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Abstract
The Malliavin integration-by-parts formula is a key ingredient to develop stochastic analysis
on the Wiener space. In this article we show that a suitable integration-by-parts formula also
characterizes a wide class of Gaussian processes, the so-called Gaussian Fredholm processes.
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1 Introduction

It is well-known that the law of a standard normal random variable X is fully characterized
by the Stein’s equation (also known as the integration-by-parts formula)

E
[
f ′(X)

] = E [X f (X)] . (1.1)

More exactly, X follows the standard normal distribution if and only if for any function
f : R → R that is integrable with respect to the standard Gaussian measure on R, the
relation (1.1) holds true. The formula (1.1) can be extended to finite-dimensional Gaussian
vectors and it can be also expressed in terms of the Malliavin calculus in various ways (see
e.g. Hsu [5] or Nourdin and Peccati [7]).

Our purpose is to prove an integration-by-parts formula that characterizes (centered)Gaus-
sian stochastic processes. The framework is to view the stochastic processes as random paths
onL 2 = L 2([0, 1]), and to show that the law P = P

X of the co-ordinate process X satisfies
a certain integration-by-parts formula depending on a covariance function R if and only if
under P it is a centered Gaussian process with the covariance function R. The line of attack
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26 E. Azmoodeh et al.

is to use the Fredholm representation ofL 2-valued Gaussian processes provided in [12] and
[13].

On related research we mention Barbour [2], Coutin and Decreusefond [3], Kuo and Lee
[6], Shih [11], and Sun and Guo [15]. In particular, we note that Theorem 3.1 of Shih [11]
characterizes Gaussian measures on Banach spaces via the following integration-by-parts
formula (the formulation uses the machinery of abstract Wiener spaces (i,R,B), where
i : R → B is the canonical embedding andR is the Cameron–Martin space of anB-valued
Gaussian random variable): Let X be aB-valued random variable. Then P is Gaussian if and
only if

E
[〈X ,D f (X)〉B ,B ∗

] = E
[
TrRD2 f (X)

]

for all f : B → R such that D2 f (X) is trace-class on R, where D denotes the Gross
derivative. In Sect. 5,wewill discuss the connection between our integration-by-parts formula
(4.6) and results in Shih [11]. In particular, we will show that if one works on the smaller
space of continuous functions on [0, 1] vanishing at the origin, then our formula and Shih’s
results are different. On the other hand, our approach does not use the Cameron–Martin
space and the abstract Wiener space structure. Instead, we work solely on the fixed path-
spaceL 2 = L 2([0, 1]) and this makes somehow our characterization of Gaussian measures
simpler.

The rest of the paper is organized as follows. In Sect. 2 we recall some preliminaries
including operators on L 2 spaces and associated Gaussian Fredholm processes. We also
define “pathwise”Malliavin derivative that is crucial for our results. Indeed, as the underlying
processes in Sect. 4 are not Gaussian a priori, the Malliavin derivative cannot be defined in
a traditional sense using Gaussian spaces. We formulate and prove our integration-by-parts
characterizations in Sect. 4. We also provide several examples including characterizations
for Brownian motion and Brownian bridges. We end the paper with a short discussion in
Sect. 5 on the links between our findings and the characterization of Gaussian processes in
Shih [11].

2 Preliminaries

We recall some necessary preliminaries in order to prove our results.We begin by considering
kernels andoperators inL 2 = L 2([0, 1])which are then connectedwithL 2-valued centered
Gaussian processes via the so-called Fredholm representation. For details of the facts and
constructions related to Fredholm processes, we refer to [12–14].

2.1 Some operators and kernels

Let 1A denote the indicator of a set A. We use the short-hand 1t = 1[0,t), which is related

with the interpretation
∫ b
a = ∫

[a,b). Recall that L
2 = L 2([0, 1]). We use the identification

L 2 ×L 2 = L 2([0, 1]2). We denote by E ⊂ L 2 the set of right-continuous step-functions.

Definition 2.1 (Associated Operator) For a kernel T ∈ L 2 × L 2 its associated operator
T : L 2 → L 2 is defined as

T f (t) =
∫ 1

0
f (s)T (t, s) ds.
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Integration-by-parts characterizations of Gaussian processes 27

We note that the associated operator T : L 2 → L 2 is bounded. Indeed, by the Cauchy–
Schwarz inequality

‖T f ‖2
L 2 =

∫ 1

0

(∫ 1

0
f (s)T (t, s) ds

)2

dt

≤
∫ 1

0

(∫ 1

0
f (s)2 ds

)(∫ 1

0
T (t, s)2 ds

)
dt

=
∫ 1

0
f (s)2 ds

∫ 1

0

∫ 1

0
T (t, s)2 dsdt

= ‖ f ‖2
L 2‖T ‖2

L 2×L 2 .

Example 2.1 For the indicator kernel I (t, s) = 1t (s) the associated operator is just the definite
integral

I f (t) =
∫ t

0
f (s) ds.

Definition 2.2 (Associated Adjoint Operator) For a kernel T ∈ L 2 × L 2 its associated
adjoint operator T∗ is defined by extending linearly the relations

T∗1t (s) = T (t, s), t ∈ [0, 1].
The domain of T∗ is the Hilbert space dom(T∗) that is generated by the indicators 1t , t ∈
[0, 1], and closed under the inner product

〈1t , 1s〉dom(T∗) =
∫ 1

0
T (t, u)T (s, u) du.

We note that dom(T∗) may not be a function space in general. Also, we note that, by
construction, T∗ is an isometry to a subspace of L 2 and

〈 f , g〉dom(T∗) = 〈T∗ f ,T∗g〉L 2 .

The following result gives more understanding on the operator T∗ by considering the
case where the kernel T is continuous and of bounded variation in its first argument, and
T (0, ·) ≡ 0. In relation to Fredholm Gaussian processes X , the condition T (0, ·) ≡ 0 simply
means that X0 ≡ 0, if T is the Fredholm kernel of X .

Lemma 2.1 If the kernel T is left-continuous and of bounded variation in its first argument
and T (0, ·) ≡ 0, then

T∗ f (t) =
∫ 1

0
f (s) T (ds, t), (2.1)

for all f ∈ E , and T∗ is the adjoint of T in the sense that

∫ 1

0
T∗ f (t) g(t) dt =

∫ 1

0
f (t)Tg(dt). (2.2)

for all f ∈ E and g ∈ L 2.
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28 E. Azmoodeh et al.

Proof For (2.1) it is enough to show that its right-hand-side is T (t, s) for f (s) = 1t (s). But
this is straightforward:

T (t, s) = T (t−, s) − T (0, s) =
∫ t

0
T (du, s)

= ∫ 1
0 1t (u) T (du, s).

Let us then show (2.2). By the Fubini theorem
∫ 1

0
T∗ f (t) g(t) dt =

∫ 1

0

∫ 1

0
f (s)T (ds, t) g(t) dt

=
∫ 1

0
f (t)

∫ 1

0
T (dt, s) g(s) ds

=
∫ 1

0
f (t)Tg(dt),

which proves the claim. �
Example 2.2 For the integral operator I we have

I∗ f (t) =
∫ 1

0
f (s) δt (ds),

where δt is the unit mass at point t . In other words, I∗ is the identity operator. This also
provides an example where (2.1) holds provided that T (ds, t) is understood as a measure.

Remark 2.1 If the kernel T is Volterra type (i.e. T (t, s) = 0 if s > t) and of bounded variation
in its first argument, then the operator T∗ coincides with the adjoint operator of Lemma 1 of
Alòs at al. [1].

2.2 Gaussian Fredholm processes

Let (�,F ,P) be a probability space. For concreteness, we assume that � = L 2, F is
the associated Borel σ -field and P is the probability measure of the co-ordinate process
Xt (ω) = ω(t). The following result can be found from [13] although here we present the
statement in a slightly different form.

Lemma 2.2 (Fredholm Representation) Suppose X = (Xt )t∈[0,1] is a centered process with
covariance R. Then X takes values in L 2 if and only if the covariance operator R is trace-
class, i.e.,

∫ 1

0
R(t, t) dt < ∞. (2.3)

In this case the square root K of the covariance R admits a Fredholm kernel, i.e.,

R(t, s) =
∫ 1

0
K (t, u)K (s, u) du.

The kernel K ∈ L 2 × L 2 can be assumed to be positive symmetric, and in this case it
is unique. Consequently, we have the Fredholm representation for Gaussian processes with
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Integration-by-parts characterizations of Gaussian processes 29

trace-class covariance operator R:

Xt =
∫ 1

0
K (t, s) dWs (2.4)

for some Brownian motion.

Remark 2.2 (Construction of Gaussian Fredholm Processes) Lemma 2.2 can be used to con-
struct a Gaussian process having values inL 2. Indeed, let (en)∞n=1 be any orthonormal basis
onL 2, and let (ξn)∞n=1 be i.i.d. standardGaussian random variables. Then aGaussian process
X with Fredholm kernel K can be constructed using the following L 2-convergent series:

Xt =
∞∑

n=1

∫ 1

0
en(s)K (t, s) ds ξn .

Definition 2.3 (Cameron–Martin Space) The Cameron–Martin space, or the Reproducing
kernel Hilbert space, R of a centered Gaussian process X with covariance R is the Hilbert
space of real-valued functions on [0, 1] generated by the functions R(t, ·), t ∈ [0, 1], and the
inner product

〈R(t, ·), R(s, ·)〉R = R(t, s).

For Gaussian Fredholm processes with representation (2.4) the implicit Definition 2.3 can
be made completely concrete. Indeed, in this case we haveR = KL 2 and the inner product
is given by

〈 f , g〉R =
∫ 1

0
K−1 f (t)K−1g(t) dt .

Example 2.3 The Brownian motion is a Gaussian Fredholm process with Fredholm kernel
K (t, s) = 1t (s). Consequently, the Cameron–Martin space of a Brownian motion is IL 2

and the inner product is

〈 f , g〉R =
∫ 1

0
f ′(t)g′(t) dt .

Definition 2.4 (Linear Space) The linear spaceH1 or the first chaos of a centered Gaussian
process X is the closed subspace ofL 2(�, σ (X),P) generated by the random variables Xu ,
u ∈ [0, 1].

Definition 2.5 (Integrand Space) The integrand space I of a centered Gaussian process X
with covariance R is the closure of step-functions f ∈ E under the norm induced by the
inner product generated by the relation

〈1t , 1s〉I = R(t, s).

In general, the Hilbert space I may contain distributions. Note also that I = dom(K∗).
Suppose the centered Gaussian process X : � → L 2 is infinite-dimensional in the sense

that its Cameron–Martin space R is infinite-dimensional. Then all the spaces R, H1 and I
are isometric to L 2. For example, K : L 2 → R is an isometry and K∗ : I → L 2 is an
isometry.
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30 E. Azmoodeh et al.

Definition 2.6 (Abstract Wiener Integral) Let X be a Gaussian Fredholm process with kernel
K . Let f ∈ I . The abstract Wiener integral

∫ 1

0
f (t) dXt

is the image in H1 under the isometry built from linearly extending the mapping 1u �→ Xu .

Finally, we note that the Fredholm representation (2.4) extends into the following transfer
principle (see [13] for details).

Lemma 2.3 (Transfer Principle) Let X be a Gaussian Fredholm process with kernel K and
associated Brownian motion W. Then for all f ∈ I

∫ 1

0
f (t) dXt =

∫ 1

0
K∗ f (t) dWt ,

where the left-hand-side is an abstractWiener integral and the right-hand-side is the classical
Wiener integral.

Finally, we note that by taking (en)∞n=1 to be an orthonormal basis ofL 2, one can construct
orthonormal bases for R,H1 and I . For example, (Ken)∞n=1 is an orthonormal basis on R.

2.3 Classical Malliavin differentiation

We recall briefly the essential elements of Malliavin calculus. For further details, see Nualart
[8], Nualart and Nualart [9] and Nourdin and Peccati [7].

2.3.1 Isonormal processes andWiener-Itô Chaos expansion

Let H be a real separable Hilbert space. For any q ∈ N, we denote by H ⊗q and H �q ,
respectively, the qth tensor power and the qth symmetric tensor power ofH . We also set by
convention H ⊗0 = H �0 = R.

Remark 2.3 IfH = L 2(A,A , μ) = L 2(μ), whereμ is a σ -finite and non-atomic measure
on the measurable space (A,A ), then H ⊗q = L 2(Aq ,A q , μq) = L2(μq), and H �q =
L 2

s (Aq ,A q , μq) = L 2
s (μq), whereL 2

s (μq) stands for the subspace ofL 2(μq) composed
of those functions that are μq -almost everywhere symmetric.

We denote by W = {W (h) ; h ∈ H } the isonormal Gaussian process over H . This
means that W is a centered Gaussian family, defined on some probability space (�,F ,P),
with a covariance structure given by the relationE [W (h)W (g)] = 〈h, g〉H . We also assume
that F = σ(W ), that is, F is generated by W , and use the shorthand notation L 2(�) =
L 2(�,F ,P).

Remark 2.4 The isonormal Gaussian process can be constructed from a centered Gaussian
process as follows. Let X be a centered Gaussian process with covariance R and associated
integrand space I . Then W (h) = ∫ 1

0 h(t) dXt , h ∈ I , is the isonormal Gaussian process
with H = I . In particular, the Brownian motion corresponds to the isonormal Gaussian
process with H = L 2.
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Integration-by-parts characterizations of Gaussian processes 31

For q ≥ 1, letHq be the qth chaos ofW , defined as the closed linear subspace ofL 2(�)

generated by the family {Hq(W (h)) ; h ∈ H , ‖h‖H = 1}, where Hq is the qth Hermite
polynomial, defined as

Hq(x) = (−1)qe
x2
2

dq

dxq

[
e− x2

2

]
.

We write by convention H0 = R. The mapping

Iq(h⊗q) = Hq(W (h))

can be extended to a linear isometry between the symmetric tensor productH �q (equipped
with the modified norm

√
q!‖ · ‖H ⊗q ) and the qth Wiener chaos Hq . For q = 0, we write

by convention I0(c) = c, c ∈ R.
It is well-known that L 2(�) can be decomposed into the infinite orthogonal sum of

the spaces Hq : any square-integrable random variable F ∈ L 2(�) admits the following
Wiener-Itô chaotic expansion

F =
∞∑

q=0

Jq(F),

where the series converges inL 2(�) and Jq is the orthogonal projection operator on the qth
chaos Hq .

2.3.2 Malliavin operators

We briefly introduce some basic elements of the Malliavin calculus with respect to the
isonormal Gaussian process W .

Let S be the set of all cylindrical random variables of the form

F = g (W (φ1), . . . ,W (φn)) ,

where n ≥ 1, g : Rn → R is an infinitely differentiable function such that it and all its partial
derivatives have at most polynomial growth, and φi ∈ H , i = 1, . . . , n. The Malliavin
derivative of F with respect to W is the element of L 2(�;H ) defined as

DF =
n∑

i=1

∂g

∂xi
(W (φ1), . . . ,W (φn)) φi .

In particular, DW (h) = h for every h ∈ H . By iteration, one can define the mth order
derivative DmF , which is an element of L 2(�;H �m) for every m ≥ 2. For m ≥ 1 and
p ≥ 1, let Dm,p denote the closure of S with respect to the norm ‖ · ‖m,p , defined by the
relation

‖F‖p
m,p = E

[|F |p] +
m∑

i=1

E

[
‖Di F‖p

H ⊗i

]
.

ByProposition1.2.1 ofNualart [8] and the followingdiscussion there, the (iterative)Malliavin
derivatives Dm are closable, and can thus be extended to the spaces Dm,p for any p ≥ 1.

The Malliavin derivativeD obeys the following chain rule: If ϕ : Rn → R is continuously
differentiablewith boundedpartial derivatives and if F = (F1, . . . , Fn) is a vector of elements
in D

1,2, then ϕ(F) ∈ D
1,2 and
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32 E. Azmoodeh et al.

Dϕ(F) =
n∑

i=1

∂ϕ

∂xi
(F)DFi .

The operator L, defined as

L =
∞∑

q=0

−q Jq ,

is the infinitesimal generator of the Ornstein-Uhlenbeck semigroup. The domain of L is

dom(L) =
⎧
⎨

⎩
F ∈ L2(�) ;

∞∑

q=1

q2
∥
∥Jq F

∥
∥2
L 2(�)

< ∞
⎫
⎬

⎭
= D

2,2.

For F ∈ L 2(�), we define

L−1F =
∞∑

q=1

− 1

q
Jq(F).

The operator L−1 is called the pseudo-inverse of L. Indeed, for any F ∈ L 2(�), we have
L−1F ∈ domL = D

2,2, and

LL−1F = F − E[F].
The following integration-by-parts formula can be found e.g. in Nourdin and Peccati [7],

Theorem 2.9.1.

Proposition 2.1 Suppose that F ∈ D
1,2 and G ∈ L2(�). Then, L−1G ∈ D

2,2 and

E[FG] = E[F]E[G] + E
[〈DF,−DL−1G〉H

]
.

3 Pathwise differentiation

We introduce several (classical) pathwise derivatives as well as a pathwise version of the
Malliavin differentiation in the path spaceL 2 without a priori assuming an isonormal Gaus-
sian structure as explained in Sect. 2.3.

Definition 3.1 Let f : L 2 → C.

(a) (Fréchet derivative)TheFréchet derivative of f at point x ∈ L 2 is the element∇ f (x) ∈
L 2 such that for all y ∈ L 2

lim‖y‖L 2→0

∣∣ f (x + y) − f (x) − 〈∇ f (x), y〉L 2

∣∣

‖y‖L 2
= 0.

(b) (Gâteaux derivative) TheGâteaux derivative of f at point x ∈ L 2 to direction y ∈ L 2

is

∇y f (x) = lim
ε→0

f (x + εy) − f (x)

ε
.
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Integration-by-parts characterizations of Gaussian processes 33

(c) (Pathwise Malliavin derivative) Let C∞
p (Rn) denote the space of all polynomially

bounded functions with polynomially bounded partial derivatives of all orders. Consider
functionals f : L 2 → C of the form

f (x) = g (z1, . . . , zn) ,

where n ∈ N and g ∈ C∞
p (Rn), and

zk =
∫ 1

0
ek(t) dx(t) (3.1)

for some elementary functions ek ∈ E . For such f wewrite f ∈ S . We call the elements
of classS the smooth functionals. The pathwise Malliavin derivative of such f ∈ S is

Dt f (x) =
n∑

k=1

∂

∂zk
g(z1, . . . , zn) ek(t). (3.2)

More generally, by iteration for every m ∈ N, the pathwise Malliavin derivative of order
m is defined as follows: for every t1, . . . , tm ∈ [0, 1],

Dm
tm ,...,t1 f (x)

=
∑

1≤k1,...,km≤n

∂m

∂zk1 · · · ∂zkm
g(zk1 , . . . , zkn )

(
ek1 ⊗ · · · ⊗ ekm

)
(t1, . . . , tm).

Remark 3.1 If f is Fréchet differentiable at point x ∈ L 2, then the Gâteaux derivative can
be written as

∇y f (x) = 〈∇ f (x), y〉L 2 =
∫ 1

0
∇t f (x) y(t) dt .

Throughout the article the notation ∇ can mean either the Fréchet differential or the Gâteaux
derivative, whenever confusion cannot arise.

Remark 3.2 If X is aGaussian process, thenour definition of the pathwiseMalliavin derivative
coincides with the classical one introduced in Sect. 2.3.2 on the class of smooth functionals.
In particular, it does not depend on the representation (3.1). For details in this case, we refer
to Nualart [8].

Remark 3.3 (Caution)

(a) In our definition of pathwise Malliavin derivative, it is not necessary to take L 2 as the
domain of smooth functionals. In fact, any suitable space of functions can be realized
as good integrators with respect to elementary functions. However, theL 2 space can be
seen as a convenient reference function space later on, since as we are going to apply
our results in a setting where x in (3.1) plays the role of a typical sample path over the
interval [0, 1] of a Gaussian process.

(b) The E -valued operator D defined in (3.2) is in fact a linear unbounded operator. It is
well known (cf. Nualart [8], Lemma 1.2.1) that the domain of the classical Malliavin
derivative can be extended inL 2(�) fashion, if P = P

X is a Gaussian measure. The key
part in the extension is the Gaussian integration-by-parts formula

E
[〈DF, h〉H

] = E [FW (h)] ,
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34 E. Azmoodeh et al.

h ∈ H , h ∈ S , which implies the closability of the Malliavin derivative as an operator
D : L 2(�) → L 2(�;I ), as shown in Nualart [8], Proposition 1.2.1. However, in
the pathwise setting the closability of operator D is not available. On the other hand,
surprisingly such requirement is not needed in order to establish our results.

The next lemma relates the pathwise Malliavin derivative to the Fréchet derivative. A
similar result can be found in Nualart and Saussereau [10] for the particular case of the
fractional Brownian motion.

Lemma 3.1 Let f ∈ S and y ∈ L 2. Then

〈∇ f (x), Iy〉L 2 = 〈D f (x), y〉L 2

Proof Straightforward calculations yield, with ek ∈ E and x ∈ L 2, that

f (x + Iy)

= g

(∫ 1

0
e1(t) d(x(t) + Iy(t)) , . . . ,

∫ 1

0
en(t) d(x(t) + y(t))

)

= g

(∫ 1

0
e1(t) dx(t) +

∫ 1

0
e1(t) dIy(t) , . . . ,

∫ 1

0
en(t) dx(t) +

∫ 1

0
en(t) dIy(t)

)

= g

(∫ 1

0
e1(t) dx(t) +

∫ 1

0
e1(t)y(t) dt , . . . ,

∫ 1

0
en(t) dx(t) +

∫ 1

0
en(t)y(t) dt

)

= f
(
z1 + 〈y1, y〉L 2 , . . . , z1 + 〈yn, y〉L 2

)
.

Thus,

〈∇ f (x), Iy〉L 2 = ∇Iy f (x)

= lim
ε→0

f (x + εIy) − f (x)

ε

= lim
ε→0

f (z1 + ε〈y1, y〉L 2 , . . . , z1 + ε〈yn, y〉L 2) − f (z1, . . . , zn)

ε

=
n∑

k=1

∂

∂zk
f (z1, . . . , zn) 〈yk, y〉L 2

= 〈D f (x), y〉L 2

proving the claim. �

We also need the following two lemmas in order to establish our novel integration-by-parts
formulas in Sect. 4.

Lemma 3.2 Let X = (Xt )t∈[0,1] be a centered Gaussian process satisfying (2.3), and let
D denote the associated classical Malliavin derivative. Then for every f ∈ S we have
f (X) ∈ dom(D) and that Dt f (X) = Dt f (X) for every t ∈ [0, 1]. More generally, for every
m ∈ N, and t1, . . . , tm ∈ [0, 1], it holds that, Dtm ,...,t1 f (X) ∈ dom(D), and

Dt
(
Dtm ,...,t1 f (X)

) = Dt,tm ,...,t1 f (X) = Dt,tm ,...,t1 f (X)

for every t ∈ [0, 1].
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Integration-by-parts characterizations of Gaussian processes 35

Proof By Lemma 2.2 the paths of the process X belong to L 2. Moreover, E ⊂ I , where
I stands for the associated integrand space of Gaussian process X . Furthermore, for every
e ∈ E , the pathwise integral

∫ 1
0 e(t)dXt coincides with the abstract Wiener integral of

Definition 2.6. Thus, the claim follows. �
Lemma 3.3 Let f ∈ S , K ∈ L 2 × L 2, and let X have paths in L 2. Then f (X) is twice
pathwise Malliavin differentiable and the mapping D2

t, · f (X) belongs to dom(K∗).

Proof Second order pathwise Malliavin differentiability is obvious. Indeed, we have

D2
t, · f (X) =

∑

1≤k,l≤n

∂2

∂zk∂zl
g

(∫ 1

0
e1(t)dXt , . . . ,

∫ 1

0
en(t)dXt

)
(ek ⊗ el) (t, ·).

This also shows that D2
t,· f (X) ∈ dom(K∗), since E ⊂ dom(K∗). �

4 Integration-by-parts characterization of Gaussian processes

Webeginwith the following stronger formulation of the integration-by-parts characterization.

Theorem 4.1 (GeneralGaussianProcesses, StrongVersion)The co-ordinate process X : � →
L 2 is centered Gaussian with Fredholm kernel K ∈ L 2 × L 2 if and only if

E [XtDt f (X)] = E

[∫ 1

0
K (t, s)K∗ [

D2
t, · f (X)

]
(s) ds

]
(4.1)

for all t ∈ [0, 1] and f ∈ S .

Remark 4.1 If X0 = 0 and the kernel K is left-continuous and of bounded variation in its
first argument, then we can reformulate (4.1) as

E [XtDt f (X) ] = E

[∫ 1

0

∫ 1

0
K (t, s)D2

t,u f (X) K (du, s) ds

]
.

Proof of Theorem 4.1 “If” part: Suppose the co-ordinate process X : � → L 2 satisfies
(4.1). We begin by considering the covariance function of X , which will justify the use of
the Fubini theorem later and make a tedious variance calculations unnecessary. For this,
take f (X) = 1

2 X
2
u for some u ∈ [0, 1]. Then f ∈ S . We have Dt f (X) = Xu1u(t) and

Dt,s f (X) = 1u(s)1u(t). Consequently, (4.1) yields

E [Xt Xu] 1u(t) = E

[∫ 1

0
K (t, s)K∗ [1u] (s) ds

]
1u(t)

=
∫ 1

0
K (t, s)K (u, s) ds 1u(t)

= R(t, u)1u(t). (4.2)

This shows that X has the covariance function R givenby theFredholmkernel K . In particular,
we have

E
[
X2
t

] =
∫ 1

0
K (t, s)2 ds,
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and since K ∈ L 2 × L 2, we have
∫ 1
0 E

[
X2
t

]
dt < ∞ which justifies the use of the Fubini

theorem in the rest of the proof. Next we are going to show that any finite linear combination

Z =
n∑

k=1

ak
(
Xtk − Xtk−1

) =
∫ 1

0
e(t) dXt

with e = ∑n
k ak1(tk−1,tk ] ∈ E is a Gaussian random variable. Now, note that for every θ the

complex-valued exponential functional eiθ Z = cos(θ Z) + i sin(θ Z) belongs toS , meaning
that the real and imaginary parts both belong toS . Let ϕ be the characteristic function of Z .
Then

Dte
iθ Z = iθe(t) eiθ Z ,

D2
t,se

iθ Z = −θ2e(t)e(s) eiθ Z .

Hence E
[
XtDteiθ Z

] = iθe(t)E
[
Xteiθ Z

]
. Also, by a direct application of Fubini theorem

E

[∫ 1

0
K (t, s)K∗ [

D2
t, · eiθ Z

]
(s) ds

]

= −E

[∫ 1

0
K (t, s)K∗ [

θ2e(t)e(·)eiθ Z
]
(s) ds

]

= −θ2e(t)E

[∫ 1

0
K (t, s)K∗ [

e(·)eiθ Z
]
(s) ds

]

= −θ2e(t)
∫ 1

0
K (t, s)e∗(s) ds E

[
eiθ Z

]
,

where we have denoted e∗ = K∗e. Consequently, the integration-by-parts formula (4.1)
yields

iE
[
Xte

iθ Z
]

= −θ

∫ 1

0
K (t, s)e∗(s) ds ϕ(θ). (4.3)

By Fubini theorem justified by the covariance computation (4.2), we also have

ϕ′(θ) = E

[
iZ eiθ Z

]
.

Thus we obtain by several application of (4.3) that ϕ′(θ) = −cθ ϕ(θ), where we have
denoted

c =
∫ 1

0

(
n∑

k=1

ak (K (tk, s) − K (tk−1, s)) e
∗(s)

)

ds < ∞.

This implies thatϕ(θ) = e− 1
2 cθ

2
, and sinceϕ is a characteristic function, c > 0.Consequently,

Z is a centered Gaussian random variable with variance c.
“Only if” part: Since the co-ordinate process X : � → L 2 is Gaussian, we have the full

power of Malliavin calculus at our disposal. In particular, we can use Proposition 2.1 with
F = Dt f (X) and G = Xt . Since E[Xt ] = 0, we obtain

E [XtDt f (X)] = E
[〈D2

t,· f (X),−DL−1Xt 〉I
]
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But −DL−1Xt = 1t and K∗ is an isometry between I and L 2. Therefore, by noticing that
K∗1t (s) = K (t, s), we obtain

E [XtDt f (X)] = E
[〈D2

t,· f (X), 1t 〉I
]

= E
[〈K∗D2

t,· f (X),K∗1t 〉L 2

]

= E

[∫ 1

0
K∗ [

D2
t,· f (X)

]
(s)K∗1t (s) ds

]

= E

[∫ 1

0
K∗ [

D2
t,· f (X)

]
(s)K (t, s) ds

]

showing the claim. �
Remark 4.2 It is classical that a randomvariable X ≈ N (0, σ 2) if and only if its characteristic
function ϕX satisfies ϕ′

X (θ) ≈ −σ 2θϕX (θ). The latter is equivalent to

E

[
XeiθX

]
≈ i σ 2 θ E

[
eiθX

]
. (4.4)

Hence, as a direct consequence, relation (4.4) is also equivalent to the fact that for a given
diffusive (satisfying the chain rule) gradient operator D on the space of random variables, it
holds that

E

[
XDeiθX

]
≈ σ 2

E

[
D2eiθX

]
.

For example, in the setting of Theorem 4.1 and for a random variable Xt , by considering the
functional f (X) = eiθXt , one can easily infer that

E

[
Xte

iθXt
]

= i θ
∫ 1

0
K (t, s)2 ds E

[
eiθXt

]
.

This implies that Xt ∼ N (0, σ 2) with σ 2 = ∫ 1
0 K (t, s)2ds. Indeed, Theorem 4.1 is a

functional version of the aforementioned considerations in order to capture the Gaussian
structure of X as a process.

If we have additional information on the co-ordinate process, then we can obtain a weaker
integration-by-parts characterization. This is the topic of the next theorem.

Theorem 4.2 (General Gaussian Processes, Weak Version) Let K ∈ L 2 × L 2 be a square
integrable kernel. Assume that the co-ordinate process X : � → L 2 satisfies X ∈ L 2(dt ⊗
P), i.e.

∫ 1

0
E

[
X2
t

]
dt < ∞. (4.5)

Then X is centered Gaussian with the Fredholm kernel K if and only if

E

[∫ 1

0
XtDt f (X) dt

]
= E

[∫ 1

0

∫ 1

0
K (t, s)K∗ [

D2
t, · f (X)

]
(s) dsdt

]
(4.6)

for all f ∈ S .

Before proving Theorem 4.2, let us consider its similarities and differences to the
integration-by-parts characterization of finite-dimensional Gaussian vectors.
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Remark 4.3 Arandomvector X = (X1, . . . , Xd) is centeredGaussianwith covariancematrix
R if and only if

E

[
d∑

i=1

Xi
∂

∂xi
f (X)

]

= E

⎡

⎣
d∑

i=1

d∑

j=1

Ri j
∂2

∂xi∂x j
f (X)

⎤

⎦

for all smooth f : Rd → R such that the expectations above exist. Thus, by a simple analogy,
one would guess (wrongly!) that a process is Gaussian if and only if

E

[∫ 1

0
XtDt f (X) dt

]
= E

[∫ 1

0

∫ 1

0
R(t, s)D2

t,s f (X) dsdt

]
.

This formula is not, however, true even for the Brownian motion. It seems that there is no
integration-by-parts formula in terms of the covariance directly and the simplest formula one
can obtain is (4.6) that is given in terms of the Fredholm kernel.

Proof of Theorem 4.2 By (4.5) and the Fubini theorem, the weak integration-by-parts formula
(4.6) follows from the strong integration-by-parts formula (4.1) by integrating with respect
to t over the interval [0, 1].

Conversely, suppose formula (4.6) holds for all f ∈ S . Let u ∈ (0, 1] be chosen arbitrary
and take f ∈ S such that f (X) depends on X only through its path up to time u. Then,
by definition of pathwise Malliavin derivative, we infer that Dt f (X) = 0 for all t > u.
Consequently, using the Fubini theorem again, (4.6) becomes

∫ u

0
E [XtDt f (X)] dt =

∫ u

0
E

[∫ 1

0
K (t, s)K∗ [

D2
t, · f (X)

]
(s) ds

]
dt .

Since the latter identity holds for arbitrary u ∈ (0, 1], a direct application of fundamental
Theorem of calculus ensures that the formula (4.1) takes place for Lebesgue almost every t ,
and for every f ∈ S . Finally, we note that under assumption (4.5) the functions t ∈ [0, 1] �→
E [XtDt f (X)] and

t ∈ [0, 1] �→ E

[∫ 1

0
K (t, s)K∗ [

D2
t, · f (X)

]
(s) ds

]

belong to L 1(dt). Now the rest of the proof follows similar lines as the proof of Theorem
4.1. �
Corollary 4.1 (Brownian Motion) The co-ordinate process W satisfying assumption (4.5) is
the Brownian motion if and only if

E

[∫ 1

0
Wt Dt f (W ) dt

]
= E

[∫ 1

0

∫ t

0
D2
t,s f (W ) dsdt

]
(4.7)

for all f ∈ S .

Proof The Brownian motion is a Gaussian Fredholm process with kernel I (t, s) = 1t (s).
The claim follows from this by noticing that I (du, s) = δs(du), (see Example 2.2), where
δs is the unit mass at s. �
Corollary 4.2 (GaussianMartingales) The co-ordinate process M satisfying assumption (4.5)
is a Gaussian martingale with bracket 〈M〉 if and only if

E

[∫ 1

0
Mt Dt f (M) dt

]
= E

[∫ 1

0

∫ t

0
D2
t,s f (M) d〈M〉s dt

]
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for all f ∈ S .

Proof By using a time-change, we observe that Gaussian martingales are Gaussian Fred-
holm processes with kernel K (t, s) = I (〈M〉t , s). Consequently, K (du, s) = δ〈M〉−1

s
(du).

Therefore,
∫ 1

0
K (t, s)K∗ [

D2
t, · f (M)

]
(s) ds =

∫ 〈M〉t

0

∫ 1

0
D2
t,u f (M) δ〈M〉−1

s
(du)ds

=
∫ 〈M〉t

0
D2
t,〈M〉−1

s
f (M) ds,

from which the claim follows by making a change-of-variables. �
Corollary 4.3 (Brownian Bridge) The co-ordinate process B satisfying assumption (4.5) is
the Brownian bridge if and only if

E

[∫ 1

0
BtDt f (B) dt

]
= E

[∫ 1

0

∫ 1

0

∫ 1

0
[1t (s) − t] D2

t,u f (B) [δs(u) − du] dsdt

]
(4.8)

for all f ∈ S .

Proof The integration-by-parts formula (4.8) follows from the orthogonal representation
Bt = Wt − tW1 of the Brownian bridge. Indeed, we have

K (t, s) = 1t (s) − t,

K (du, s) = δs(u) − du.

�
Remark 4.4 The Brownian bridge also admits the so-called canonical representation

Bt =
∫ t

0

1 − t

1 − s
dWt ,

Consequently, we have

K (t, s) = 1 − t

1 − s
1t (s),

K (du, s) = 1

1 − s

[
(1 − u)δs(du) + 1u(s)du

]
.

It follows that an equivalent formulation for the integration-by-parts formula (4.8) is

E

[∫ 1

0
BtDt f (B) dt

]

= E

[∫ 1

0

∫ 1

0

∫ 1

0

1 − t

1 − s
1t (s)D2

t,u f (B)

[
1 − u

1 − s
δs(du) + 1u(s)

1 − s
du

]
dsdt

]

= E

[∫ 1

0

∫ t

0

1 − t

(1 − s)2

∫ 1

0
D2
t,u f (B) [(1 − u)δs(du) + 1u(s)du] dsdt

]

= E

[∫ 1

0

∫ t

0

1 − t

(1 − s)2

[
(1 − s)D2

t,s f (B) +
∫ s

0
D2
t,u f (B) du

]
dsdt

]
.

Remark 4.5 Corollary 4.3 can be further extended to generalized bridges with respect to a
general class of Gaussian processes by using the representation results of [14].
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5 Connection with the abstract Wiener space approach of [11]

In this part, we will discuss the link between our results and the integration-by-parts formula
of Shih [11]. For simplicity, we consider only the case of Brownian motion.

Let us denote by B the space C0([0, 1]) of continuous functions on [0, 1], vanishing at
zero. Let X = W = (Wt )t∈[0,1] be the standard Brownian motion. Then K = I is just the
integral operator and I∗ is the identity operator (see Example 2.2). The integrand space is
I = L 2 and the Cameron–Martin space isR = IL 2. It is well-known that I : I → R ⊂ B
embedsI densely intoB. Consequently, (I,R,B) is an abstract Wiener space in the sense
of Gross [4].

Now, the pathwise Malliavin derivative introduced in Sect. 3 (which coincides with the
standard Malliavin derivative, see Lemma 3.2) satisfies

〈D f (x), y〉L 2 = ∇Iy f (x)

for every f ∈ S , x, y ∈ L 2. It can be shown that ∇Iy f (x) coincides with the Gross
R-derivative of f (x) at Iy, see [11], p. 1241 or [14].

In [11], the following characterization of Gaussian measures on B was obtained: if X is
a B-valued random variable, then P is a Gaussian measure if and only if

E
[〈X ,D f (X)〉B ,B ∗

] = E
[
TrRD2 f (X)

]
(5.1)

for all f : B → R such that D2 f (X) is trace-class on R. Here the notation 〈·, ·, 〉B ,B ∗
means the usual dual pairing and TrRD2 f (X) is the trace of the Malliavin derivative D2

(also called the Gross Laplacian).
Let us discuss the connection between our result in Corollary 4.1 and the above formula

(5.1). We will formally compute the left-hand side of (5.1). Let Ẇ be the so-called white
noise, which is formally defined as a Gaussian process with covarianceE[Ẇt Ẇs] = δ(t − s).
Recall that for every g ∈ L 2, integrals of the form

∫ 1
0 g(s)Ẇsds are well-defined centered

Gaussian random variables. Also recall the formula that links the dual pairingB−B∗ (recall
that B∗ is the space of signed measures) to the scalar product in L 2 (see e.g. [4], p. 1241):

〈Ix, h〉B ,B ∗ = 〈x, I′h〉L 2 , (5.2)

for any x ∈ L 2 and h ∈ B∗, where I′ is the injection from B∗ into (L 2)∗ � L 2 given by
(see e.g. [16], Chapter 1)

I′h(t) =
∫ 1

t
h(ds).

Using (5.2), the left-hand side of (5.1) can be expressed as follows: by setting x = Ẇ and
h(du) = dDu f (W ), we obtain

E
[〈W ,D f (W )〉B ,B ∗

] = E

[∫ 1

0
Ẇt

(∫ 1

t
h(du)

)
dt

]

= E

[∫ 1

0
Wu h(du)

]

= E

[∫ 1

0
Wu dDu f (W )

]
,

which does not coincide with the left-hand side of (4.7). Therefore, our formula in Corollary
4.1 is different from the Shih’s formula (5.1).
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