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Abstract

The Orlicz spaces X? associated to a quasi-Banach function space X are defined by replac-
ing the role of the space L! by X in the classical construction of Orlicz spaces. Given a
vector measure m, we can apply this construction to the spaces Lvlv(m), L'(m) and L'(J|m||)
of integrable functions (in the weak, strong and Choquet sense, respectively) in order to
obtain the known Orlicz spaces L®(m) and L?(m) and the new ones L®(||m||). Therefore,
we are providing a framework where dealing with different kind of Orlicz spaces in a uni-
fied way. Some applications to complex interpolation are also given.

Keywords Orlicz spaces - Quasi-Banach function spaces - Vector measures - Complex
interpolation

Mathematics Subject Classification 46E30 - 46G10

1 Introduction

The Banach lattice L'(m) of integrable functions with respect to a vector measure m
(defined on a c-algebra of sets and with values in a Banach space) has been systemati-
cally studied during the last 30 years and it has proved to be a efficient tool to describe the
optimal domain of operators between Banach function spaces (see [18] and the references
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therein). The Orlicz spaces L®(m) and Lﬁ(m) associated to m were introduced in [8] and
they have recently shown in [5] their utility in order to characterize compactness in L' (m).

On the other hand, the quasi-Banach lattice L!(||m||) of integrable functions (in the Cho-
quet sense) with respect to the semivariation of m was introduced in [9]. Some properties
of this space and their corresponding L”(||m||) with p > 1 have been obtained, but in order
to achieve compactness results in L!(||m||) we would need to dispose of certain Orlicz
spaces related to L!(||m]]).

In [10] some generalized Orlicz spaces X, have been obtained by replacing the role of
the space L! by a Banach function space X in the classical construction of Orlicz spaces.
Moreover, the spaces X they consider are allways supposed to possess the o-Fatou property.
However, these Orlicz spaces do not cover our situation since:

e the space L!(||m||) is only a quasi-Banach function space, and
e in most of the time L' (m) lacks the o-Fatou property.

Thus, the purpose of this work is to provide a construction of certain Orlicz spaces X®
valid for the case of X being an arbitrary quasi-Banach function space (in general without
the o-Fatou property), with the underlying idea that it can be applied simultaneously to the
spaces L'(||m]]) and L! () among others. In a subsequent paper [6] we shall employ these
Orlicz spaces L!(||m||)® and their main properties here derived in order to study compact-
ness in L' (Jlm|)).

The organization of the paper goes as follows: Section 2 contains the preliminaries
which we will need later. Section 3 contains a discussion of completeness in the quasi-nor-
med context without any additional hypothesis on o-Fatou property. Section 4 is devoted to
introduce the Orlicz spaces X® associated to a quasi-Banach function space X and obtain
their main properties. In Sect. 5, we show that the construction of the previous section
allows to capture the Orlicz spaces associated to a vector measure and we take advantage
of its generality to introduce the Orlicz spaces associated to its semivariation. Finally, in
Sect. 6 we present some applications of this theory to compute their complex interpolation
spaces.

2 Preliminaries

Throughout this paper, we shall always assume that £2 is a nonempty set, X is a o-algebra
of subsets of £2, u is a finite positive measure defined on X and L°(y) is the space of (u-a.e.
equivalence classes of) measurable functions f : £2 — R equipped with the topology of
convergence in measure.

Recall that a quasi-normed space is any real vector space X equipped with a quasi-
norm, that is, a function|| - ||y : X — [0, o0) which satisfies the following axioms:

QD) |lx|ly = 0if and only if x = 0.
(Q2) |lax|ly = |a|llx||ly, fora € Rand x € X.
(Q3) There exists K > 1such that||x; +x, ||, < K(||x ||y + [|x2]lx) for all x;,x, € X.

The constant K in (Q3) is called a quasi-triangle constant of X. Of course if we can take

K =1,then|| - ||y is a norm and X is a normed space. A quasi-normed function space over
4 is any quasi-normed space X satisfying the following properties:
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(a) Xis an ideal in L°() and a quasi-normed lattice with respect to the p-a.e. order, that
is, if f € L%(u),g € X and |f| < |g| u-a.e., then £ € X and ||f ||y < lIgllx-
(b) The characteristic function of €2, v, belongs to X.

If, in addition, the quasi-norm || - ||y happens to be a norm, then X is called a normed
function space. Note that, with this definition, any quasi-normed function space over y
is continuously embedded into L°(y), as it is proved in [18, Proposition 2.2].

Remark 1 Many of the results that we will present in this paper are true if we assume that
the measure space (£2, X, u) is o-finite. In this case, the previous condition (b) must be
replaced by

(b’) The characteristic functions y, belong to X for all A € X such that u(A) < oo.

Nevertheless we prefer to present the results in the finite case for clarity and simplicity
in the proofs.

We say that a quasi-normed function space X has the o-Fatou property if for any
positive increasing sequence (f,), in X with sup ||f, ||y < co and converging pointwise p-

n
a.e. to a function f, then f € X and ||f||y = sup||f,|lx. And a quasi-normed function

space X is said to be o-order continuous if for anrgl positive increasing sequence (f,), in X
converging pointwise y-a.e. to a function f € X, then ||f —f, ||, = O.

A complete quasi-normed function space is called a quasi-Banach function space
(briefly g-B.f.s.). If, in addition, the quasi-norm happens to be a norm, then X is called a
Banach function space (briefly B.f.s.). It is known that if a quasi-normed function space
has the o-Fatou property, then it is complete and hence a g-B.f.s. (see [18, Proposi-
tion 2.35]) and that inclusions between g-B.f.s. are automatically continuous (see [18,
Lemma 2.7]).

Given a countably additive vector measure m : X — Y with values in a real Banach
space Y, there are several ways of constructing ¢g-B.f.s. of integrable functions. Let us
recall them briefly. The semivariation of m is the finite subadditive set function defined
on X by

lmll(A) := sup {|(m,y*)|(A) : y* € By. },

where |(m,y*)| denotes the variation of the scalar measure (m,y*) : ¥ — R given by
(m,y*)(A) := (m(A),y*) for all A € X, and By. is the unit ball of Y*, the dual of Y. A set
A € X is called m-null if ||m||(A) = 0. A measure y := |(m,y*)|, where y* € By., that is
equivalent to m (in the sense that ||m||(A) — O if and only if u(A) — 0) is called a Ryba-
kov control measure for m. Such a measure always exists (see [7, Theorem 2, p.268]). Let
L°(m) be the space of (m-a.e. equivalence classes of) measurable functions f : 2 — R.
Thus, L°(m) and L°(u) are just the same whenever y is a Rybakov control measure for n1.

A measurable function f : £2 — R is called weakly integrable (with respect to m) if f
is integrable with respect to |(m,y*)| for all y* € Y*. A weakly integrable function f is
said to be integrable (with respect to m) if, for each A € X there exists an element (nec-

essarily unique) [ fdm €Y, satisfying
A
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<Afmmf>=3lfﬂmyﬂ,>ﬁer

Given a measurable function f : 2 — R, we shall also consider its distribution function
(with respect to the semivariation of the vector measure )

llmlly = 1 € [0,00) = [lmlly@) := llmll([If] > 1]) € [0, 0),

where [[fl > t] :={we Q:|f(w)| >r}. This distribution function is bounded, non-
increasing and right-continuous.

Let L"v(m) be the space of all (m-a.e. equivalence classes of) weakly integrable func-
tions, L'(m) the space of all (m-a.e equivalence classes of) integrable functions and
L'(||m||) the space of all (m-a.e. equivalence classes of) measurable functions f such that
its distribution function ||m||, is Lebesgue integrable in (0, o0). Letting u be any Rybakov
control measure for m, we have that L}lv(m) becomes a B.f.s. over y with the o-Fatou
property when endowed with the norm

Iwww=m{/WWmﬂhf€%}
Q

Moreover, L'(m) is a closed o-order continuous ideal of L:V(m). In fact, it is the closure of
AZ), the space of simple functions supported on X. Thus, L!(m) is a c-order continu-
ous B.fs. over u endowed with same norm (see [18, Theorem 3.7] and [18, p.138])). It
is worth noting that space L!(m) does not generally have the o-Fatou property. In fact, if
L'(m) # Lvlv(m), then L!(m) does not have the o-Fatou property. See [2] for details.

On the other hand, L!(||m||) equipped with the quasi-norm

ANzt iy 5=/ llmll () dt.
0
is a g-B.f.s. over p with the o-Fatou property (see [4, Proposition 3.1]) and it is also o
-order continuous (see [4, Proposition 3.6]). We will denote by L*(m) the B.f.s. of all

(m-a.e. equivalence classes of) essentially bounded functions equipped with the essential
sup-norm.

3 Completeness of quasi-normed lattices

In this section we present several characterizations of completeness which will be
needed later. We begin by recalling one of them valid for general quasi-normed spaces
(see [10, Theorem 1.1]).

Theorem 1 Let X be a quasi-normed space with a quasi-triangle constant K. The following

conditions are equivalent:

(i) Xiscomplete.
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(ii) For every sequence (x,), C X such that Z K"||x,llx < cowe have Z x, € X.In this

o n=l1 n=1

<K Z K"||x, | holds.
X n=1

[oe]

S

n=1

case, the inequality

The next result is a version of Amemiya’s Theorem ( [10, Theorem 2, p.290]) for quasi-
normed lattices.

Theorem 2 Let X be a quasi-normed lattice. The following conditions are equivalent:

(i) Xis complete.
(ii) For any positive increasing Cauchy sequence (x,,), in X there exists supx, € X.
n
Proof (i) = (ii) is evident because the limit of increasing convergent sequences in a quasi-
normed lattice is always its supremum.
(i1) = (i) Let (x,,), be a positive increasing Cauchy sequence in X. It is sufficient to prove
that (x,), is convergent in X for X being complete (see, for example [1, Theorem 16.1]). By
hypothesis, there exists x : = supx, € X. We have to prove that (x,), converges to x and for

n
this it is enough the convergence of a subsequence of (x,),. So, let us take a subsequence of
for all n € N where K is

(x,,),,, that we still denote by (x,),, such that ||x,; — x,|lx f s’

a quasi-triangle constant of X. Thus, the sequence y, := 2 i(x;,; — x;) is positive, increas-
i=1
ing and Cauchy. Indeed, given m > n, we have
m 1 m 1
I = vall < X K i = xilly < 25 Y 5

i=n+1 i=n+1
Applying (ii) again, we deduce that there exists y := supy, € X. Moreover, given n € N,

we have

m
n(x - xn) =n{Supx,, . —X, =n Sup(merl - xn) = nsup z(xiJrl _xi) < supy, =Y.
m>n m>n m>n =, m>n

Therefore, 0 < x —x,, < ly and hence ||x — x, ||y < l||y||x - 0. a
n n

Applying Theorem 2 to the sequence of partial sums of a given sequence, we see that
completeness in quasi-normed lattices can still be characterized by a Riesz-Fischer type

property.
Corollary 1 Let X be a quasi-normed lattice with a quasi-triangle constant K. The follow-

ing conditions are equivalent:

(i) Xis complete.
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(i) For every positive sequence (x,), € X such that ) K"|x,|lx < oo there exists
n=1

supixi eX.

i=1

4 Orlicz spaces X?

In this section we introduce the Orlicz spaces X® associated to a quasi-Banach function
space X and a Young function @ and obtain their main properties.

Recall that a Young function is any function @ : [0, 00) — [0, 00) which is strictly
increasing, continuous, convex, @(0) = 0 and [lim () = . A Young function @ satis-
fies the following useful inequalities (which we o;hall use without explicit mention) for
allt > 0:

Pty <ad(@) if 0<a<l,
D(at) > a D(t) if a>1.

In particular, from the second of the previous inequalities it follows that for all #, > O there
D(t,
exists C > 0 such that @(r) > Ct for all t > ¢,,. For a given ¢, > 0, just take C := # >0
0
and observe that @(t) = @ <t0t£> > titp(to) = Ctforallt > t,.
0

0
Moreover, it is easy to prove using the convexity of @ that

N N 1
45(2 rn) < D 5 P2, M)

n=1

foral N eN,a > 1land?, ...ty > 0.

A Young function @ has the A,-property, written @ € A,, if there exists a constant C > 1
such that @(2¢) < CP(¢r) for all ¢ > 0. Equivalently, @ € 4, if for any ¢ > 1 there exists
C > 1such that @(ct) < CD(¢), for all t > 0.

Definition 1 Let @ be a Young function. Given a quasi-normed function space X over y,
the corresponding (generalized) Orlicz class X?® is defined as the following set of (u-a.e.
equivalence classes of) measurable functions:

X? = {fel’w: o(f) eX)}.

Proposition 1 Let @ be a Young function and X be a quasi-normed function space over p.
Then, X® is a solid convex set in L°(). Moreover, X® C X.

Proof Let f,g € X?and0<a <1, According to the convexity and monotonicity proper-
ties of @ we have @(|af + (1 — a)g|) < a@(|f]) + (1 — @)@(|g|) € X. The ideal property of
Xyields @(|af + (1 — a)g|) € X which means that af + (1 — a)g € X? and proves the con-
vexity of X?. Clearly, X? is solid, since |k| < |f| implies that @(|h]) < ®(|f]) € X, for any
h € L%u). Moreover, since @ is a convex function, there exists C > 0 such that @(7) > Ct,
for all# > 1. Thus, for all f € X?,
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1 1
U1 = Vlapps1y + U<y < Ed)(lf|}([v|>1]) +Xo0 = Edj(lﬂ) + X0 €X,
which gives f € X. O

Definition 2 Let @ be a Young function. Given a quasi-normed function space X over p,
the corresponding (generalized) Orlicz space X® is defined as the following set of (u-a.e.
equivalence classes of) measurable functions:

X?® .= {feL"(y) $3¢>0: %efid’}.

Proposition 2 Let @ be a Young function and X be a quasi-normed function space over .
Then, X® is a linear space, an ideal in L°(u) and X® C X% C X.

i lel

eXx®. Setting
¢ &

Proof Let f,g € X® and a € R. Then, there exist ¢y,¢, > 0such that

¢ :=max{c, ¢, } and using the convexity of X? we have

lf+glslﬂ+1lg|_1lf| 118l 50
2c 2c¢ 2c¢ 2¢, 20¢

and hence

If + ¢l
2c
implies that nf € X® for any n € N. Taking n, € N such that |a| < n,, it follows that there

exists ¢, > 0 such that @ < — ol € X, which yields — lo/] € X% and so af € X?.

€o o
It is evident that X‘b C X® and X inherits the ideal property from X, since || < |f]
i lf|
implies that —
| ¢ ¢
we have — € X? C X and so f € X which proves that X? C X. O
¢

€ X® since X? is solid, which proves that f + g € X®. Note that this also

€ X? for any i € L°(u). Moreover, taking into account Proposition 1,

Definition 3 Let @ be a Young function and X be a quasi-normed function space over p.

Given f € X®, we define
o(1)| < }
k- Jlx

The functional || - ||ye in X? is called the Luxemburg quasi-norm.

Proposition 3 Let @ be a Young function and X be a quasi-normed function space (respec-
tively, normed function space) over p. Then, || - ||ye is a quasi-norm (respectively, norm) in
X®. Moreover, X® equipped with the Luxemburg quasi-norm, is a quasi-normed (respec-
tively, normed) function space over p.

I 1l e :=inf{k>0 : % € X? with

Proof First, note that || - ||yo : X® — [0, 00). Given f € X®, there exists ¢ > 0 such that
<lf|> e€X. Let M: Htﬁ'(m)H <. On the one hand, if M <1 then
c
X
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[lfllye < c < 0. On the other hand, if M > 1 then d?< ) < i < > € X and so

M
o), <3le(%)
c
Ifl
X
<1 for all ¢ > 0 and there exist

If f=0, then ||®
Ifllxe =0 and that u([f # 0]) > 0, that is, qu(ﬂ)
Cc
X

€>0 and A€ X such that u(A)>0 and |f|yy, >€ex,. Given ¢ >0, we have

45(2)“ < @(%) < <D<%>.Therefore,
()], =l ),

and keeping in mind that ’lim @(t) = o0, we can take ¢ > 0 such that

13
(£ )lzally > 1

M

1, which implies that ||f||ye < Mc <

=0<1for all ¢ > 0 and so ||f||ye = 0. Now, suppose that

= ()l

which yields a contradiction.
On the other hand, given f € X% and A € R, it is clear that

inf{k>0:”q§<%>’ Sl}:inf k>0: <DVT| <1
X

[4]

1 4f o

X

|A] inf £>O @m

= Sl = |4 b .
H - 4111
14 ) ||x
Now, let f,g € X? and take K > 1 as in (Q3). Given a, b > 0 such that <15<m> <1
a
X
' <|g|>
and |®| — < 1, we have
b X
@ lf + 2l Sl l a m+ b gl
K(a+b) K b K (a+b)a (a+b) b
Ao (), 1 b gkl
K(a+b) K(a+b) b )
Hence, |@ lf+g| o BN <1 which
K(a+b) (a+b) (a+b) b ¥

implies that ||f + gllye < K(a +b). By the arbltrarlness of a and b we deduce that
I + gllxe < KW llxe + llgliye).

Thus, we have proved that || - ||yo is a quasi-norm in X® with the same quasi-triangle
constant as the one of the quasi-norm of X. Moreover, we have already proved that X®
equipped with the Luxemburg quasi-norm is a quasi-normed space and an ideal in L°(y). It
is also clear that the Luxemburg quasi-norm is a lattice quasi-norm: |f| < |g| implies that
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(D(%) < ¢<|i];| for all k> 0 and this guarantees that ||f||yo < ||g|lxe. In addition,
Yo € X®, since @ @> = (D(l);(ﬂ € X, for all ¢ > 0, and hence X? is in fact a quasi-
c c

normed function space. a

Remark 2 The inclusion of X® C X is continuous provided X and X? be q-B.f.s. We will
see in Theorem 3 that the completeness is transferred from X to X?.

Once we have checked that X? is quasi-normed function space, it is immediate that
L*®(u) is contained in X® and this inclusion is continuous with norm || y,||y». The next
result establishes the relation between the norm of this inclusion and the norm || ¥, ||y of
the continuous inclusion of L*(u) into X.

Lemma 1 Let @ be a Young function and X be a quasi-normed function space over .

1

—1 1 ’
@ ( lLxallx )

(i) Forall A € X with u(A) > 0, x4 llye =

Il s
i) Forall f € L. [Ifllxe < ————.
-1
| @ <I|)m||x>
Proof (i) Write @ ;= —————. On the one hand,

¢ ( IIIiIIx)
H@@_Al) Hx =o(3 1l = ‘1’<¢‘1 < Hzl”X))nxAux =1

and so ||yullye <a. On the other hand, given k>0 such that 24 €X® with

XA
(%)
k
1 -1
- <o
k llxallx

(ii) Since [f] < 1fll o2 for any f € L=(u), we have [[fllye < fll =gl zallxs and
the result follows applying (i) to y,,. a

or, equivalently,

1 . 1
<1, we have @(—)H;{ [ly <1, that is, ¢<—> <
X k) AT k) llzallx

, which finally leads to@ < k and so @ < || y4|lxe-

The following two results explore the close relationship between the quantities ||f]|ye
and ||®(|f])||x. This entails interesting consequences on boundedness in X®, allowing us to
obtain a sufficient condition and a necessary condition for it.

Lemma 2 Let @ be a Young function, X be a quasi-normed function space over u and
H C ).

() Iff € X, then||f|lxo < max{L, |&(f])llx}.

(ii) If{®(|h|) : h € H}is bounded in X, then H is bounded in X®.

Proof (i) On the one hand, ||@([f|)||y < 1directly implies that
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Ifllxe <1 =max{L, [|&(fDllx}-

On the other hand, if ||@(|f|)|ly > 1, then QD< 1 ) < ! O(|f]) € X and

y lI)L<|1>(VI)I ~ ledfDIx
hence <||‘D(lf|)||x>ex with @(m [t<1. This also leads to

Ifllxe < IIPAfDIlx = max{1, [|@fDllx}-
) If ||@(hD|ly £M < o, for all he H, according to (i) we have that
[|7]|yo < max{1,||D(|A])|ly} < max{l,M} < co,forallh € H. a

Lemma 3 Let @ be a Young function, X be a quasi-normed function space over u and
fexe.

@) If Ifllxs < L then f € X with||@(f Dy < Ilfllys-
() If Wflxe > Land f € X®, then||@(fDllx = IIf llxo-
(iii) If H C X? is bounded, then there exists a Young function W such that the set
{Y(|h]) : h € H}is bounded in X.
°(7)],

oun-o() sro()
o9

Il _ 5o
—eX
k

I

Proof (i) Given 0 < k < 1such that 7 X® with < 1, we have

Therefore, @(|f]) € X with |[@(|f]ly <k <k and keeping in mind that

X
lf|> }_
o L) <1} =flle-

Ilfllxe < 1, we obtain

with

2Dy < inf{o <k<l1:

(ii) Let 0 < € < ||f|lye — 1 and observe that ¢<L> > 1. Thus,
e —¢ /|,
1Dy = H@((anxm - €)L>
Flixe =€ /|
> (Ifllgo - ) ¢<L> > [Ifllgo &,
lfllxe — € X

and letting € — 0, it follows that [|@(|f ||y > ||f]lxe-
(iii) Take M > O such that||k||yo < M, for all h € H. Since || —
< < 1, for all & € H. Defining

o(1)] <2

M X X®

Y := (b(l\_4>’ for all £ > 0, we produce a Young function such that {¥(|k|) : h € H} is
bounded in X. O

< l,forallh € H, (i)

X®
guarantees that (D(l l) € X with
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We are now in a position to establish the remarkable fact that Orlicz spaces X® are
always complete for any q-B.f.s. X. It is worth pointing out that standard proofs in the
Banach setting require the o-Fatou property of X to obtain the o-Fatou property of X®
(see the next Theorem 4) and as a byproduct, the completeness of this last space. How-
ever, as we have said before, there are many complete spaces without the o-Fatou prop-
erty, to which it is not possible to apply Theorem 4. Herein lies the importance of the
result that we will show next about completeness of X?.

Theorem 3 Let ® a Young function and X be a g-B.f.s. over u. Then, X?® is complete (and
hence it is a g-B.f.s. over p).

Proof Let (h,), be a positive increasing Cauchy sequence in X® and take K > 1 as in (Q3).

Then, we can ch(l)ose a subsequence of (h,),, that we denote by (f,),, such that
st = Fullxe < W,for all n € N. Thus,
1

12" K"y = F)ll o < 5o s <1

for all n € N, and by Lemma 3 it follows that

n . 1
||(D(2"K (frs1 —fn))ng 2K (frpy — 1) w < n €N,
which proves that ZK" @ (2'K" (fn = H < Z — < 0. The completeness of X

ensures that the function f := Z(D 2"K"(f1 +1 fn)) € X, by Theorem 1. Note that

n
n=1

f € L°(u) and the convergence of that series is also u-a.e, since X is continuously included
in L%(u). Given N € N, let gy : Z(fn+l f,) and denote by g := sup gy pointwise p-a.e.
Applying (1) witha := K, it follows that forall N € N,

N N
D(gy) = <D<Z(fn+1 —ﬁ)) <Y 5 (2K (fr ~ 1)
n=1

n=1

N

<Y BQK (o — ) Sf

n=1

Therefore, 0 < gy < &' (f)el®(y) for al NeN and so gelu) with
0 < g < d7I(f) € X?, which guarantees that g € X®. But

N
fusr = Qs —F) +1i = gy +1i
n=1

for all N € N and so there also exists supf, = g +f; € X?. Since (f,), is a subsequence of

the original increasing sequence (h,,),, the supremum of the whole sequence must exists
and be the same as the supremum of the subsequence. By applying Amemiya’s Theorem 2
we conclude that X? is complete. a
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If the g-B.f.s. X has the o-Fatou property, then we can improve a little more our
knowledge about X® as the following proposition makes evident.

Theorem 4 Let @ be a Young function and X be a g-B.f.s. over y with the o-Fatou property.
1

%
llye ‘D< il >

i) If £ € X with |fllyo < 1 then £ € X® with[|@(f Dy < Ifllye-
(iii) X? also has the o-Fatou property.

®(%> <1, forall n e N.
n/lx

Then, m ) Ul and so d>< lfl) ch( U > since @ is continuous and increasing.

€ X? with

() If0#f € X®then ——

Proof (i) Take a sequence (k,), such that k, | ||f]|x» and

e k 1)) xo |
The G-Fatou property of X guarantees that @ T > € X and
X®
= sup d><m> <L
Hf”xw vl N/l

(i1) According to (i) and the inequality

o(lf) = @ <|V||X® ”flﬂ( )S 'V“X“’d’<|vl]|cli<«>>

|
q>< I < e
Wfllxe /||
(iii) Let (f), in X® with 0<f, 1f wae and M :=sup]|lf,llys < co. Then,

[} %) Td”(}{—/]> p-a.e. and &

n

we deduce that @(|f]) € X and ||@(|f DIy < If llxe

<1 for all n € N. Applying (ii), we deduce that

X®
@ = ) € X with |@
M W

< 1 for all n € N and using the o-Fatou property of X, it

b

D L =sup ||® Jl < 1. This implies that
M ¥ n M ¥

feX® with ||fllye <M and we also have M < ||f|lyo, since f, <f € X®. Thus,

lf|lx» = M, which proves that X® has the o-Fatou property. a

follows that @({—4) € X with

The relation between the Orlicz class and its corresponding Orlicz space is greatly simpli-
fied when the Young function has the A,-property. In addition, this has far-reaching conse-
quences on convergence in X?® as we state in the next result.

Theorem 5 Let X be a quasi-normed function space over y and @ € A,.

(i) The Orlicz space and the Orlicz class coincide: X® = X,

(i) fyllxe = Oifand only if ||@(|f,Dllx = 0, for all (f,), € X®.
(iii) If X is o-order continuous, then X® is also c-order continuous.
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Proof (i) Given f € X®, there exists ¢ > 0 such that (D( 1 > € X.If c < 1, then

o(f)) =@ ( lf') <c<1><lf|> € X,

and if ¢ > 1, then there exist C > 1 such that @(cr) < C®(¢) for all t > 0 by the A,-property
of @. Therefore, @(|f]) = < lfl ) <C d>< Ul ) € X. In any case, it follows that
@(|f]) € X, which means that f € X‘p.

@11) If |If,[lxe = O, then ||@(|f, ||y — O as a consequence of Lemma 3 (i). Suppose now

that ||f,, || x» does not converges to 0. Then, there exists £ > 0 and a subsequence (f, ), of (),
such that [|f,, [ys > € for all k € N. We can assume that £ < 1 and that (f, ), is the whole

(f,), without loss of generality. Since @ € 4, and 1 > 1, there exist C > 1 such that

o(2)

> % > 0, which means that ||@([f,|)||x does not con-

> 1.
X

(lf |> < Co(|f, ). By (i), we deduce that d5< Uy |> € X and hence
Thas, [9(1f,Dllx > =

CQ(m»
€ X
verges to 0.

(iii) Let (f,), and f in X® such that 0 < f, 1 f p-a.e. Then, ®(f —f,) | O p-a.e. Since
X is o-order continuous, it follows that ||d>(f - fn)”X — 0 and by (ii) this implies that
Ilf = £, llxe — O, which gives the o-order continuity of X?. O

5 Application: Orlicz spaces associated to a vector measure

First of all observe that classical Orlicz spaces L?(y) with respect to a positive finite meas-
ure y are obtained applying the construction X® of section 4 to the B.f.s. X = L!(), that is,
L®(u) = L'(u)® equipped with the norm | - [|z0(,) 1= Il - l|11(,ye - Using these classical Orlicz
spaces, the Orlicz spaces Lf; (m) and L® (m) with respect to a vector measure m : X — Y were
introduced in [8] in the following way:

Ly(m) == {f € L(m) : f € L7(|{m.y")]), Vy* € Y*},
equipped with the norm
|V||L$(m) i=sup {”f”L“’(l(m,y*)\) 1y E BY*}’
and L®(m) is the closure of simple functions .AX) in Lﬁ(m). The next result establishes
that these Orlicz spaces Lﬁ(m) and L®(m) can be obtained as generalized Orlicz spaces X®
by taking X to be L (m) and L' (m), respectively.
Proposition 4 Let @ be a Young function and m : X — Y a vector measure.

(i) L2(m) = LY m)® and fllysny = Wfll e for all f € LO(m).
(ii) L‘p(m) C Ll(m)‘l’ and if ® € A,, then L®(m) = L' (m)®.
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Proof (1) Suppose that f eL1 (m)"’ and let k>0 such that <D<If|> eL&V(m) with

< 1.Given y* € By. we have(b( Il > e L'(|(m, y*)|) with

*(%)
k
This implies that f € L?(|(m,y*)]) with |[f]l e, < k. Hence, f € L?(m) with

W Nl zogmy < W11zt gy
Reciprocally, suppose now that f € L‘I’(m) write M = ||f]| L2( yand let y* € By.. Since

fe€L®({m,y*)|) and Nl Lo myeyy <M, we have that EL‘D(l(m ¥y with
I
Mllzoomy )

@(%) € L'(|{m,y*)|) with

Lf.» (m)

<l1.

L}, (m)

LU([{my*)])

-

< 1. Applying Theorem 4 (ii) to the space X = Ll(l(m, y*))), it follows that

(], <l
LI ([(m.y*)])

MlLeqmyy)
trariness of y* € By. guarantees that @(%) € Ll (m) with ”cb( Ul ) < 1 and hence
Ll (m)

< 1. Then, the arbi-

f € L (m)® with W lls gy < M.

(11) Since L'(m)® is a B.fs., simple functions A X) C L'(m)® and L!(m)? is a closed
subspace of L! (m)®. Thus, taking in account (i), we deduce that L®(m) C L'(m)®. If in
addition @ € 4,, we have

L'm)® = {f € L(m) : &(|f]) € L' (m)} = L®(m),

where the first equality is due to Theorem 5 (i) applied to X = L!(m) and the second one
can be found in [8, Proposition 4.4]. O

The Orlicz spaces L?(m) have been recently employed in [5] to locate the compact
subsets of L!(m). Motivated by the idea of studying compactness in L'(||m||) (see [6] for
details), we introduce the Orlicz spaces L?(||m||) as the Orlicz spaces X® associated to
the q-B.f.s. X = L!(||m||). For further reference, we collect together all the information
that our general theory provide about these new Orlicz spaces.

Definition 4 Let @ be a Young function and m : ¥ — Y a vector measure. We define the
Orlicz spaces associated to the semivariation of m as L®(||m||) := L'(]lm||)® equipped
With [l oy 2= I llLiqpmpye for all £ € LE([Iml)).

Corollary 2 Let @ be a Young function, m : X — Y a vector measure and yu any Rybakov
control measure for m. Then,

(i) L®(||ml|) is a g-B.f.s. over u with the o-Fatou property.
(ii) If @ € A,, then L®(||m||) is o-order continuous.
(iii) L2(||ml|) € L'(||m]|) with continuous inclusion.

Proof Apply Theorems 3, 4 and 5 to the g-B.f.s X = L!(||m||). See also Proposition 2 and
Remark 2. |
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Corollary 3 Let @ be a Young function, m : X — Y a vector measure, f € L®(||m||) and
H C L°(m).

(i) If ®(f1) € L'(lml]), then Wl Lo gy < max {1, 1@ DIl Lt oy }-

() If W ll zoqmyy < 1. then @(1f]) € L' (llmll) and | @ DIl 1 gy < W Lo mi)-

(iid) If Ifll oy > Land @(|f1) € L' (lmlD), then | @A DIl sy 2 Wz -

Giv) If {@(|h]) : h € H} is bounded in L'(||m||), then H is bounded in L®(||m||).

(v) If H is bounded in L®(||m||), then there exists a Young function ¥ such that
{W(|h]) : h € H} is bounded in L'(||m|)).

Proof Particularize Lemmas 2 and 3 to X = L'(||m/||). Note that, in fact, we can use (ii) of
Theorem 4. a

Corollary 4 Let® € A,,m : X — Y a vector measure and (f,), € L*(||m||).

(i LP(Iml) = {f € L(m) : @(If]) € L'(IlmID}.
@) fll oy = O if and only i | @S, DI L1 gy = O

Proof Apply Theorem 5 to the space X = L!(||m])). a

6 Application: interpolation of Orlicz spaces

In this section all the q-B.f.s. will be supposed to be complex. This means that L°(y)
will be assumed to be in fact the space of all (u-a.e. equivalence classes of) C-valued
measurable functions on €. Recall that a complex q-B.f.s X over u is the complexifica-
tion of the real ¢-B.f.s. X :=Xn L%(,u), where L%(ﬂ) is the space of all (u-a.e. equiva-
lence classes of) R-valued measurable functions on £ (see [18, p.24] for more details)
and this allows to extend all the real gq-B.f.s. defined above to complex g-B.f.s. follow-
ing a standard argument.

The complex method of interpolation, [X,, X;], with 0 < 8 < 1, for pairs (X, X,) of
quasi-Banach spaces was introduced in [10] as a natural extension of Calderén’s origi-
nal definition for Banach spaces. It relies on a theory of analytic functions with values
in quasi-Banach spaces which was developed in [10] and [10]. It is important to note
that there is no analogue of the Maximum Modulus Principle for general quasi-Banach
spaces, but there is a wide subclass of quasi-Banach spaces called analytically convex
(A-convex) in which that principle does hold. For a g-B.f.s. X it can be proved that ana-
lytical convexity is equivalent to lattice convexity (L-convexity), i.e., there exists

+ Tt
O<e<lsothatif feXand0<f, <f,i=1,...,n, satisfyu > (1 — g)f, then
n
}1<1g1<x IIfillx = €llfllx (see [10, Theorem 4.4]). This is also equivalent to X be s-convex for
isn

some s > 0 (see [10, Theorem 2.2]). We recall that X is called s-convex if there exists
C > 1such that
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<Z lfkv) 1 < c(Z ufku;)‘
k=1 ¥ k=1

foralln € Nand f, ... ,f, € X. Observe that, X is s-convex if and only if its s-th power X5
is 1-convex, where the s-th power Xq.0f a g-B.fs. X over u (for any 0 < s < 00) isl tl}e
g-B.fs. Xp 1= {f el : |fI5 € X} equipped with the quasi-norm ”f”Xm = ||[f|?||x,
for all f € X (see [18, Proposition 2.22]).

The following result provides a condition under which the L-convexity of X can be
transferred to its Orlicz space X®. When X possesses the o-Fatou property, this can be
derived from [10, Proposition 3.3], but we make apparent that this property can be dropped.
Recall that a function y on the semiaxis [0, 00) is said to be quasiconcave if w(0) = 0, w()

is positive and increasing for > 0 and WT) is decreasing for ¢ > 0. Observe that a quasi-

concave function y satisfies the following inequalities for all # > 0:

yan) 2 ay(@) if 0<a<l,
w(at) <aw() if a>1.

Theorem 6 If X is an L-convex g-B.f.s. and ® € A,, then X? is L-convex.

Proof Since @ € A,, there exists s > 1 such that @(2r) < s@(¢) for all ¢+ > 0. From the
inequality

2t 2t
@' (f) < / @' (u)du < / @' (u)du = ®2t) < sd(t), t > 0
t 0

1
() D ts

it is easy to check that — is decreasing and then

so is. Therefore, the function

w(t) = (D(t% ) is quasiconcave. Take 0 < 6 < 1 such that (1 — §)°* = 1 — €, where € is the
constant from the L-convexity of X. Let f € X% and 0 <f; <f, i =1,...,n satisfying
+ cee +
fl—'f" > (1 — 8)f. We can also assume that ||f||y» = 1 without loss of generality. Note

that this implies ||@(f)||, > 1. If we suppose, on the contrary, that ||®@(f)||, < 1and we take
0 < k < 1such that||@(f)||y < k* < 1, then

(-5

and therefore ||f||y» < k < 1. Moreover, we have 0 < @(f;) < @(f) € X and

(I)(fl)++d5(fn) > d)(fl +":l. +f"> > @((l_é)f)

1 i
< Sl = Z o0l < 1,
X

n
2 (1= y(") = A -0 ®() = (1-)P(f).

Thus, the L-convexity of X implies that max l2()lx = €ll®(f)llx > € and hence
sisn
max ||f;||xe > € > 6 by (i) of Lemma 3. O

1<i<n
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The Calderén product X}™X? of two q-B.f.s. X, and X, over y is the ¢-B.f.s. of all
functions f € L%(u) such that there exist fo € BXO, fi € BXl and A > 0 for which

F < A1, we Q (u-ae.) 2)

endowed with the quasi-norm ||f|| Xi-0x0 = inf A, where the infimum is taken over all A satis-

fying (2). The complex method gives the result predicted by the Calderdén product for nice
pairs of g-B.f.s. (see [10, Theorem 3.4]).

Theorem 7 Let L be a Polish space and let u be a finite Borel measure on Q. Let X, X,
be a pair of c-order continuous L-convex gq-B.f.s. over u. Then X, + X, is L-convex and
[X. X 1p = X(')_ng with equivalence of quasi-norms.

On the other hand, it is easy to compute the Calderén product of two Orlicz spaces
associated to the same q-B.f.s:

Proposition 5 Let X be a g-B.f.s. over i, D, @é Young functions, 0 < 0 < 1and @ such that
@~ 1= (@;")! (D). Then (X®0) 7 (X*1)" = X?.

If

Proof Given f & X®, there exists ¢>0 such that h:=®( =) €X and hence
c

fo i=@;'(h) € X®o and f, := &;'(h) € X*1. Taking a := max{||fyllxa. Ilf; e }. it fol-
lows that

1-6 (4
1= @) = c(@;')'"@;' W) = clfy"Ifi1° < ca@) <Jl) ,

a
which yields f € (x%0)*(x®)".
Conversely, if f € (X®) " (X®')", then there exist A > 0, f; € X% and f; € X® such

that |f| < Alfy|"~°|f;|°. This implies the existence of ¢ > 0 such that h, := @, (—O|> eXx
c

and h; 1= @, <m> € X. Thus, taking i := hy + h, € X, we deduce that
c
ore 0 — oo Yol ) (ALY 0@ )
I < Al AL = Ac - - = /10(450 (o)) (2, (hy))

< 2@y () @7 ()’ = 207 (h) € X,
and hence f € X?. O

Combining the three previous results, we obtain conditions under which the complex
method applied to Orlicz spaces associated to a g-B.f.s. over u keeps on producing an
Orlicz space associated to the same g-B.f.s.

Corollary 5 Let Q2 be a Polish space and let u be a finite Borel measure on Q. Let X be

an L-convex, c-order continuous q-B.f.s. over u, @,,®, € A,,0 < 6 < 1 and ® such that
@7 1= (@)@ Then, [X*0, X*1], = X®.

@ Springer



498 R.del Campo et al.

Proof According to Theorems 5 and 6, the hypotheses guarantee that X® and X% are
L-convex, o-order continuous g-B.f.s. Therefore, the result follows by applying Theorem 7
and Proposition 5. a

Let us denote L*(||m||) := L'(J|m||) 11,forO <s <coandm : X — Y a vector measure.

In [4, Proposition 4.1] we proved that if s> 1, then L*(||m]|) is r-convex for every r < s.In
fact, this is true for all 0 < s < oo because if 0 < s <1 and r < s, then 2 > 1 and hence

s r
Lr(|lm|l) is 1-convex, that is L*(||m||);,q is 1-convex, which is equivalent to L*(||m||) be
r-convex. This means that L*(||m]|) is L-convex for all 0 < s < oo. In particular, L!(||m]|) is
L-convex and we can apply Corollary 5 to it.

Corollary 6 Let Q be a Polish space and let u be a Borel measure which is a Rybakov con-
trol measure for m. Let ®y,®, € A,,0 < 0 < 1 and ® such that ®~' .= (tDal)]_a((b;l)a.
Then, [L*(|lml[), L (|lm|D]y = LP(|Im]]).

For a similar result about complex interpolation of Orlicz type spaces L®(m) and L?:(m)
see [3, Corollary 4.2 and Theorem 4.5].
Note that, for p > 1, l-th powers are an special case of Orlicz spaces, since X [ 1] = X%,
p 1

»
where @, (1) =#. If we particularize the previous Corollary to these powers, then we

obtain the interpolation result below for LP(||m||) spaces. In fact, this result is valid for all
0 < py,p; < oo due to the fact that the Calderoén product commutes with powers for all
indices.

Corollary 7 Let 2 be a Polish space and let u be a Borel measure which is a Rybakov con-

trol  measure  for  m.  Let 1O <10 <01 Hand 0 < pg,p; < 0. Then
[e(limlD, L (lmlDly = L2 (llmll), where — = —— + —.
p Do Py
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