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Abstract If μ is a positive Borel measure on the interval [0, 1) we let Hμ be the Hankel
matrixHμ = (μn,k)n,k≥0 with entriesμn,k = μn+k , where, for n = 0, 1, 2, . . . ,μn denotes
the moment of order n of μ. This matrix induces formally the operator

Hμ( f )(z) =
∞∑

n=0

( ∞∑

k=0

μn,kak

)
zn

on the space of all analytic functions f (z) = ∑∞
k=0 akz

k , in the unit disc D. This is a
natural generalization of the classical Hilbert operator. In this paper we study the action of
the operators Hμ on mean Lipschitz spaces of analytic functions.

Keywords Hankel matrix ·Generalized Hilbert operator ·Mean Lipschitz spaces · Carleson
measures

Mathematics Subject Classification 30H10 · 47B35

1 Introduction and main results

Let D be the unit disc in the complex plane C, and letHol(D) denote the space of all analytic
functions in D. For 0 < r < 1 and f ∈ Hol(D), we set
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60 N. Merchán

Mp(r, f ) =
(

1

2π

∫ π

−π

∣∣∣ f (reiθ )
∣∣∣
p
dθ

)1/p

, 0 < p < ∞,

M∞(r, f ) = max|z|=r
| f (z)|.

For 0 < p ≤ ∞ the Hardy space H p consists of those functions f , analytic in D, for which

‖ f ‖H p = sup
0<r<1

Mp(r, f ) < ∞.

We refer to [9] for the theory of Hardy spaces.
The space BMOA consists of those functions f ∈ H1 whose boundary values have

bounded mean oscillation on ∂D. The Bloch space B consists of all analytic functions f in
D with bounded invariant derivative:

f ∈ B ⇔ ‖ f ‖B def= | f (0)| + sup
z∈D

(1 − |z|2) | f ′(z)| < ∞ .

Wemention [1,13,23] as excellent references for these spaces. Let us recall that BMOA � B.
If μ is a finite positive Borel measure on [0, 1) and n = 0, 1, 2, . . . , we let μn denote the

moment of order n of μ, that is, μn = ∫
[0,1) t

n dμ(t), and we let Hμ be the Hankel matrix
(μn,k)n,k≥0 with entries μn,k = μn+k . The matrix Hμ induces formally an operator, also
denoted Hμ, on spaces of analytic functions in the following way: if f (z) = ∑∞

k=0 akz
k ∈

Hol(D) we define

Hμ( f )(z) =
∞∑

n=0

( ∞∑

k=0

μn,kak

)
zn,

whenever the right hand side makes sense and defines an analytic function in D.
If μ is the Lebesgue measure on [0, 1) the matrix Hμ reduces to the classical Hilbert

matrix H = (
(n + k + 1)−1

)
n,k≥0, which induces the classical Hilbert operator H. The

Hilbert operator is known to be well defined on H1 and bounded from H p into itself, if
1 < p < ∞, but not if p = 1 or p = ∞ [8].

The question of describing the measures μ for which the operatorHμ is well defined and
bounded on distinct spaces of analytic functions has been studied in a good number of papers
(see [2,7,10,15,16,19–21]). The measures in question are Carleson-type measures.

If I ⊂ ∂D is an interval, |I | will denote the length of I . The Carleson square S(I ) is
defined as S(I ) = {reit : eit ∈ I, 1 − |I |

2π ≤ r < 1}.
If s > 0 and μ is a positive Borel measure on D, we shall say that μ is an s-Carleson

measure if there exists a positive constant C such that

μ (S(I )) ≤ C |I |s, for any interval I ⊂ ∂D.

A 1-Carleson measure will be simply called a Carleson measure.
If μ is a positive Borel measure on D, 0 ≤ α < ∞, and 0 < s < ∞ we say that μ is an

α-logarithmic s-Carleson measure [22] if there exists a positive constant C such that

μ (S(I ))
(
log 2π

|I |
)α

|I |s ≤ C, for any interval I ⊂ ∂D.

A positive Borel measure μ on [0, 1) can be seen as a Borel measure on D by identifying
it with the measure μ̃ defined by

μ̃(A) = μ (A ∩ [0, 1)) , for any Borel subset A of D.

123



Mean Lipschitz spaces and a generalized Hilbert operator 61

In this way a positive Borel measure μ on [0, 1) is an s-Carleson measure if and only if there
exists a positive constant C such that

μ ([t, 1)) ≤ C(1 − t)s, 0 ≤ t < 1.

We have a similar statement for α-logarithmic s-Carleson measures.
Widom [21, Theorem3.1] (see also [20, Theorem3] and [19, p. 42, Theorem7.2]) proved

that Hμ is a bounded operator from H2 into itself if and only μ is a Carleson measure.
Galanopoulos and Peláez [10] studied the operators Hμ acting on H1. The action of Hμ

on the Hardy spaces H p , 0 < p ≤ ∞, has been studied in [7,15,16]. The papers [15] and
[16] study also the operators Hμ acting on distinct subspaces of the Bloch space, including
BMOA, Besov spaces, and the Qs-spaces.

In this paper we shall study the operatorsHμ acting on mean Lipschitz spaces of analytic
functions.

If f ∈ Hol(D) has a non-tangential limit f (eiθ ) at almost every eiθ ∈ ∂D and δ > 0, we
define

ωp(δ, f ) = sup
0<|t |≤δ

(
1

2π

∫ π

−π

∣∣∣ f (ei(θ+t)) − f (eiθ )
∣∣∣
p
dθ

)1/p

, if 1 ≤ p < ∞,

ω∞(δ, f ) = sup
0<|t |≤δ

(
ess.sup
θ∈[−π,π ]

| f (ei(θ+t)) − f (eiθ )|
)

.

Then ωp(·, f ) is the integral modulus of continuity of order p of the boundary values f (eiθ )
of f .

Given1 ≤ p ≤ ∞ and0 < α ≤ 1, themeanLipschitz spaceΛ
p
α consists of those functions

f ∈ Hol(D) having a non-tangential limit almost everywhere for which ωp(δ, f ) = O(δα),
as δ → 0. If p = ∞ we write Λα instead of Λ∞

α . This is the usual Lipschitz space of order
α.

A classical result of Hardy and Littlewood [17] (see also [9, Chapter 5]) asserts that for
1 ≤ p ≤ ∞ and 0 < α ≤ 1, we have that Λp

α ⊂ H p and

Λp
α =

{
f ∈ Hol(D) : Mp(r, f ′) = O

(
1

(1 − r)1−α

)}
. (1)

It is known that if 1 < p < ∞ and α > 1
p then each f ∈ Λ

p
α is bounded and has a continuous

extension to the closed unit disc ([6], p. 88). This is not true for α = 1
p , because the function

f (z) = log(1−z) belongs toΛ
p
1/p for all p ∈ (1,∞). By a theorem of Hardy and Littlewood

[9, Theorem 5.9] and of [6, Theorem 2.5] we have

Λ
p
1/p ⊂ Λ

q
1/q ⊂ BMOA 1 ≤ p < q < ∞.

The inclusionΛ
p
1/p ⊂ BMOA, 1 ≤ p < ∞was proved to be sharp in a very strong sense

in [3,11,12] using the following generalization of the spaces Λ
p
α which occurs frequently

in the literature. Let ω : [0, π ] → [0,∞) be a continuous and increasing function with
ω(0) = 0 and ω(t) > 0 if t > 0. Then, for 1 ≤ p ≤ ∞, the mean Lipschitz space Λ(p, ω)

consists of those functions f ∈ H p such that

ωp(δ, f ) = O(ω(δ)), as δ → 0.

With this notation we have Λ
p
α = Λ(p, δα).
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62 N. Merchán

The question of finding conditions on ω so that it is possible to obtain results on the
spaces Λ(p, ω) analogous to those proved by Hardy and Littlewood for the spaces Λ

p
α has

been studied by several authors (see [4–6]). We shall say that ω satisfies the Dini condition
or that ω is a Dini-weight if there exists a positive constant C such that

∫ δ

0

ω(t)

t
dt ≤ Cω(δ), 0 < δ < 1.

We shall say that ω satisfies the condition b1 or that ω ∈ b1 if there exists a positive constant
C such that

∫ π

δ

ω(t)

t2
dt ≤ C

ω(δ)

δ
, 0 < δ < 1.

In order to simplify our notation, let AW denote the family of all functions ω : [0, π] →
[0,∞) which satisfy the following conditions:

(i) ω is continuous and increasing in [0, π ].
(ii) ω(0) = 0 and ω(t) > 0 if t > 0.
(iii) ω is a Dini-weight.
(iv) ω satisfies the condition b1.

The elements of AW will be called admissible weights. Characterizations and examples
of admissible weights can be found in [4,5].

Blasco and de Souza extended the above mentioned result of Hardy and Littlewood show-
ing in [4, Th. 2.1] that if ω ∈ AW then,

Λ(p, ω) =
{
f analytic in D : Mp(r, f ′) = O

(
ω(1 − r)

1 − r

)
, as r → 1

}
.

In [3,11,12] it is proved that if 1 ≤ p < ∞ and ω is an admissible weight such that

ω(δ)

δ1/p
→ ∞, as δ → 0,

then there exists a function f ∈ Λ(p, ω) which is a not a normal function (see [1] for the
definition). Since any Bloch function is normal, if follows that for such admissible weights
ω one has that Λ(p, ω) �⊂ B.

One of the main results in [16] is the following one.

Theorem A [16] Let μ be a positive Borel measure on [0, 1) and let X be a Banach space
of analytic functions in D withΛ2

1/2 ⊂ X ⊂ B. Then the following conditions are equivalent.
(i) The operator Hμ is well defined in X and, furthermore, it is a bounded operator from

X into the Bloch space B.
(ii) The operator Hμ is well defined in X and, furthermore, it is a bounded operator from

X into Λ2
1/2.

(iii) The measure μ is a 1-logarithmic 1-Carleson measure.
(iv)

∫
[0,1) t

n log 1
1−t dμ(t) = O

( 1
n

)
.

A key ingredient in the proof of TheoremA is the fact that for any space X with Λ2
1/2 ⊂

X ⊂ B the functions f ∈ X of the form f (z) = ∑∞
n=0 anz

n whose sequence of Taylor
coefficients {an} is a decreasing sequence of non-negative numbers are the same. Indeed, for
such a function f and such a space X we have that f ∈ X ⇔ an = O

( 1
n

)
. This result

remains true if we substitute Λ2
1/2 by Λ

p
1/p for any p > 1. That is, the following result holds:
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Mean Lipschitz spaces and a generalized Hilbert operator 63

Lemma 1 Suppose that 1 < p < ∞ and let f ∈ Hol(D) be of the form f (z) = ∑∞
n=0 anz

n

with {an}∞n=0 being a decreasing sequence of nonnegative numbers. If X is a subspace of
Hol(D) with Λ

p
1/p ⊂ X ⊂ B, then

f ∈ X ⇔ an = O

(
1

n

)
.

Lemma1 is a consequence of the following one which will be proved in Sect. 2.

Lemma 2 Let 1 < p < ∞, ω ∈ AW and let f (z) = ∑∞
n=0 anz

n with {an}∞n=0 being a
decreasing sequence of nonnegative numbers. Then

f ∈ Λ(p, ω) ⇔ an = O

(
ω(1/n)

n1−1/p

)
. (2)

Using Lemma1 and following the proof of TheoremA in [16], we obtain

Theorem 1 Suppose that 1 < p < ∞. Let μ be a positive Borel measure on [0, 1) and let
X be a Banach space of analytic functions in D with Λ

p
1/p ⊂ X ⊂ B. Then the following

conditions are equivalent.

(i) The operator Hμ is well defined in X and, furthermore, it is a bounded operator from
X into the Bloch space B.

(ii) The operator Hμ is well defined in X and, furthermore, it is a bounded operator from
X into Λ

p
1/p.

(iii) The measure μ is a 1-logarithmic 1-Carleson measure.
(iv)

∫
[0,1) t

n log 1
1−t dμ(t) = O

( 1
n

)
.

As an immediate consequence of Theorem1 we obtain the following result.

Corollary 1 Letμ be a positive Borel measure on [0, 1) and 1 < p < ∞. Then the operator
Hμ is well defined in Λ

p
1/p and, furthermore, it is a bounded operator from Λ

p
1/p into itself

if and only if μ is a 1-logarithmic 1-Carleson measure.

Let us turn our attention now to the spaces Λ(p, ω) with ω(δ)

δ1/p
↗ ∞, δ ↘ 0 which, as

noted before, are not included in the Bloch space. We have the following result which shows
that the situation is different from the one covered in Theorem1.

Theorem 2 Let 1 < p < ∞, ω ∈ AW with ω(δ)

δ1/p
↗ ∞ when δ ↘ 0. The following

conditions are equivalent:

(i) The operatorHμ is well defined in Λ(p, ω) and, furthermore, it is a bounded operator
from Λ(p, ω) into itself.

(ii) The measure μ is a Carleson measure.

The proofs of Lemma2 and Theorem2 will be presented in Sect. 2. We close this section
noticing that, as usual, we shall be using the convention that C = C(p, α, q, β, . . . ) will
denote a positive constant which depends only upon the displayed parameters p, α, q, β . . .

(which sometimes will be omitted) but not necessarily the same at different occurrences.
Moreover, for two real-valued functions E1, E2 we write E1 � E2, or E1 � E2, if there
exists a positive constant C independent of the arguments such that E1 ≤ CE2, respectively
E1 ≥ CE2. If we have E1 � E2 and E1 � E2 simultaneously then we say that E1 and E2

are equivalent and we write E1 � E2.
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64 N. Merchán

2 Proofs of the main results

We start recalling that for a function f (z) = ∑∞
n=0 anz

n analytic in D, the polynomialsΔ j f
are defined as follows:

Δ j f (z) =
2 j+1−1∑

k=2 j

ak z
k, for j ≥ 1,

Δ0 f (z) = a0 + a1z.

The proof of Lemma2 is based in the following result ofGirela andGonzález [14, Theorem2].

Theorem B Let 1 < p < ∞ and let ω be an admissible weight. If f ∈ Hol(D) with
f (z) = ∑∞

n=0 anz
n then

f ∈ Λ(p, ω) ⇔ ‖ΔN f ‖H p = O

(
ω

(
1

2N

))
.

Proof of Lemma 2 By Lemma A of [18], since an ↘ 0, we have

‖ΔN f ‖H p � a2N 2
N (1−1/p), N ≥ 1.

So by Theorem B we have that

f ∈ Λ(p, ω) ⇔ a2N �
ω

(
1/2N

)

2N (1−1/p)
, N ≥ 1.

This easily implies (2). ��
Lemma 3 Suppose that 1 < p < ∞. Let ν be a positive Borel measure on [0, 1), and
let ω ∈ AW satisfying that x−1/pω(x) ↗ ∞, as x ↘ 0. Then following conditions are
equivalent:

(i) νn � ω(1/n)

n1−1/p , n ≥ 2.

(ii) ν([b, 1)) � (1 − b)1−1/pω(1 − b), b ∈ [0, 1).
Proof Suppose (i). Then we have that

1 � n1−1/p νn

ω(1/n)
= n1−1/p

ω(1/n)

∫

[0,1)
tn dν(t) ≥ n1−1/p

ω(1/n)

∫

[1−1/n,1)
tn dν(t)

≥ n1−1/p

ω(1/n)
ν([1 − 1/n, 1))

(
1 − 1

n

)n

≥ n1−1/p

ω(1/n)
ν([1 − 1/n, 1)) inf

m≥2

(
1 − 1

m

)m

� n1−1/p

ω(1/n)
ν([1 − 1/n, 1)).

So ν([1 − 1/n, 1)) � ω(1/n)

n1−1/p for n ≥ 2.

Let now b ∈ [1/2, 1). There exists n ≥ 2 such that 1 − 1
n ≤ b < 1 − 1

n+1 so using the
above we have that

ν([b, 1)) ≤ ν([1 − 1/n, 1)) � ω(1/n)

n1−1/p .
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Mean Lipschitz spaces and a generalized Hilbert operator 65

This, and the facts thatω(1/n)n1/p ≤ ω(1/(n+1))(n+1)1/p and that the weightω increases
give (ii).

Suppose now (ii). Then

νn =
∫

[0,1)
tn dν(t) = n

∫ 1

0
ν([t, 1))tn−1 dt

� n
∫ 1

0
(1 − t)1−1/pω(1 − t)tn−1 dt

= n
∫ 1− 1

n

0
+

∫ 1

1− 1
n

(
(1 − t)1−1/pω(1 − t)tn−1 )

dt.

The first integral can be estimated bearing in mind that (1 − t)−1/pω(1 − t) ↗ ∞ when
t ↗ 1 as follows

n
∫ 1− 1

n

0
(1 − t)1−1/pω(1 − t)tn−1 dt

≤ n1+1/pω(1/n)

∫ 1− 1
n

0
(1 − t)tn−1 dt

= n1+1/pω(1/n)

(
1 − 1

n

)n (
1

n
− n − 1

n(n + 1)

)

� ω(1/n)

n1−1/p .

To estimate of the second integral we use that (1 − t)1−1/pω(1 − t) ↘ 0 when t ↗ 1 to
obtain

n
∫ 1

1− 1
n

(1 − t)1−1/pω(1 − t)tn−1 dt

≤ n1/pω(1/n)

∫ 1

1− 1
n

tn−1 dt

= ω(1/n)

n1−1/p

(
1 −

(
1 − 1

n

)n)

� ω(1/n)

n1−1/p .

Then (i) follows. ��
Proof of Theorem 2 (i) ⇒ (ii) Suppose that Hμ : Λ(p, ω) → Λ(p, ω) is bounded. By
Lemma2 we have that the function f defined by f (z) = ∑∞

n=1
ω(1/n)

n1−1/p z
n belongs to the

space Λ(p, ω) so, by the hypothesis, Hμ( f ) belongs also to Λ(p, ω). Now

Hμ( f )(z) =
∞∑

n=0

( ∞∑

k=1

ω(1/k)

k1−1/p μn+k

)
zn .

Notice that
∑∞

k=1
ω(1/k)
k1−1/p μn+k ↘ 0, n → ∞, so using again Lemma 2 it holds that

∞∑

k=1

ω(1/k)

k1−1/p μn+k =
∫

[0,1)
tn

∞∑

k=1

ω(1/k)

k1−1/p tk dμ(t) � ω(1/n)

n1−1/p ,
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66 N. Merchán

that is, the moments of the measure ν defined by

dν(t) =
∞∑

k=1

ω(1/k)

k1−1/p tk dμ(t)

satisfy that

νn � ω(1/n)

n1−1/p ,

so by Lemma 3 we have that ν([b, 1)) � (1 − b)1−1/pω(1 − b), b ∈ [0, 1).
According to the definition of the measure

(1 − b)1−1/pω(1 − b) � ν([b, 1)) =
∫

[b,1)
dν(t)

=
∫

[b,1)

∞∑

k=1

ω(1/k)

k1−1/p tk dμ(t)

≥ μ ([b, 1))
∞∑

k=1

ω(1/k)

k1−1/p bk

and the sum can be estimated as follows
∞∑

k=1

ω(1/k)

k1−1/p bk �
∫ ∞

1

ω(1/x)

x1−1/p bx dx

≥
∫ 1

1−b

1

ω(1/x)

x1−1/p bx dx

≥ (1 − b)1−1/pω(1 − b)b
1

1−b

(
1

1 − b
− 1

)

� ω(1 − b)

(1 − b)1/p
.

Finally, putting all together we have that

μ([b, 1)) � 1 − b

so μ is a Carleson measure.
(ii) ⇒ (i) To prove this implication we need to use the integral operator Iμ considered in

[7,10,15,16] which is closely related to the operator Hμ.
If μ is a positive Borel measure on [0, 1) and f ∈ Hol(D), we shall write throughout the

paper

Iμ( f )(z) =
∫

[0,1)
f (t)

1 − t z
dμ(t),

whenever the right hand side makes sense and defines an analytic function in D. It turns out
that the operators Hμ and Iμ are closely related. Indeed, as shown in the just mentioned
papers, it turns out that if f is good enough Hμ and Iμ( f ) are well defined and coincide.

Suppose that μ is a Carleson measure supported on [0, 1) and let f ∈ Λ(p, ω). We claim
that ∫

[0,1)
| f (t)|

|1 − t z| dμ(t) < ∞. (3)
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Mean Lipschitz spaces and a generalized Hilbert operator 67

Indeed, using Lemma 3 of [14] we have that

f ∈ Λ(p, ω) ⇒ | f (z)| � ω(1 − |z|)
(1 − |z|)1/p , z ∈ D. (4)

Then we obtain
∫

[0,1)
| f (t)|

|1 − t z| dμ(t) ≤ 1

1 − |z|
∫

[0,1)
| f (t)| dμ(t)

� 1

1 − |z|
∫

[0,1)
ω(1 − t)

(1 − t)1/p
dμ(t).

If we choose r ∈ [0, 1) we can split the integral in the intervals [0, r) and [r, 1). In the first
one, as ω is an increasing weight we have

∫

[0,r)
ω(1 − t)

(1 − t)1/p
dμ(t) ≤ ω(1)

∫

[0,r)
dμ(t)

(1 − t)1/p

≤ ω(1)
∫

[0,1)
dμ(t)

(1 − t)1/p

� 1,

because μ is a Carleson measure. Using this and the condition ω(δ)

δ1/p
↗ ∞, as δ ↘ 0 we can

estimate the other integral as follows
∫

[r,1)
ω(1 − t)

(1 − t)1/p
dμ(t) ≤ ω(1 − r)

(1 − r)1/p

∫

[r,1)
dμ(t)

� ω(1 − r)(1 − r)1−1/p

� 1.

So we have that for f ∈ Λ(p, ω) and z ∈ D, (3) holds. This implies that Iμ( f ) is well
defined, and, using Fubini’s theorem and standard arguments it follows easily thatHμ( f ) is
also well defined and that, furthermore,

Hμ( f )(z) = Iμ( f )(z), z ∈ D.

Now we have,

Iμ( f )′(z) =
∫

[0,1)
t f (t)

(1 − t z)2
dμ(t), z ∈ D,

so the mean of order p of Iμ( f )′ has the form

Mp
(
r, Iμ( f )′

) =
(

1

2π

∫ π

−π

∣∣∣∣
∫

[0,1)
t f (t)

(1 − treiθ )2
dμ(t)

∣∣∣∣
p

dθ

)1/p

.

Using again (4), the Minkowski inequality and a classical estimation of integrals we obtain
that

Mp
(
r, Iμ( f )′

)
�

∫

[0,1)
| f (t)|

(∫ π

−π

dθ

|1 − treiθ |2p
)1/p

dμ(t)

�
∫

[0,1)
| f (t)|

(1 − tr)2−1/p dμ(t)

�
∫

[0,1)
ω(1 − t)

(1 − t)1/p(1 − tr)2−1/p dμ(t).
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68 N. Merchán

At this point we split the integrals on the sets [0, r) and [r, 1).
In the first integral we use that x−1/pω(x) ↗ ∞, as x ↘ 0, and the fact that if μ is a

Carleson measure (so that μn = ∫
[0,1) t

n dμ(t) � 1
n ) to obtain

∫

[0,r)
ω(1 − t)

(1 − t)1/p(1 − tr)2−1/p dμ(t) ≤ ω(1 − r)

(1 − r)1/p

∫

[0,r)
dμ(t)

(1 − tr)2−1/p

≤ ω(1 − r)

(1 − r)1/p

∫

[0,1)
dμ(t)

(1 − tr)2−1/p

� ω(1 − r)

(1 − r)1/p

∞∑

n=1

n1−1/prn
∫

[0,1)
tn dμ(t)

� ω(1 − r)

(1 − r)1/p

∞∑

n=1

rn

n1/p

� ω(1 − r)

(1 − r)
.

In the second integral we use that ω is an increasing weight and the fact that the measure
μ being a Carleson measure is equivalent to saying that the measure ν defined by dν(t) =
dμ(t)

(1−t)1/p
is a 1 − 1

p -Carleson measure so that the moments νn of ν satisfy νn � 1

n
1− 1

p
. Then

we obtain
∫

[r,1)
ω(1 − t)

(1 − t)1/p(1 − tr)2−1/p dμ(t) ≤ ω(1 − r)
∫

[r,1)
dν(t)

(1 − tr)2−1/p

≤ ω(1 − r)
∫

[0,1)
dν(t)

(1 − tr)2−1/p

� ω(1 − r)
∞∑

n=1

n1−1/prn
∫

[0,1)
tn dν(t)

� ω(1 − r)
∞∑

n=1

rn

= ω(1 − r)

(1 − r)
.

Therefore Iμ( f ) ∈ Λ(p, ω) and then the operator Iμ (and hence the operatorHμ) is bounded
from Λ(p, ω) into itself. ��

References

1. Anderson, J.M., Clunie, J., Pommerenke, C.: On Bloch functions and normal functions. J. Reine Angew.
Math. 270, 12–37 (1974)

2. Bao, G., Wulan, H.: Hankel matrices acting on Dirichlet spaces. J. Math. Anal. Appl. 409(1), 228–235
(2014)

3. Blasco, O., Girela, D., Márquez, M.A.: Mean growth of the derivative of analytic functions, bounded
mean oscillation and normal functions. Indiana Univ. Math. J. 47(2), 893–912 (1998)

4. Blasco, O., de Souza, G.S.: Spaces of analytic functions on the discwhere the growth ofMp(F, r) depends
on a weight. J. Math. Anal. Appl. 147(2), 580–598 (1989)

5. Bloom, S., de Souza,G.S.:WeightedLipschitz spaces and their analytic characterizations. Constr. Approx.
10, 339–376 (1994)

123



Mean Lipschitz spaces and a generalized Hilbert operator 69

6. Bourdon, P., Shapiro, J., Sledd, W.: Fourier series, mean Lipschitz spaces and bounded mean oscillation,
Analysis at Urbana 1. In: Berkson, E.R., Peck, N.T., Uhl, J. (eds.) Proceedings of the Special Year in
Modern Analysis at the University of Illinois, 1986–87, London Mathematical Society Lecture Note
Series, vol. 137, pp. 81–110 . Cambridge University Press, Cambridge (1989)

7. Chatzifountas, C., Girela, D., Peláez, J.A.: A generalized Hilbert matrix acting on Hardy spaces. J. Math.
Anal. Appl. 413(1), 154–168 (2014)

8. Diamantopoulos, E., Siskakis, A.G.: Composition operators and the Hilbert matrix. Stud. Math. 140,
191–198 (2000)

9. Duren, P.L.: Theory of H p Spaces. Academic Press, New York (1970). Reprint: Dover, Mineola, New
York (2000)

10. Galanopoulos, P., Peláez, J.A.: AHankelmatrix acting onHardy andBergman spaces. Stud.Math. 200(3),
201–220 (2010)

11. Girela, D.: On a theorem of Privalov and normal functions. Proc. Am. Math. Soc. 125, 433–442 (1997)
12. Girela, D.: Mean Lipschitz spaces and bounded mean oscillation. Ill. J. Math. 41, 214–230 (1997)
13. Girela, D.: Analytic functions of bounded mean oscillation. In: Aulaskari, R. (ed.) Complex Function

Spaces,Mekrijärvi 1999, vol. 4, pp. 61–170 . Univ. JoensuuDept.Math. Rep. Ser., Univ. Joensuu, Joensuu
(2001)

14. Girela, D., González, C.: Some results onmean Lipschitz spaces of analytic functions. RockyMt. J. Math.
30(3), 901–922 (2000)

15. Girela, D., Merchán, N.: A generalized Hilbert operator acting on conformally invariant spaces. Banach.
J. Math. Anal. https://doi.org/10.1215/17358787-2017-0023

16. Girela, D.,Merchán, N.: AHankel matrix acting on spaces of analytic functions. Integr. Equ. Oper. Theory
89(4), 581–594 (2017)

17. Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals, II. Math. Z. 34, 403–439 (1932)
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