x|2 that 
‖T�(f , g)‖

p

lp(ℤd)
≥
∑

x∈ℤd

�
1

�x�2(d−1)
�p

 , which converges if and only if p > d

2(d−1)
 , therefore 

for p ≥ 1 . Similarly, one can take � = n|x|2 for any natural number n, to reduce matters to 
estimating

‖‖‖‖
sup
�

|U�|
‖‖‖‖lp(ℤ2d)

≤
‖‖‖‖
sup
�

|U�|
‖‖‖‖Lp(ℝ2d)

≤ C,

‖‖‖‖
sup
�

|S��(f )|
‖‖‖‖lp(ℤd)

=
‖‖‖‖
sup
�

|U�(f , �0)|
‖‖‖‖lp(ℤ2d)

‖‖‖‖
sup
�

|U�(f , �0)|
‖‖‖‖lp(ℤ2d)

≤
‖‖‖‖
sup
�

|U�|
‖‖‖‖lp(ℤ2d)

‖S‖lp(ℤd)→lp(ℤd) ≤

�
sup
l

�G(l, a, q)�
�2−2∕p

.

‖‖‖‖
sup
𝜆

|M𝜆|
‖‖‖‖lp(ℤd)

≤

∞∑

q=1

∑

a∈ℤ∗
q

q−d(1−1∕p) < ∞
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The count in this sum is ≊ |x|d−2 for d ≥ 5 by the Hardy–Littlewood asymptotic, so we get

For d = 4 , we use the fact that for ( n−1
n
)� = 1 mod 8 , we have the same asymptotic, and 

for d = 3 , use the fact that for infinitely many even � , we have that #{v ∶ |v|2 = n−1

n
�} is 

nonzero. The most restrictive of these estimates yield p > 1 . It would be interesting to see 
if p > 1 is also the sharp range of boundedness.

7 � Multilinear results

We now mention the l-linear results that we obtain, which comes by interpolation with an 
l∞(ℤd) ×⋯ × l∞(ℤd) × lp(ℤd) → lp(ℤd) bound for T∗(f1,… , fl) . In this case, the symbol 
we are analyzing is bounded by:

where we can rewrite

(with l − 1 zeros) with

The Magyar–Stein–Wainger principle applies; now the main term operator M̂a,q

𝜆
 has one 

term involving � and l − 1 terms involving �
�
,…�

�−� instead of simply m (and the spheri-
cal measure involving the tensor product is adjusted accordingly). In particular, we use 
the Magyar–Stein–Wainger transference principle applied to Ŝ�

𝜆
(�) = Û𝜆(�, 0,… , 0) ( l − 1 

zeros).
Our proofs carry through in this setting; we only indicate the necessary changes. Firstly, 

the count N(�) is approximately �
ld

2
−1 by the Hardy–Littlewood asymptotic as long as 

d > 4∕l . Secondly, in the error term analysis, we get the dyadic l2(ℤd) bound of 
N

(ld−2)−(
ld

2
−2−�)

= Nld−2−� for � =
ld

2
− 2 − � . Interpolating with the trivial l1(ℤd) estimate 

of N2 , we get lp bounds for all p > ld

ld−2
 . For the main term (which still splits into the two 

operators S and S′
�
 ), we get the restriction p > min{pc, pd} where pc is the infimum of p 

such that the operator S′
�
 is bounded (which stems from continuous bounds for the multilin-

ear spherical maximal function), and pd =
d

d−2
 is still the infimum of all p such that S is 

bounded. So we have that the l-linear variant is bounded on 
l∞(ℤd) ×⋯ × l∞(ℤd) × lp(ℤd) → lp(ℤd) for all p > d

d−2
 . Through interpolation this leads 

to bounds lp1(ℤd) ×… × lpl (ℤd) → lr(ℤd) for 1
p1
+…+

1

pl
≥

1

r
 , r > d

d−2
 and p1,… , pl ≥ 1.
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∑

x∈ℤd

(
1

|x|2(d−1)
#
{
v ∶ |v|2 = n − 1

n
�
})p

.

∑

x∈ℤd

(
|x|−d

)p
.

(7.1)T∗(f1,… , fl)(x) ≤ ‖f1‖l∞(ℤd) ⋯ ‖f2‖l∞(ℤd) ⋅ T
∗

0
(�fl�)(x)

�T0(|fl|) = �|fl|𝜎̂𝜆,0,…,0

(7.2)𝜎̂𝜆,0,…,0(�) =
1

N(𝜆)

∑

u1
2+⋯+ul

2=𝜆

e(ul ⋅ �).
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